Study of the potential energy surface of reactions in a system containing i-propyl and n-propyl radicals
- Autores: Davtyan A.H.1, Manukyan Z.H.1, Arsentev S.D.1, Tavadyan L.A.1, Arutyunov V.S.2
-
Afiliações:
- Institute of Chemical Physics by A.B. Nalbandyan, National Academy of Sciences of Republic of Armenia
- Semenov Federal Research Center for Chemical Physics of Russian Academy of Sciences
- Edição: Volume 43, Nº 4 (2024)
- Páginas: 43-52
- Seção: Kinetics and mechanism of chemical reactions, catalysis
- URL: https://vestnikugrasu.org/0207-401X/article/view/674960
- DOI: https://doi.org/10.31857/S0207401X24040065
- EDN: https://elibrary.ru/VENXWM
- ID: 674960
Citar
Resumo
The energy pathways of possible decomposition and isomerization reactions of iso-propyl (i-C3H7) and n-propyl (n-C3H7) radicals have been studied by computational methods of quantum chemistry. B3LYP, M062X, MP2, and CBS-QB3 methods are used to localize stationary points on the potential energy surface of a system containing propyl radicals. A number of intermediate compounds formed during the isomerization and decomposition of propyl radicals have been identified, and information has been obtained on their structure and thermochemical parameters. Based on the results of the research, a diagram of the energy levels of the system under consideration was constructed.
Palavras-chave
Texto integral

Sobre autores
A. Davtyan
Institute of Chemical Physics by A.B. Nalbandyan, National Academy of Sciences of Republic of Armenia
Email: arsentiev53@mail.ru
Armênia, Yerevan
Z. Manukyan
Institute of Chemical Physics by A.B. Nalbandyan, National Academy of Sciences of Republic of Armenia
Email: arsentiev53@mail.ru
Armênia, Yerevan
S. Arsentev
Institute of Chemical Physics by A.B. Nalbandyan, National Academy of Sciences of Republic of Armenia
Autor responsável pela correspondência
Email: arsentiev53@mail.ru
Armênia, Yerevan
L. Tavadyan
Institute of Chemical Physics by A.B. Nalbandyan, National Academy of Sciences of Republic of Armenia
Email: arsentiev53@mail.ru
Armênia, Yerevan
V. Arutyunov
Semenov Federal Research Center for Chemical Physics of Russian Academy of Sciences
Email: arsentiev53@mail.ru
Rússia, Moscow
Bibliografia
- A. Ushakova, V. Zatsepin, M. Varfolomeev, D. Emelyanov, J. Combust. 11, 1 (2017). https://doi.org/
- A. A. Mantashyan, Russ. J. Phys. Chem. B 15, 233 (2021). https://doi.org/10.1134/S1990793121020214
- N. M. Pogosyan, M. Dj. Pogosyan, S. D. Arsentiev, et al., Petroleum Chemi. 60 (3), 316 (2020). https://doi.org/
- R. R.Grigoryan, S. D. Arsentev, Petr. Chem. 60 (2), 187 (2020). https://doi.org/
- A. S. Palankoeva, A. A. Belyaev, V. S. Arutyunov, Russ. J. Phys. Chem. B 16 (3), 399 (2022). https://doi.org/
- S. D. Arsentev, L. A. Tavadyan, M. G. Bryukov, et al., Russ. J. Phys. Chem. B 16 (6), 1019 (2022). https://doi.org/10.1134/S1990793122060021
- A. V. Ozerskii, A. D. Starostin, A. V. Nikitin, V. S. Arutyunov, Combust. Explosion 15 (1), 30 (2022). https://doi.org/10.30826/CE22150104
- A. D. Becke, Phys. Rev. A. 38, 3098 (1988).
- A. D. Becke, J. Chem. Phys. 98, 5648 (1993).
- C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 37, 785 (1988).
- Y. Zhao, D. G. Truhlar, Theor. Chem. Account. 120, 215 (2008). https://doi.org/
- Y. Zhao, D. G. Truhlar, Acc. Chem. Res. 41, 157 (2008). https://doi.org/
- M. J. Frisch, M. Head-Gordon, J. A. Pople, Chem. Phys. Lett. 166 (3), 275 (1990). https://doi.org/
- M. Head-Gordon, J. A. Pople, M. J. Frisch, Chem. Phys. Lett. 153 (6), 503 (1988). https://doi.org/10.1016/0009-2614(88)85250-3
- Jr. J. A. Montgomery, M. J. Frisch, J. W. Ochterski, G. A. Petersson, J. Chem. Phys. 110, 2822 (1999).
- M. R. Nyden, G. A. Petersson, J. Chem. Phys. 75, 1843 (1981).
- G. A. Petersson, M. A. Al-Laham, J. Chem. Phys. 94, 6081 (1991).
- G. A. Petersson, T. G. Tensfeldt, J. A. Montgomery, J. Chem. Phys. 94, 6091 (1991).
- Jr. J. A. Montgomery, M. J. Frisch, J. W. Ochterski, G. A. Petersson, J. Chem. Phys. 112, 6532 (2000). https://doi.org/10.1063/1.481224
- S. D. Arsentev, A. A. Mantashyan, React. Kinet. Catal. Lett. 13 (2), 125 (1980). https://doi.org/
- A. A. Mantashyan, L. A. Khachatryan, O. M. Niazyan, S. D. Arsentev, Combust. Flame 43, 221 (1981). https://doi.org/
- A. A. Mantashyan, N. G. Edigaryan, L. A. Khachatryan, S. D. Arsentev, High Energ. Chem. 23 (1), 63 (1989).
- R. R. Grigoryan, S. D. Arsentev, Pet. Chem. 60 (2) 187 (2020). https://doi.org/
- A. H. Davtyan, Z. O. Manukyan, S. D. Arsentev, L. A. Tavadyan, V. S. Arutyunov, Russ. J. Phys. Chem. B 17 (2), 336 (2023). https://doi.org/10.1134/S1990793123020239
- M. K. Ghosh, S. N. Elliott, K. P. Somers, S. J. Klippenstein, H. J. Curran, Combust. Flame 112492 (2022). https://doi.org/10.1016/j.combustflame.2022.112492
- M. S. Stark, J. Am. Chem. Soc. 122 (17) 4162 (2000). https://doi.org/
- L. K. Huynh, H.-H. Carstensen, A. M. Dean, J. Phys. Chem. A 114 (24), 6594 (2010). https://doi.org/10.1021/jp1017218
- M. Cord, B. Husson, J. C. L. Huerta, O. Herbinet, et al., J. Phys. Chem. A. 116 (50), 12214 (2012). https://doi.org/10.1021/jp309821z
- Zh. Yang, X. Lin, B. Long, W. Zhang, Chem. Phys. Lett. 749, 137442 (2020). https://doi.org/10.1016/j.cplett.2020.137442
- J. A. Miller, S. J. Klippenstein, J. Phys. Chem. A 117 (13), 2718 (2013). https://doi.org/10.1021/jp312712p
- N. N. Buravtsev, Russ. J. Phys. Chem. B 16 (2), 218 (2022). https://doi.org/10.1134/S1990793122020038
- A. Ramalingam, S. Panigrahy, Y. Fenard, H. Curran, K. A. Heufer, Combust. Flame 223 (1), 361 (2021). https://doi.org/
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian 16, Revision C.01, Gaussian, Inc., Wallingford CT, 2016.
- R. Dennington, T. A. Keith, J. M. Millam GaussView, Version 6.1, Semichem Inc., Shawnee Mission, KS. 2019.
- R. Ditchfield, W. J. Hehre, J. A. Pople, J. Chem. Phys. 54 (2), 724 (1971). https://doi.org/10.1063/1.1674902
- T. H. Dunning, J. Chem. Phys. 90 (2), 1007 (1989). https://doi.org/10.1063/1.456153
- H. B. Schlegel, J. Comp. Chem. 3, 214 (1982). https://doi.org/
- C. Peng, P. Y. Ayala, H. B. Schlegel, M. J. Frisch, J. Comp. Chem. 17 (1), 49 (1996). https://doi.org/10.1002/(SICI)1096-987X(19960115)17:1<49::AID-JCC5>3.0.CO;2-0
- C. Peng, H. B. Schlegel, Israel J. Chem. 33, 449 (1993).
- K. Fukui, Acc. Chem. Res. 14, 363 (1981). https://doi.org/
- H. P. Hratchian, H. B. Schlegel, Theory and Applications of Computational Chemistry: The First 40 Years. Eds. C. E. Dykstra, G. Frenking, K. S. Kim, G. Scuseria Elsevier, Amsterdam, 2005, P. 195.
- W.-Y. Chen, T.-N. Nguyen, M.-C. Lin, N.-S. Wang, H. Matsui, Intern. J. Chem. Kinetics. 53, 646 (2021). https://doi.org/10.1002/kin.21471
- W. E. Falconer, W. A. Sunder, Int. J. Chem. Kinet. 3, 523 (1971). https://doi.org/
- E. P. F. Lee, T. G. Wright, J. Phys. Chem. A 103 (6), 721 (1999). https://doi.org/10.1021/jp983236m
- D. V. Chicharro, S. M. Poullain, A. Zanchet, et al., Chem. Sci. 10 (26), 6494 (2019). https://doi.org/10.1039/c9sc02140j
- R. S. Zhu, Z. F. Xu, M. C. Lin, J. Chem. Phys. 120 (14), 6566 (2004). https://doi.org/10.1063/1.1665370
- J. E. Baldwin, L. S. Day, S. R. Singer, J. Am. Chem. Soc. 127 (26), 9370 (2005). https://doi.org/10.1021/ja052678q
Arquivos suplementares
