Study of the potential energy surface of reactions in a system containing i-propyl and n-propyl radicals
- 作者: Davtyan A.H.1, Manukyan Z.H.1, Arsentev S.D.1, Tavadyan L.A.1, Arutyunov V.S.2
-
隶属关系:
- Institute of Chemical Physics by A.B. Nalbandyan, National Academy of Sciences of Republic of Armenia
- Semenov Federal Research Center for Chemical Physics of Russian Academy of Sciences
- 期: 卷 43, 编号 4 (2024)
- 页面: 43-52
- 栏目: Kinetics and mechanism of chemical reactions, catalysis
- URL: https://vestnikugrasu.org/0207-401X/article/view/674960
- DOI: https://doi.org/10.31857/S0207401X24040065
- EDN: https://elibrary.ru/VENXWM
- ID: 674960
如何引用文章
详细
The energy pathways of possible decomposition and isomerization reactions of iso-propyl (i-C3H7) and n-propyl (n-C3H7) radicals have been studied by computational methods of quantum chemistry. B3LYP, M062X, MP2, and CBS-QB3 methods are used to localize stationary points on the potential energy surface of a system containing propyl radicals. A number of intermediate compounds formed during the isomerization and decomposition of propyl radicals have been identified, and information has been obtained on their structure and thermochemical parameters. Based on the results of the research, a diagram of the energy levels of the system under consideration was constructed.
全文:

作者简介
A. Davtyan
Institute of Chemical Physics by A.B. Nalbandyan, National Academy of Sciences of Republic of Armenia
Email: arsentiev53@mail.ru
亚美尼亚, Yerevan
Z. Manukyan
Institute of Chemical Physics by A.B. Nalbandyan, National Academy of Sciences of Republic of Armenia
Email: arsentiev53@mail.ru
亚美尼亚, Yerevan
S. Arsentev
Institute of Chemical Physics by A.B. Nalbandyan, National Academy of Sciences of Republic of Armenia
编辑信件的主要联系方式.
Email: arsentiev53@mail.ru
亚美尼亚, Yerevan
L. Tavadyan
Institute of Chemical Physics by A.B. Nalbandyan, National Academy of Sciences of Republic of Armenia
Email: arsentiev53@mail.ru
亚美尼亚, Yerevan
V. Arutyunov
Semenov Federal Research Center for Chemical Physics of Russian Academy of Sciences
Email: arsentiev53@mail.ru
俄罗斯联邦, Moscow
参考
- A. Ushakova, V. Zatsepin, M. Varfolomeev, D. Emelyanov, J. Combust. 11, 1 (2017). https://doi.org/
- A. A. Mantashyan, Russ. J. Phys. Chem. B 15, 233 (2021). https://doi.org/10.1134/S1990793121020214
- N. M. Pogosyan, M. Dj. Pogosyan, S. D. Arsentiev, et al., Petroleum Chemi. 60 (3), 316 (2020). https://doi.org/
- R. R.Grigoryan, S. D. Arsentev, Petr. Chem. 60 (2), 187 (2020). https://doi.org/
- A. S. Palankoeva, A. A. Belyaev, V. S. Arutyunov, Russ. J. Phys. Chem. B 16 (3), 399 (2022). https://doi.org/
- S. D. Arsentev, L. A. Tavadyan, M. G. Bryukov, et al., Russ. J. Phys. Chem. B 16 (6), 1019 (2022). https://doi.org/10.1134/S1990793122060021
- A. V. Ozerskii, A. D. Starostin, A. V. Nikitin, V. S. Arutyunov, Combust. Explosion 15 (1), 30 (2022). https://doi.org/10.30826/CE22150104
- A. D. Becke, Phys. Rev. A. 38, 3098 (1988).
- A. D. Becke, J. Chem. Phys. 98, 5648 (1993).
- C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 37, 785 (1988).
- Y. Zhao, D. G. Truhlar, Theor. Chem. Account. 120, 215 (2008). https://doi.org/
- Y. Zhao, D. G. Truhlar, Acc. Chem. Res. 41, 157 (2008). https://doi.org/
- M. J. Frisch, M. Head-Gordon, J. A. Pople, Chem. Phys. Lett. 166 (3), 275 (1990). https://doi.org/
- M. Head-Gordon, J. A. Pople, M. J. Frisch, Chem. Phys. Lett. 153 (6), 503 (1988). https://doi.org/10.1016/0009-2614(88)85250-3
- Jr. J. A. Montgomery, M. J. Frisch, J. W. Ochterski, G. A. Petersson, J. Chem. Phys. 110, 2822 (1999).
- M. R. Nyden, G. A. Petersson, J. Chem. Phys. 75, 1843 (1981).
- G. A. Petersson, M. A. Al-Laham, J. Chem. Phys. 94, 6081 (1991).
- G. A. Petersson, T. G. Tensfeldt, J. A. Montgomery, J. Chem. Phys. 94, 6091 (1991).
- Jr. J. A. Montgomery, M. J. Frisch, J. W. Ochterski, G. A. Petersson, J. Chem. Phys. 112, 6532 (2000). https://doi.org/10.1063/1.481224
- S. D. Arsentev, A. A. Mantashyan, React. Kinet. Catal. Lett. 13 (2), 125 (1980). https://doi.org/
- A. A. Mantashyan, L. A. Khachatryan, O. M. Niazyan, S. D. Arsentev, Combust. Flame 43, 221 (1981). https://doi.org/
- A. A. Mantashyan, N. G. Edigaryan, L. A. Khachatryan, S. D. Arsentev, High Energ. Chem. 23 (1), 63 (1989).
- R. R. Grigoryan, S. D. Arsentev, Pet. Chem. 60 (2) 187 (2020). https://doi.org/
- A. H. Davtyan, Z. O. Manukyan, S. D. Arsentev, L. A. Tavadyan, V. S. Arutyunov, Russ. J. Phys. Chem. B 17 (2), 336 (2023). https://doi.org/10.1134/S1990793123020239
- M. K. Ghosh, S. N. Elliott, K. P. Somers, S. J. Klippenstein, H. J. Curran, Combust. Flame 112492 (2022). https://doi.org/10.1016/j.combustflame.2022.112492
- M. S. Stark, J. Am. Chem. Soc. 122 (17) 4162 (2000). https://doi.org/
- L. K. Huynh, H.-H. Carstensen, A. M. Dean, J. Phys. Chem. A 114 (24), 6594 (2010). https://doi.org/10.1021/jp1017218
- M. Cord, B. Husson, J. C. L. Huerta, O. Herbinet, et al., J. Phys. Chem. A. 116 (50), 12214 (2012). https://doi.org/10.1021/jp309821z
- Zh. Yang, X. Lin, B. Long, W. Zhang, Chem. Phys. Lett. 749, 137442 (2020). https://doi.org/10.1016/j.cplett.2020.137442
- J. A. Miller, S. J. Klippenstein, J. Phys. Chem. A 117 (13), 2718 (2013). https://doi.org/10.1021/jp312712p
- N. N. Buravtsev, Russ. J. Phys. Chem. B 16 (2), 218 (2022). https://doi.org/10.1134/S1990793122020038
- A. Ramalingam, S. Panigrahy, Y. Fenard, H. Curran, K. A. Heufer, Combust. Flame 223 (1), 361 (2021). https://doi.org/
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian 16, Revision C.01, Gaussian, Inc., Wallingford CT, 2016.
- R. Dennington, T. A. Keith, J. M. Millam GaussView, Version 6.1, Semichem Inc., Shawnee Mission, KS. 2019.
- R. Ditchfield, W. J. Hehre, J. A. Pople, J. Chem. Phys. 54 (2), 724 (1971). https://doi.org/10.1063/1.1674902
- T. H. Dunning, J. Chem. Phys. 90 (2), 1007 (1989). https://doi.org/10.1063/1.456153
- H. B. Schlegel, J. Comp. Chem. 3, 214 (1982). https://doi.org/
- C. Peng, P. Y. Ayala, H. B. Schlegel, M. J. Frisch, J. Comp. Chem. 17 (1), 49 (1996). https://doi.org/10.1002/(SICI)1096-987X(19960115)17:1<49::AID-JCC5>3.0.CO;2-0
- C. Peng, H. B. Schlegel, Israel J. Chem. 33, 449 (1993).
- K. Fukui, Acc. Chem. Res. 14, 363 (1981). https://doi.org/
- H. P. Hratchian, H. B. Schlegel, Theory and Applications of Computational Chemistry: The First 40 Years. Eds. C. E. Dykstra, G. Frenking, K. S. Kim, G. Scuseria Elsevier, Amsterdam, 2005, P. 195.
- W.-Y. Chen, T.-N. Nguyen, M.-C. Lin, N.-S. Wang, H. Matsui, Intern. J. Chem. Kinetics. 53, 646 (2021). https://doi.org/10.1002/kin.21471
- W. E. Falconer, W. A. Sunder, Int. J. Chem. Kinet. 3, 523 (1971). https://doi.org/
- E. P. F. Lee, T. G. Wright, J. Phys. Chem. A 103 (6), 721 (1999). https://doi.org/10.1021/jp983236m
- D. V. Chicharro, S. M. Poullain, A. Zanchet, et al., Chem. Sci. 10 (26), 6494 (2019). https://doi.org/10.1039/c9sc02140j
- R. S. Zhu, Z. F. Xu, M. C. Lin, J. Chem. Phys. 120 (14), 6566 (2004). https://doi.org/10.1063/1.1665370
- J. E. Baldwin, L. S. Day, S. R. Singer, J. Am. Chem. Soc. 127 (26), 9370 (2005). https://doi.org/10.1021/ja052678q
补充文件
