Study of the potential energy surface of reactions in a system containing i-propyl and n-propyl radicals

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The energy pathways of possible decomposition and isomerization reactions of iso-propyl (i-C3H7) and n-propyl (n-C3H7) radicals have been studied by computational methods of quantum chemistry. B3LYP, M062X, MP2, and CBS-QB3 methods are used to localize stationary points on the potential energy surface of a system containing propyl radicals. A number of intermediate compounds formed during the isomerization and decomposition of propyl radicals have been identified, and information has been obtained on their structure and thermochemical parameters. Based on the results of the research, a diagram of the energy levels of the system under consideration was constructed.

Full Text

Restricted Access

About the authors

A. H. Davtyan

Institute of Chemical Physics by A.B. Nalbandyan, National Academy of Sciences of Republic of Armenia

Email: arsentiev53@mail.ru
Armenia, Yerevan

Z. H. Manukyan

Institute of Chemical Physics by A.B. Nalbandyan, National Academy of Sciences of Republic of Armenia

Email: arsentiev53@mail.ru
Armenia, Yerevan

S. D. Arsentev

Institute of Chemical Physics by A.B. Nalbandyan, National Academy of Sciences of Republic of Armenia

Author for correspondence.
Email: arsentiev53@mail.ru
Armenia, Yerevan

L. A. Tavadyan

Institute of Chemical Physics by A.B. Nalbandyan, National Academy of Sciences of Republic of Armenia

Email: arsentiev53@mail.ru
Armenia, Yerevan

V. S. Arutyunov

Semenov Federal Research Center for Chemical Physics of Russian Academy of Sciences

Email: arsentiev53@mail.ru
Russian Federation, Moscow

References

  1. A. Ushakova, V. Zatsepin, M. Varfolomeev, D. Emelyanov, J. Combust. 11, 1 (2017). https://doi.org/
  2. A. A. Mantashyan, Russ. J. Phys. Chem. B 15, 233 (2021). https://doi.org/10.1134/S1990793121020214
  3. N. M. Pogosyan, M. Dj. Pogosyan, S. D. Arsentiev, et al., Petroleum Chemi. 60 (3), 316 (2020). https://doi.org/
  4. R. R.Grigoryan, S. D. Arsentev, Petr. Chem. 60 (2), 187 (2020). https://doi.org/
  5. A. S. Palankoeva, A. A. Belyaev, V. S. Arutyunov, Russ. J. Phys. Chem. B 16 (3), 399 (2022). https://doi.org/
  6. S. D. Arsentev, L. A. Tavadyan, M. G. Bryukov, et al., Russ. J. Phys. Chem. B 16 (6), 1019 (2022). https://doi.org/10.1134/S1990793122060021
  7. A. V. Ozerskii, A. D. Starostin, A. V. Nikitin, V. S. Arutyunov, Combust. Explosion 15 (1), 30 (2022). https://doi.org/10.30826/CE22150104
  8. A. D. Becke, Phys. Rev. A. 38, 3098 (1988).
  9. A. D. Becke, J. Chem. Phys. 98, 5648 (1993).
  10. C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 37, 785 (1988).
  11. Y. Zhao, D. G. Truhlar, Theor. Chem. Account. 120, 215 (2008). https://doi.org/
  12. Y. Zhao, D. G. Truhlar, Acc. Chem. Res. 41, 157 (2008). https://doi.org/
  13. M. J. Frisch, M. Head-Gordon, J. A. Pople, Chem. Phys. Lett. 166 (3), 275 (1990). https://doi.org/
  14. M. Head-Gordon, J. A. Pople, M. J. Frisch, Chem. Phys. Lett. 153 (6), 503 (1988). https://doi.org/10.1016/0009-2614(88)85250-3
  15. Jr. J. A. Montgomery, M. J. Frisch, J. W. Ochterski, G. A. Petersson, J. Chem. Phys. 110, 2822 (1999).
  16. M. R. Nyden, G. A. Petersson, J. Chem. Phys. 75, 1843 (1981).
  17. G. A. Petersson, M. A. Al-Laham, J. Chem. Phys. 94, 6081 (1991).
  18. G. A. Petersson, T. G. Tensfeldt, J. A. Montgomery, J. Chem. Phys. 94, 6091 (1991).
  19. Jr. J. A. Montgomery, M. J. Frisch, J. W. Ochterski, G. A. Petersson, J. Chem. Phys. 112, 6532 (2000). https://doi.org/10.1063/1.481224
  20. S. D. Arsentev, A. A. Mantashyan, React. Kinet. Catal. Lett. 13 (2), 125 (1980). https://doi.org/
  21. A. A. Mantashyan, L. A. Khachatryan, O. M. Niazyan, S. D. Arsentev, Combust. Flame 43, 221 (1981). https://doi.org/
  22. A. A. Mantashyan, N. G. Edigaryan, L. A. Khachatryan, S. D. Arsentev, High Energ. Chem. 23 (1), 63 (1989).
  23. R. R. Grigoryan, S. D. Arsentev, Pet. Chem. 60 (2) 187 (2020). https://doi.org/
  24. A. H. Davtyan, Z. O. Manukyan, S. D. Arsentev, L. A. Tavadyan, V. S. Arutyunov, Russ. J. Phys. Chem. B 17 (2), 336 (2023). https://doi.org/10.1134/S1990793123020239
  25. M. K. Ghosh, S. N. Elliott, K. P. Somers, S. J. Klippenstein, H. J. Curran, Combust. Flame 112492 (2022). https://doi.org/10.1016/j.combustflame.2022.112492
  26. M. S. Stark, J. Am. Chem. Soc. 122 (17) 4162 (2000). https://doi.org/
  27. L. K. Huynh, H.-H. Carstensen, A. M. Dean, J. Phys. Chem. A 114 (24), 6594 (2010). https://doi.org/10.1021/jp1017218
  28. M. Cord, B. Husson, J. C. L. Huerta, O. Herbinet, et al., J. Phys. Chem. A. 116 (50), 12214 (2012). https://doi.org/10.1021/jp309821z
  29. Zh. Yang, X. Lin, B. Long, W. Zhang, Chem. Phys. Lett. 749, 137442 (2020). https://doi.org/10.1016/j.cplett.2020.137442
  30. J. A. Miller, S. J. Klippenstein, J. Phys. Chem. A 117 (13), 2718 (2013). https://doi.org/10.1021/jp312712p
  31. N. N. Buravtsev, Russ. J. Phys. Chem. B 16 (2), 218 (2022). https://doi.org/10.1134/S1990793122020038
  32. A. Ramalingam, S. Panigrahy, Y. Fenard, H. Curran, K. A. Heufer, Combust. Flame 223 (1), 361 (2021). https://doi.org/
  33. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian 16, Revision C.01, Gaussian, Inc., Wallingford CT, 2016.
  34. R. Dennington, T. A. Keith, J. M. Millam GaussView, Version 6.1, Semichem Inc., Shawnee Mission, KS. 2019.
  35. R. Ditchfield, W. J. Hehre, J. A. Pople, J. Chem. Phys. 54 (2), 724 (1971). https://doi.org/10.1063/1.1674902
  36. T. H. Dunning, J. Chem. Phys. 90 (2), 1007 (1989). https://doi.org/10.1063/1.456153
  37. H. B. Schlegel, J. Comp. Chem. 3, 214 (1982). https://doi.org/
  38. C. Peng, P. Y. Ayala, H. B. Schlegel, M. J. Frisch, J. Comp. Chem. 17 (1), 49 (1996). https://doi.org/10.1002/(SICI)1096-987X(19960115)17:1<49::AID-JCC5>3.0.CO;2-0
  39. C. Peng, H. B. Schlegel, Israel J. Chem. 33, 449 (1993).
  40. K. Fukui, Acc. Chem. Res. 14, 363 (1981). https://doi.org/
  41. H. P. Hratchian, H. B. Schlegel, Theory and Applications of Computational Chemistry: The First 40 Years. Eds. C. E. Dykstra, G. Frenking, K. S. Kim, G. Scuseria Elsevier, Amsterdam, 2005, P. 195.
  42. W.-Y. Chen, T.-N. Nguyen, M.-C. Lin, N.-S. Wang, H. Matsui, Intern. J. Chem. Kinetics. 53, 646 (2021). https://doi.org/10.1002/kin.21471
  43. W. E. Falconer, W. A. Sunder, Int. J. Chem. Kinet. 3, 523 (1971). https://doi.org/
  44. E. P. F. Lee, T. G. Wright, J. Phys. Chem. A 103 (6), 721 (1999). https://doi.org/10.1021/jp983236m
  45. D. V. Chicharro, S. M. Poullain, A. Zanchet, et al., Chem. Sci. 10 (26), 6494 (2019). https://doi.org/10.1039/c9sc02140j
  46. R. S. Zhu, Z. F. Xu, M. C. Lin, J. Chem. Phys. 120 (14), 6566 (2004). https://doi.org/10.1063/1.1665370
  47. J. E. Baldwin, L. S. Day, S. R. Singer, J. Am. Chem. Soc. 127 (26), 9370 (2005). https://doi.org/10.1021/ja052678q

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Total energy diagram of intermediates relative to i-C3H7 calculated by the M062X/6-311+G(2d,p) method. TS1–TS6 are transition states; CH3CCH3-1 and CH3CCH3-2 are two conformers of dimethylcarbene.

Download (167KB)
3. Fig. 2. Transition state of the isomerization reaction i-C3H7 → n-C3H7 calculated by the M062X/6-311+G(2d,p) method.

Download (52KB)
4. Fig. 3. Spatial structures of free radicals localized on the PES of a system containing i-propyl and n-propyl radicals. The multiplicity of the molecular structure is indicated in brackets.

Download (92KB)

Copyright (c) 2024 Russian Academy of Sciences