Calculation of plate bending under longitudinal-transverse load

Cover Page

Cite item

Full Text

Abstract

Subject of research: mathematical model of plate bending under longitudinal-transverse load.

Purpose of research: to develop an asymptotically optimal method for solving a fourth-order elliptic boundary value problem in a geometrically complex domain in the presence of a Dirichlet boundary condition.

Research method: the paper develops a method of iterative extensions to find the bending of a plate under longitudinal and transverse load on an elastic base.

Object of research: the bending of a plate described by a mathematical model in the form of an elliptical boundary value problem of the fourth order in a field of geometrically complex shape with the obligatory presence of a Dirichlet boundary condition.

Research findings: a method was developed that is asymptotically optimal in terms of the number of operations, based on the iterative expansion method for calculating plate bending under longitudinal-transverse load. The problem being solved continued fictitiously, the continued problem was approximated by finite element methods and partial approximation. The solution of a discrete extended problem was iteratively approached by solutions of extended problems. The asymptotic optimality of the proposed method has been experimentally verified by computer calculations.

Full Text

ВВЕДЕНИЕ

Асимптотически оптимальный метод фиктивных областей был разработан в [1] для решения эллиптического уравнения второго порядка при краевом условии Неймана. Актуальна необходимость разработки асимптотически оптимального метода решения эллиптического уравнения четвертого порядка при наличии краевого условия Дирихле в области со сложной геометрией; что теоретически считается возможным [2]. Такого типа задача Дирихле для уравнения, только второго порядка, была асимптотически оптимально решена, но достаточно сложным методом фиктивного пространства [3]. В данной работе метод итерационных расширений развивается для решения эллиптической краевой задачи четвертого порядка, применяемой при моделировании изгиба пластины при продольно-поперечной нагрузке, используя работы [4, 5].

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Постановки задачи: смешанная краевая задача для эллиптического уравнения четвертого порядка, которая описывает изгиб пластины при продольно-поперечной нагрузке при обязательном наличии краевого условия Дирихле.

u: Δ 2 u ˘ +ρΔ u ˘ +a u ˘ = f ˘ Ω ,Ω 2 ,a,ρ0, MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyDaiaacQdacqqHuoarpaWaaWbaaSqabeaapeGaaGOmaaaak8aa daWfGaqaa8qacaWG1baal8aabeqaa8qacaGGylaaaOGaey4kaSIaeq yWdiNaeuiLdq0damaaxacabaWdbiaadwhaaSWdaeqabaWdbiaacITa aaGccqGHRaWkcaWGHbWdamaaxacabaWdbiaadwhaaSWdaeqabaWdbi aacITaaaGccqGH9aqppaWaaCbiaeaapeGaamOzaaWcpaqabeaapeGa aii2caaakmaaeeaapaqaa8qacqqHPoWvaiaawEa7aiaacYcacqqHPo WvcqGHckcZtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqb aiab=1ris9aadaahaaWcbeqaa8qacaaIYaaaaOGaaiilaiaadggaca GGSaGaeqyWdiNaeyyzImRaaGimaiaacYcaaaa@6723@  (1)

u˘=u˘νγ0=0,u˘=l1u˘γ1=0,u˘ν=l2u˘γ2=0,l1u˘=l2u˘γ3=0,

если граница области Ω MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeuyQdCfaaa@379B@  является замыканием объединения открытых и непересекающихся частей

Ω=s,s= γ 0 γ 1 γ 2 γ 3 ¯ , γ i γ j =,ij,i,j=0,1,2,3, MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyOaIyRaeuyQdCLaeyypa0Jaam4CaiaacYcacaWGZbGaeyypa0Zd amaanaaabaWdbiabeo7aN9aadaWgaaWcbaWdbiaaicdaa8aabeaak8 qacqGHQicYcqaHZoWzpaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGa eyOkIGSaeq4SdC2damaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiabgQ Iiilabeo7aN9aadaWgaaWcbaWdbiaaiodaa8aabeaaaaGcpeGaaiil aiabeo7aN9aadaWgaaWcbaWdbiaadMgaa8aabeaak8qacqGHPiYXcq aHZoWzpaWaaSbaaSqaa8qacaWGQbaapaqabaGcpeGaeyypa0Jaeyyb IySaaiilaiaadMgacqGHGjsUcaWGQbGaaiilaiaadMgacaGGSaGaam OAaiabg2da9iaaicdacaGGSaGaaGymaiaacYcacaaIYaGaaiilaiaa iodacaGGSaaaaa@673C@

здесь используем дифференциальные операторы

l 1 u ˘ =Δ u ˘ + 1σ n 1 n 2 u ˘ xy n 2 2 u ˘ xx n 1 2 u ˘ yy , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiBa8aadaWgaaWcbaWdbiaaigdaa8aabeaakmaaxacabaWdbiaa dwhaaSWdaeqabaWdbiaacITaaaGccqGH9aqpcqqHuoarpaWaaCbiae aapeGaamyDaaWcpaqabeaapeGaaii2caaakiabgUcaRmaabmaapaqa a8qacaaIXaGaeyOeI0Iaeq4WdmhacaGLOaGaayzkaaGaamOBa8aada WgaaWcbaWdbiaaigdaa8aabeaak8qacaWGUbWdamaaBaaaleaapeGa aGOmaaWdaeqaaOWaaCbiaeaapeGaamyDaaWcpaqabeaapeGaaii2ca aak8aadaWgaaWcbaWdbiaadIhacaWG5baapaqabaGcpeGaeyOeI0Ia amOBa8aadaqhaaWcbaWdbiaaikdaa8aabaWdbiaaikdaaaGcpaWaaC biaeaapeGaamyDaaWcpaqabeaapeGaaii2caaak8aadaWgaaWcbaWd biaadIhacaWG4baapaqabaGcpeGaeyOeI0IaamOBa8aadaqhaaWcba Wdbiaaigdaa8aabaWdbiaaikdaaaGcpaWaaCbiaeaapeGaamyDaaWc paqabeaapeGaaii2caaak8aadaWgaaWcbaWdbiaadMhacaWG5baapa qabaGcpeGaaiilaaaa@62B8@

l 2 u ˘ = Δ u ˘ ν + 1σ s n 1 n 2 u ˘ yy u ˘ xx + n 1 2 n 2 2 u ˘ xy +ρ u ˘ ν MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiBa8aadaWgaaWcbaWdbiaaikdaa8aabeaakmaaxacabaWdbiaa dwhaaSWdaeqabaWdbiaacITaaaGccqGH9aqpdaWcaaWdaeaapeGaey OaIyRaeuiLdq0damaaxacabaWdbiaadwhaaSWdaeqabaWdbiaacITa aaaak8aabaWdbiabgkGi2kqbe27aU9aagaWcaaaapeGaey4kaSYaae Waa8aabaWdbiaaigdacqGHsislcqaHdpWCaiaawIcacaGLPaaadaWc aaWdaeaapeGaeyOaIylapaqaa8qacqGHciITceWGZbWdayaalaaaa8 qadaqadaWdaeaapeGaamOBa8aadaWgaaWcbaWdbiaaigdaa8aabeaa k8qacaWGUbWdamaaBaaaleaapeGaaGOmaaWdaeqaaOWdbmaabmaapa qaamaaxacabaWdbiaadwhaaSWdaeqabaWdbiaacITaaaGcpaWaaSba aSqaa8qacaWG5bGaamyEaaWdaeqaaOWdbiabgkHiT8aadaWfGaqaa8 qacaWG1baal8aabeqaa8qacaGGylaaaOWdamaaBaaaleaapeGaamiE aiaadIhaa8aabeaaaOWdbiaawIcacaGLPaaacqGHRaWkdaqadaWdae aapeGaamOBa8aadaqhaaWcbaWdbiaaigdaa8aabaWdbiaaikdaaaGc cqGHsislcaWGUbWdamaaDaaaleaapeGaaGOmaaWdaeaapeGaaGOmaa aaaOGaayjkaiaawMcaa8aadaWfGaqaa8qacaWG1baal8aabeqaa8qa caGGylaaaOWdamaaBaaaleaapeGaamiEaiaadMhaa8aabeaaaOWdbi aawIcacaGLPaaacqGHRaWkcqaHbpGCdaWcaaWdaeaapeGaeyOaIy7d amaaxacabaWdbiaadwhaaSWdaeqabaWdbiaacITaaaaak8aabaWdbi abgkGi2kqbe27aU9aagaWcaaaaaaa@7BA7@

и

n 1 =cos( ν ,x), n 2 =cos( ν ,y),σ 0;1 . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGH9aqpcqGH sislciGGJbGaai4BaiaacohacaGGOaGafqyVd42dayaalaWdbiaacY cacaWG4bGaaiykaiaacYcacaWGUbWdamaaBaaaleaapeGaaGOmaaWd aeqaaOWdbiabg2da9iabgkHiTiGacogacaGGVbGaai4CaiaacIcacu aH9oGBpaGbaSaapeGaaiilaiaadMhacaGGPaGaaiilaiabeo8aZjab gIGiopaajibapaqaa8qacaaIWaGaai4oaiaaigdaaiaawUfacaGLPa aacaGGUaaaaa@573C@

В механике решение задачи u MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyDaiabgkHiTaaa@37F4@  функция прогиба пластины, правая часть в уравнении f ˘ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacaWGMbaal8aabeqaa8qacaGGylaaaOGaeyOeI0caaa@39B5@  нагрузка при поперечном давлении, коэффициенты в приведенном уравнении a,ρ0, MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyyaiaacYcacqaHbpGCcqGHLjYScaaIWaGaaiilaaaa@3C93@   σ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4WdmNaeyOeI0caaa@38BD@  коэффициент Пуассона, Ω MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeuyQdCLaeyOeI0caaa@3888@  ограниченная область, ν MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GafqyVd42dayaalaWdbiabgkHiTaaa@38E3@  внешняя нормаль к Ω, MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyOaIyRaeuyQdCLaaiilaaaa@39B1@   s MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gabm4Ca8aagaWca8qacqGHsislaaa@3823@  касательная к Ω. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyOaIyRaeuyQdCLaaiOlaaaa@39B3@

Краевая задача рассматривается в вариационной формулировке:

u ˘ H ˘ :Λ u ˘ , v ˘ =F v ˘ v ˘ H ˘ ,F H ˘ ' , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacaWG1baal8aabeqaa8qacaGGylaaaOGaeyicI48damaa xacabaWdbiaadIeaaSWdaeqabaWdbiaacITaaaGccaGG6aGaeu4MdW 0aaeWaa8aabaWaaCbiaeaapeGaamyDaaWcpaqabeaapeGaaii2caaa kiaacYcapaWaaCbiaeaapeGaamODaaWcpaqabeaapeGaaii2caaaaO GaayjkaiaawMcaaiabg2da9iaadAeadaqadaWdaeaadaWfGaqaa8qa caWG2baal8aabeqaa8qacaGGylaaaaGccaGLOaGaayzkaaGaeyiaIi YdamaaxacabaWdbiaadAhaaSWdaeqabaWdbiaacITaaaGccqGHiiIZ paWaaCbiaeaapeGaamisaaWcpaqabeaapeGaaii2caaakiaacYcaca WGgbGaeyicI48damaaxacabaWdbiaadIeaaSWdaeqabaWdbiaacITa aaGcpaWaaWbaaSqabeaapeGaai4jaaaakiaacYcaaaa@5D00@  (2)

а пространство ее решений есть функции в пространстве Соболева

H ˘ = H ˘ Ω = v ˘ W 2 2 Ω : v ˘ γ 0 γ 1 =0, v ˘ ν γ 0 γ 2 =0 , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacaWGibaal8aabeqaa8qacaGGylaaaOGaeyypa0Zdamaa xacabaWdbiaadIeaaSWdaeqabaWdbiaacITaaaGcdaqadaWdaeaape GaeuyQdCfacaGLOaGaayzkaaGaeyypa0ZaaiWaa8aabaWaaCbiaeaa peGaamODaaWcpaqabeaapeGaaii2caaakiabgIGiolaadEfapaWaa0 baaSqaa8qacaaIYaaapaqaa8qacaaIYaaaaOWaaeWaa8aabaWdbiab fM6axbGaayjkaiaawMcaaiaacQdadaabcaWdaeaadaWfGaqaa8qaca WG2baal8aabeqaa8qacaGGylaaaaGccaGLiWoapaWaaSbaaSqaa8qa cqaHZoWzpaWaaSbaaWqaa8qacaaIWaaapaqabaWcpeGaeyOkIGSaeq 4SdC2damaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacqGH9aqp caaIWaGaaiilamaalaaapaqaa8qacqGHciITpaWaaCbiaeaapeGaam ODaaWcpaqabeaapeGaaii2caaaaOWdaeaapeGaeyOaIyRafqyVd42d ayaalaaaa8qadaabbaWdaeaapeGaeq4SdC2damaaBaaaleaapeGaaG imaaWdaeqaaOWdbiabgQIiilabeo7aN9aadaWgaaWcbaWdbiaaikda a8aabeaaaOWdbiaawEa7aiabg2da9iaaicdaaiaawUhacaGL9baaca GGSaaaaa@6FF4@

билинейная форма

Λ u ˘ , v ˘ = MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4MdW0aaeWaa8aabaWaaCbiaeaapeGaamyDaaWcpaqabeaapeGa aii2caaakiaacYcapaWaaCbiaeaapeGaamODaaWcpaqabeaapeGaai i2caaaaOGaayjkaiaawMcaaiabg2da9aaa@4094@

= Ω σΔ u ˘ Δ v ˘ + 1σ u ˘ xx v ˘ xx +2 u ˘ xy v ˘ xy + u ˘ yy v ˘ yy ρ u ˘ x v ˘ x + u ˘ y v ˘ y +a u ˘ v ˘ dΩ, MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeyypa0Zaaubeaeqal8aabaWdbiabfM6axbqab0WdaeaapeGaey4k IipaaOWaaeWaa8aabaWdbiabeo8aZjabfs5ae9aadaWfGaqaa8qaca WG1baal8aabeqaa8qacaGGylaaaOGaeuiLdq0damaaxacabaWdbiaa dAhaaSWdaeqabaWdbiaacITaaaGccqGHRaWkdaqadaWdaeaapeGaaG ymaiabgkHiTiabeo8aZbGaayjkaiaawMcaamaabmaapaqaamaaxaca baWdbiaadwhaaSWdaeqabaWdbiaacITaaaGcpaWaaSbaaSqaa8qaca WG4bGaamiEaaWdaeqaaOWaaCbiaeaapeGaamODaaWcpaqabeaapeGa aii2caaak8aadaWgaaWcbaWdbiaadIhacaWG4baapaqabaGcpeGaey 4kaSIaaGOma8aadaWfGaqaa8qacaWG1baal8aabeqaa8qacaGGylaa aOWdamaaBaaaleaapeGaamiEaiaadMhaa8aabeaakmaaxacabaWdbi aadAhaaSWdaeqabaWdbiaacITaaaGcpaWaaSbaaSqaa8qacaWG4bGa amyEaaWdaeqaaOWdbiabgUcaR8aadaWfGaqaa8qacaWG1baal8aabe qaa8qacaGGylaaaOWdamaaBaaaleaapeGaamyEaiaadMhaa8aabeaa kmaaxacabaWdbiaadAhaaSWdaeqabaWdbiaacITaaaGcpaWaaSbaaS qaa8qacaWG5bGaamyEaaWdaeqaaaGcpeGaayjkaiaawMcaaiabgkHi Tiabeg8aYnaabmaapaqaamaaxacabaWdbiaadwhaaSWdaeqabaWdbi aacITaaaGcpaWaaSbaaSqaa8qacaWG4baapaqabaGcdaWfGaqaa8qa caWG2baal8aabeqaa8qacaGGylaaaOWdamaaBaaaleaapeGaamiEaa WdaeqaaOWdbiabgUcaR8aadaWfGaqaa8qacaWG1baal8aabeqaa8qa caGGylaaaOWdamaaBaaaleaapeGaamyEaaWdaeqaaOWaaCbiaeaape GaamODaaWcpaqabeaapeGaaii2caaak8aadaWgaaWcbaWdbiaadMha a8aabeaaaOWdbiaawIcacaGLPaaacqGHRaWkcaWGHbWdamaaxacaba WdbiaadwhaaSWdaeqabaWdbiaacITaaaGcpaWaaCbiaeaapeGaamOD aaWcpaqabeaapeGaaii2caaaaOGaayjkaiaawMcaaiaadsgacqqHPo WvcaGGSaaaaa@91C0@

правая часть задачи при f ˘ L 2 Ω MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacaWGMbaal8aabeqaa8qacaGGylaaaOGaeyicI4Saamit a8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qadaqadaWdaeaapeGaeu yQdCfacaGLOaGaayzkaaaaaa@3F83@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSn0BKvguHDwzZbqef00uGuvsGC0B0H wAJbWexLMBbXgBcf2CPn2qVrwzqf2zLnharyavP1wzZbItLDhis9wB H5garmWu51MyVXgaryWqVvNCPvMCG4uz3bqee0evGueE0jxyaibaie Ydh9qrpeeu0dXdh9vqqj=hEeeu0xXdbba9arpi0=irpK0dbba91qpK 0=vr0RYxir=dbbc9q8aq0=yqpe0xbba9suk9fr=xfr=xfrpiWZqaai aaciWacmaadaGabiaaeaGaauaaaOqaaGGaaKqzafaeaaaaaaaaa8qa caWFtacaaa@42F3@  линейный функционал

F v ˘ = u ˘ , v ˘ = Ω f ˘ v ˘ dΩ. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOramaabmaapaqaamaaxacabaWdbiaadAhaaSWdaeqabaWdbiaa cITaaaaakiaawIcacaGLPaaacqGH9aqpdaqadaWdaeaadaWfGaqaa8 qacaWG1baal8aabeqaa8qacaGGylaaaOGaaiila8aadaWfGaqaa8qa caWG2baal8aabeqaa8qacaGGylaaaaGccaGLOaGaayzkaaGaeyypa0 Zaaubeaeqal8aabaWdbiabfM6axbqab0WdaeaapeGaey4kIipaaOWd amaaxacabaWdbiaadAgaaSWdaeqabaWdbiaacITaaaGcpaWaaCbiae aapeGaamODaaWcpaqabeaapeGaaii2caaakiaadsgacqqHPoWvcaGG Uaaaaa@5237@

Для задачи из (2) достаточно обычно предположение, что билинейная форма порождает эквивалентную нормировку в пространстве решений:

c 1 , c 2 0;+ : c 1 v ˘ W 2 2 Ω 2 Λ v ˘ , v ˘ c 2 v ˘ W 2 2 Ω 2 v ˘ H ˘ . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaey4aIqIaam4ya8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaGG SaGaam4ya8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacqGHiiIZda qadaWdaeaapeGaaGimaiaacUdacqGHRaWkcqGHEisPaiaawIcacaGL PaaacaGG6aGaam4ya8aadaWgaaWcbaWdbiaaigdaa8aabeaakmaaxa cabaWdbiaadAhaaSWdaeqabaWdbiaacITaaaGcpaWaa0baaSqaa8qa caWGxbWdamaaDaaameaapeGaaGOmaaWdaeaapeGaaGOmaaaalmaabm aapaqaa8qacqqHPoWvaiaawIcacaGLPaaaa8aabaWdbiaaikdaaaGc cqGHKjYOcqqHBoatdaqadaWdaeaadaWfGaqaa8qacaWG2baal8aabe qaa8qacaGGylaaaOGaaiila8aadaWfGaqaa8qacaWG2baal8aabeqa a8qacaGGylaaaaGccaGLOaGaayzkaaGaeyizImQaam4ya8aadaWgaa WcbaWdbiaaikdaa8aabeaakmaaxacabaWdbiaadAhaaSWdaeqabaWd biaacITaaaGcpaWaa0baaSqaa8qacaWGxbWdamaaDaaameaapeGaaG OmaaWdaeaapeGaaGOmaaaalmaabmaapaqaa8qacqqHPoWvaiaawIca caGLPaaaa8aabaWdbiaaikdaaaGccqGHaiIipaWaaCbiaeaapeGaam ODaaWcpaqabeaapeGaaii2caaakiabgIGio=aadaWfGaqaa8qacaWG ibaal8aabeqaa8qacaGGylaaaOGaaiOlaaaa@7138@  

Это предположение обеспечивает существование единственности решения этой задачи [6].

Рассматриваем при навешиваемом индексе ω=1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyYdCNaeyypa0JaaGymaaaa@399B@  решаемую краевую задачу в вариационном виде, а при навешиваемом индексе ω=ΙΙ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyYdCNaeyypa0JaeuyMdKKaeuyMdKeaaa@3BC0@  вводим фиктивную краевую задачу в вариационном виде

u ˘ ω H ˘ ω : Λ ω u ˘ ω , v ˘ ω = F ω v ˘ ω v ˘ ω H ˘ ω , F ω H ˘ ω ' ,ω 1,ΙΙ , Ω ω 2 , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacaWG1baal8aabeqaa8qacaGGylaaaOWdamaaBaaaleaa peGaeqyYdChapaqabaGcpeGaeyicI48damaaxacabaWdbiaadIeaaS WdaeqabaWdbiaacITaaaGcpaWaaSbaaSqaa8qacqaHjpWDa8aabeaa k8qacaGG6aGaeu4MdW0damaaBaaaleaapeGaeqyYdChapaqabaGcpe WaaeWaa8aabaWaaCbiaeaapeGaamyDaaWcpaqabeaapeGaaii2caaa k8aadaWgaaWcbaWdbiabeM8a3bWdaeqaaOWdbiaacYcapaWaaCbiae aapeGaamODaaWcpaqabeaapeGaaii2caaak8aadaWgaaWcbaWdbiab eM8a3bWdaeqaaaGcpeGaayjkaiaawMcaaiabg2da9iaadAeapaWaaS baaSqaa8qacqaHjpWDa8aabeaak8qadaqadaWdaeaadaWfGaqaa8qa caWG2baal8aabeqaa8qacaGGylaaaOWdamaaBaaaleaapeGaeqyYdC hapaqabaaak8qacaGLOaGaayzkaaGaeyiaIiYdamaaxacabaWdbiaa dAhaaSWdaeqabaWdbiaacITaaaGcpaWaaSbaaSqaa8qacqaHjpWDa8 aabeaak8qacqGHiiIZpaWaaCbiaeaapeGaamisaaWcpaqabeaapeGa aii2caaak8aadaWgaaWcbaWdbiabeM8a3bWdaeqaaOWdbiaacYcaca WGgbWdamaaBaaaleaapeGaeqyYdChapaqabaGcpeGaeyicI48damaa xacabaWdbiaadIeaaSWdaeqabaWdbiaacITaaaGcpaWaa0baaSqaa8 qacqaHjpWDa8aabaWdbiaacEcaaaGccaGGSaGaeqyYdCNaeyicI48a aiWaa8aabaWdbiaaigdacaGGSaGaeuyMdKKaeuyMdKeacaGL7bGaay zFaaGaaiilaiabfM6ax9aadaWgaaWcbaWdbiabeM8a3bWdaeqaaOWd biabgkOimprr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfa Gae8xhHi1damaaCaaaleqabaWdbiaaikdaaaGccaGGSaaaaa@9257@  (3)

если правые части у приведенных выше задач, когда заданные функции f ˘ ω L 2 Ω ω MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacaWGMbaal8aabeqaa8qacaGGylaaaOWdamaaBaaaleaa peGaeqyYdChapaqabaGcpeGaeyicI4Saamita8aadaWgaaWcbaWdbi aaikdaa8aabeaak8qadaqadaWdaeaapeGaeuyQdC1damaaBaaaleaa peGaeqyYdChapaqabaaak8qacaGLOaGaayzkaaaaaa@4405@  задаются как функционалы

F ω v ˘ ω = Ω ω f ˘ ω v ˘ ω d Ω ω v ˘ ω H ˘ ω , f ˘ ΙΙ 1 =0, MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOra8aadaWgaaWcbaWdbiabeM8a3bWdaeqaaOWdbmaabmaapaqa amaaxacabaWdbiaadAhaaSWdaeqabaWdbiaacITaaaGcpaWaaSbaaS qaa8qacqaHjpWDa8aabeaaaOWdbiaawIcacaGLPaaacqGH9aqpdaqf qaqabSWdaeaapeGaeuyQdC1damaaBaaameaapeGaeqyYdChapaqaba aal8qabeqdpaqaa8qacqGHRiI8aaGcpaWaaCbiaeaapeGaamOzaaWc paqabeaapeGaaii2caaak8aadaWgaaWcbaWdbiabeM8a3bWdaeqaaO WaaCbiaeaapeGaamODaaWcpaqabeaapeGaaii2caaak8aadaWgaaWc baWdbiabeM8a3bWdaeqaaOWdbiaadsgacqqHPoWvpaWaaSbaaSqaa8 qacqaHjpWDa8aabeaak8qacqGHaiIipaWaaCbiaeaapeGaamODaaWc paqabeaapeGaaii2caaak8aadaWgaaWcbaWdbiabeM8a3bWdaeqaaO WdbiabgIGio=aadaWfGaqaa8qacaWGibaal8aabeqaa8qacaGGylaa aOWdamaaBaaaleaapeGaeqyYdChapaqabaGcpeGaaiila8aadaWfGa qaa8qacaWGMbaal8aabeqaa8qacaGGylaaaOWdamaaBaaaleaapeGa euyMdKKaeuyMdKeapaqabaGcdaWgaaWcbaWdbiaaigdaa8aabeaak8 qacqGH9aqpcaaIWaGaaiilaaaa@6CB6@

билинейные формы

Λ ω u ˘ ω , v ˘ ω = Ω ω ( σ ω Δ u ˘ ω Δ v ˘ ω + 1 σ ω u ˘ ωxx v ˘ ωxx +2 u ˘ ωxy v ˘ ωxy + u ˘ ωyy v ˘ ωyy + ρ ω u ˘ ωx v ˘ ωx + u ˘ ωy v ˘ ωy + a ω u ˘ ω v ˘ ω )d Ω ω , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4MdW0damaaBaaaleaapeGaeqyYdChapaqabaGcpeWaaeWaa8aa baWaaCbiaeaapeGaamyDaaWcpaqabeaapeGaaii2caaak8aadaWgaa WcbaWdbiabeM8a3bWdaeqaaOWdbiaacYcapaWaaCbiaeaapeGaamOD aaWcpaqabeaapeGaaii2caaak8aadaWgaaWcbaWdbiabeM8a3bWdae qaaaGcpeGaayjkaiaawMcaaiabg2da9maavababeWcpaqaa8qacqqH PoWvpaWaaSbaaWqaa8qacqaHjpWDa8aabeaaaSWdbeqan8aabaWdbi abgUIiYdaakiaacIcacqaHdpWCpaWaaSbaaSqaa8qacqaHjpWDa8aa beaak8qacqqHuoarpaWaaCbiaeaapeGaamyDaaWcpaqabeaapeGaai i2caaak8aadaWgaaWcbaWdbiabeM8a3bWdaeqaaOWdbiabfs5ae9aa daWfGaqaa8qacaWG2baal8aabeqaa8qacaGGylaaaOWdamaaBaaale aapeGaeqyYdChapaqabaGcpeGaey4kaSYaaeWaa8aabaWdbiaaigda cqGHsislcqaHdpWCpaWaaSbaaSqaa8qacqaHjpWDa8aabeaaaOWdbi aawIcacaGLPaaadaqadaWdaeaadaWfGaqaa8qacaWG1baal8aabeqa a8qacaGGylaaaOWdamaaBaaaleaapeGaeqyYdCNaamiEaiaadIhaa8 aabeaakmaaxacabaWdbiaadAhaaSWdaeqabaWdbiaacITaaaGcpaWa aSbaaSqaa8qacqaHjpWDcaWG4bGaamiEaaWdaeqaaOWdbiabgUcaRi aaikdapaWaaCbiaeaapeGaamyDaaWcpaqabeaapeGaaii2caaak8aa daWgaaWcbaWdbiabeM8a3jaadIhacaWG5baapaqabaGcdaWfGaqaa8 qacaWG2baal8aabeqaa8qacaGGylaaaOWdamaaBaaaleaapeGaeqyY dCNaamiEaiaadMhaa8aabeaak8qacqGHRaWkpaWaaCbiaeaapeGaam yDaaWcpaqabeaapeGaaii2caaak8aadaWgaaWcbaWdbiabeM8a3jaa dMhacaWG5baapaqabaGcdaWfGaqaa8qacaWG2baal8aabeqaa8qaca GGylaaaOWdamaaBaaaleaapeGaeqyYdCNaamyEaiaadMhaa8aabeaa aOWdbiaawIcacaGLPaaacqGHRaWkcqGHsislcqaHbpGCpaWaaSbaaS qaa8qacqaHjpWDa8aabeaak8qadaqadaWdaeaadaWfGaqaa8qacaWG 1baal8aabeqaa8qacaGGylaaaOWdamaaBaaaleaapeGaeqyYdCNaam iEaaWdaeqaaOWaaCbiaeaapeGaamODaaWcpaqabeaapeGaaii2caaa k8aadaWgaaWcbaWdbiabeM8a3jaadIhaa8aabeaak8qacqGHRaWkpa WaaCbiaeaapeGaamyDaaWcpaqabeaapeGaaii2caaak8aadaWgaaWc baWdbiabeM8a3jaadMhaa8aabeaakmaaxacabaWdbiaadAhaaSWdae qabaWdbiaacITaaaGcpaWaaSbaaSqaa8qacqaHjpWDcaWG5baapaqa baaak8qacaGLOaGaayzkaaGaey4kaSIaamyya8aadaWgaaWcbaWdbi abeM8a3bWdaeqaaOWaaCbiaeaapeGaamyDaaWcpaqabeaapeGaaii2 caaak8aadaWgaaWcbaWdbiabeM8a3bWdaeqaaOWaaCbiaeaapeGaam ODaaWcpaqabeaapeGaaii2caaak8aadaWgaaWcbaWdbiabeM8a3bWd aeqaaOWdbiaacMcacaWGKbGaeuyQdC1damaaBaaaleaapeGaeqyYdC hapaqabaGcpeGaaiilaaaa@CAE7@  пространства их решений есть функции из пространств Соболева

H ˘ ω = H ˘ ω Ω ω = v ˘ ω W 2 2 Ω ω : v ˘ ω γ ω,0 γ ω,1 =0, v ˘ ω ν ω γ ω,0 γ ω,2 =0 , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacaWGibaal8aabeqaa8qacaGGylaaaOWdamaaBaaaleaa peGaeqyYdChapaqabaGcpeGaeyypa0ZdamaaxacabaWdbiaadIeaaS WdaeqabaWdbiaacITaaaGcpaWaaSbaaSqaa8qacqaHjpWDa8aabeaa k8qadaqadaWdaeaapeGaeuyQdC1damaaBaaaleaapeGaeqyYdChapa qabaaak8qacaGLOaGaayzkaaGaeyypa0ZaaiWaa8aabaWaaCbiaeaa peGaamODaaWcpaqabeaapeGaaii2caaak8aadaWgaaWcbaWdbiabeM 8a3bWdaeqaaOWdbiabgIGiolaadEfapaWaa0baaSqaa8qacaaIYaaa paqaa8qacaaIYaaaaOWaaeWaa8aabaWdbiabfM6ax9aadaWgaaWcba WdbiabeM8a3bWdaeqaaaGcpeGaayjkaiaawMcaaiaacQdadaabcaWd aeaadaWfGaqaa8qacaWG2baal8aabeqaa8qacaGGylaaaOWdamaaBa aaleaapeGaeqyYdChapaqabaaak8qacaGLiWoapaWaaSbaaSqaa8qa cqaHZoWzpaWaaSbaaWqaa8qacqaHjpWDcaGGSaGaaGimaaWdaeqaaS WdbiabgQIiilabeo7aN9aadaWgaaadbaWdbiabeM8a3jaacYcacaaI XaaapaqabaaaleqaaOWdbiabg2da9iaaicdacaGGSaWaaSaaa8aaba WdbiabgkGi2+aadaWfGaqaa8qacaWG2baal8aabeqaa8qacaGGylaa aOWdamaaBaaaleaapeGaeqyYdChapaqabaaakeaapeGaeyOaIyRafq yVd42dayaalaWaaSbaaSqaa8qacqaHjpWDa8aabeaaaaGcpeWaaqqa a8aabaWdbiabeo7aN9aadaWgaaWcbaWdbiabeM8a3jaacYcacaaIWa aapaqabaGcpeGaeyOkIGSaeq4SdC2damaaBaaaleaapeGaeqyYdCNa aiilaiaaikdaa8aabeaaaOWdbiaawEa7aiabg2da9iaaicdaaiaawU hacaGL9baacaGGSaaaaa@8BB2@

причем эти пространства рассматриваются на ограниченных областях Ω ω MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeuyQdC1damaaBaaaleaapeGaeqyYdChapaqabaaaaa@39C2@ , которые имеют следующие границы, являющиеся замыканиями объединений открытых и непересекающихся частей

Ω ω = s ω , s ω = γ ω,0 γ ω,1 γ ω,2 γ ω,3 ¯ , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyOaIyRaeuyQdC1damaaBaaaleaapeGaeqyYdChapaqabaGcpeGa eyypa0Jaam4Ca8aadaWgaaWcbaWdbiabeM8a3bWdaeqaaOWdbiaacY cacaWGZbWdamaaBaaaleaapeGaeqyYdChapaqabaGcpeGaeyypa0Zd amaanaaabaWdbiabeo7aN9aadaWgaaWcbaWdbiabeM8a3jaacYcaca aIWaaapaqabaGcpeGaeyOkIGSaeq4SdC2damaaBaaaleaapeGaeqyY dCNaaiilaiaaigdaa8aabeaak8qacqGHQicYcqaHZoWzpaWaaSbaaS qaa8qacqaHjpWDcaGGSaGaaGOmaaWdaeqaaOWdbiabgQIiilabeo7a N9aadaWgaaWcbaWdbiabeM8a3jaacYcacaaIZaaapaqabaaaaOWdbi aacYcaaaa@5F7E@

γ ω,i γ ω,j = MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4SdC2damaaBaaaleaapeGaeqyYdCNaaiilaiaadMgaa8aabeaa k8qacqGHPiYXcqaHZoWzpaWaaSbaaSqaa8qacqaHjpWDcaGGSaGaam OAaaWdaeqaaOWdbiabg2da9iabgwGigdaa@4537@ , если ij MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyAaiabgcMi5kaadQgaaaa@39B1@ , i,j=0,1,2,3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyAaiaacYcacaWGQbGaeyypa0JaaGimaiaacYcacaaIXaGaaiil aiaaikdacaGGSaGaaG4maaaa@3E9E@ ,

внешние нормали ν ω MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GafqyVd42dayaalaWaaSbaaSqaa8qacqaHjpWDa8aabeaaaaa@39FE@  к Ω ω , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyOaIyRaeuyQdC1damaaBaaaleaapeGaeqyYdChapaqabaGcpeGa aiilaaaa@3BF2@  заданные и выбираемые коэффициенты a ω , ρ ω 0, MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyya8aadaWgaaWcbaWdbiabeM8a3bWdaeqaaOWdbiaacYcacqaH bpGCpaWaaSbaaSqaa8qacqaHjpWDa8aabeaak8qacqGHLjYScaaIWa Gaaiilaaaa@4115@  коэффициенты Пуассона σ ω 0;1 . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Wdm3damaaBaaaleaapeGaeqyYdChapaqabaGcpeGaeyicI48a aKGea8aabaWdbiaaicdacaGG7aGaaGymaaGaay5waiaawMcaaiaac6 caaaa@406D@  Полагается, что также выполняются неравенства, обеспечивающие для каждой из приведенных задач существование и единственность ее решения

c 1 , c 2 0;+ : c 1 v ˘ ω W 2 2 Ω ω 2 Λ v ˘ ω , v ˘ ω c 2 v ˘ ω W 2 2 Ω ω 2 v ˘ ω H ˘ ω . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaey4aIqIaam4ya8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaGG SaGaam4ya8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacqGHiiIZda qadaWdaeaapeGaaGimaiaacUdacqGHRaWkcqGHEisPaiaawIcacaGL PaaacaGG6aGaam4ya8aadaWgaaWcbaWdbiaaigdaa8aabeaakmaaxa cabaWdbiaadAhaaSWdaeqabaWdbiaacITaaaGcpaWaaSbaaSqaa8qa cqaHjpWDa8aabeaakmaaDaaaleaapeGaam4va8aadaqhaaadbaWdbi aaikdaa8aabaWdbiaaikdaaaWcdaqadaWdaeaapeGaeuyQdC1damaa BaaameaapeGaeqyYdChapaqabaaal8qacaGLOaGaayzkaaaapaqaa8 qacaaIYaaaaOGaeyizImQaeu4MdW0aaeWaa8aabaWaaCbiaeaapeGa amODaaWcpaqabeaapeGaaii2caaak8aadaWgaaWcbaWdbiabeM8a3b WdaeqaaOWdbiaacYcapaWaaCbiaeaapeGaamODaaWcpaqabeaapeGa aii2caaak8aadaWgaaWcbaWdbiabeM8a3bWdaeqaaaGcpeGaayjkai aawMcaaiabgsMiJkaadogapaWaaSbaaSqaa8qacaaIYaaapaqabaGc daWfGaqaa8qacaWG2baal8aabeqaa8qacaGGylaaaOWdamaaBaaale aapeGaeqyYdChapaqabaGcdaqhaaWcbaWdbiaadEfapaWaa0baaWqa a8qacaaIYaaapaqaa8qacaaIYaaaaSWaaeWaa8aabaWdbiabfM6ax9 aadaWgaaadbaWdbiabeM8a3bWdaeqaaaWcpeGaayjkaiaawMcaaaWd aeaapeGaaGOmaaaakiabgcGiI8aadaWfGaqaa8qacaWG2baal8aabe qaa8qacaGGylaaaOWdamaaBaaaleaapeGaeqyYdChapaqabaGcpeGa eyicI48damaaxacabaWdbiaadIeaaSWdaeqabaWdbiaacITaaaGcpa WaaSbaaSqaa8qacqaHjpWDa8aabeaak8qacaGGUaaaaa@8306@

Решаемая задача и фиктивная задача формулируются совместно как продолженная задача

u ˘ V ˘ : Λ 1 u ˘ , I 1 v ˘ + Λ ΙΙ u ˘ , v ˘ = F 1 I 1 v ˘ v ˘ V ˘ , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacaWG1baal8aabeqaa8qacaGGylaaaOGaeyicI48damaa xacabaWdbiaadAfaaSWdaeqabaWdbiaacITaaaGccaGG6aGaeu4MdW 0damaaBaaaleaapeGaaGymaaWdaeqaaOWdbmaabmaapaqaamaaxaca baWdbiaadwhaaSWdaeqabaWdbiaacITaaaGccaGGSaGaamysa8aada WgaaWcbaWdbiaaigdaa8aabeaakmaaxacabaWdbiaadAhaaSWdaeqa baWdbiaacITaaaaakiaawIcacaGLPaaacqGHRaWkcqqHBoatpaWaaS baaSqaa8qacqqHzoqscqqHzoqsa8aabeaak8qadaqadaWdaeaadaWf Gaqaa8qacaWG1baal8aabeqaa8qacaGGylaaaOGaaiila8aadaWfGa qaa8qacaWG2baal8aabeqaa8qacaGGylaaaaGccaGLOaGaayzkaaGa eyypa0JaamOra8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qadaqada WdaeaapeGaamysa8aadaWgaaWcbaWdbiaaigdaa8aabeaakmaaxaca baWdbiaadAhaaSWdaeqabaWdbiaacITaaaaakiaawIcacaGLPaaacq GHaiIipaWaaCbiaeaapeGaamODaaWcpaqabeaapeGaaii2caaakiab gIGio=aadaWfGaqaa8qacaWGwbaal8aabeqaa8qacaGGylaaaOGaai ilaaaa@6A50@  (4)

пространство решений этой задачи в расширенном пространстве функций из пространства Соболева

V ˘ = V ˘ Π = v ˘ W 2 2 Π : v ˘ Γ 0 Γ 1 =0, v ˘ N Γ 0 Γ 2 =0 , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacaWGwbaal8aabeqaa8qacaGGylaaaOGaeyypa0Zdamaa xacabaWdbiaadAfaaSWdaeqabaWdbiaacITaaaGcdaqadaWdaeaape GaeuiOdafacaGLOaGaayzkaaGaeyypa0ZaaiWaa8aabaWaaCbiaeaa peGaamODaaWcpaqabeaapeGaaii2caaakiabgIGiolaadEfapaWaa0 baaSqaa8qacaaIYaaapaqaa8qacaaIYaaaaOWaaeWaa8aabaWdbiab fc6aqbGaayjkaiaawMcaaiaacQdadaabcaWdaeaadaWfGaqaa8qaca WG2baal8aabeqaa8qacaGGylaaaaGccaGLiWoapaWaaSbaaSqaa8qa cqqHtoWrpaWaaSbaaWqaa8qacaaIWaaapaqabaWcpeGaeyOkIGSaeu 4KdC0damaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacqGH9aqp caaIWaGaaiilamaaeiaapaqaa8qadaWcaaWdaeaapeGaeyOaIy7dam aaxacabaWdbiaadAhaaSWdaeqabaWdbiaacITaaaaak8aabaWdbiab gkGi2kqad6eapaGbaSaaaaaapeGaayjcSdWdamaaBaaaleaapeGaeu 4KdC0damaaBaaameaapeGaaGimaaWdaeqaaSWdbiabgQIiilabfo5a h9aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaeyypa0JaaG imaaGaay5Eaiaaw2haaiaacYcaaaa@6E6A@

где данная, выбираемая область Ω 1 , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipD0hf9yqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabaqaamaabeabaaGcbaGaeuyQdC1aaS baaSqaaiaaigdaaeqaaOGaaiilaaaa@393C@   Ω ΙΙ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeuyQdC1damaaBaaaleaapeGaeuyMdKKaeuyMdKeapaqabaaaaa@3AD5@  такие Ω ¯ 1 Ω ¯ ΙΙ = П ¯ , Ω 1 Ω ΙΙ =. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacuqHPoWvgaqeaaWcpaqabeaaaaGcdaWgaaWcbaWdbiaa igdaa8aabeaak8qacqGHQicYpaWaaCbiaeaapeGafuyQdCLbaebaaS WdaeqabaaaaOWaaSbaaSqaa8qacqqHzoqscqqHzoqsa8aabeaak8qa cqGH9aqpceWGFqGbaebacaGGSaGaeuyQdC1damaaBaaaleaapeGaaG ymaaWdaeqaaOWdbiabgMIihlabfM6ax9aadaWgaaWcbaWdbiabfM5a jjabfM5ajbWdaeqaaOWdbiabg2da9iabgwGiglaac6caaaa@4F25@   Π MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyOaIyRaeuiOdafaaa@38F1@  является замыканием объединения открытых непересекающихся частей

Π=Γ,Γ= Γ 0 Γ 1 Γ 2 Γ 3 ¯ , Γ i Γ j =,ij,i,j=0,1,2,3, MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyOaIyRaeuiOdaLaeyypa0Jaeu4KdCKaaiilaiabfo5ahjabg2da 98aadaqdaaqaa8qacqqHtoWrpaWaaSbaaSqaa8qacaaIWaaapaqaba GcpeGaeyOkIGSaeu4KdC0damaaBaaaleaapeGaaGymaaWdaeqaaOWd biabgQIiilabfo5ah9aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacq GHQicYcqqHtoWrpaWaaSbaaSqaa8qacaaIZaaapaqabaaaaOWdbiaa cYcacqqHtoWrpaWaaSbaaSqaa8qacaWGPbaapaqabaGcpeGaeyykIC Saeu4KdC0damaaBaaaleaapeGaamOAaaWdaeqaaOWdbiabg2da9iab gwGiglaacYcacaWGPbGaeyiyIKRaamOAaiaacYcacaWGPbGaaiilai aadQgacqGH9aqpcaaIWaGaaiilaiaaigdacaGGSaGaaGOmaiaacYca caaIZaGaaiilaaaa@6692@

пересечение Ω 1 , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyOaIyRaeuyQdC1damaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaa cYcaaaa@3AE0@   Ω ΙΙ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyOaIyRaeuyQdC1damaaBaaaleaapeGaeuyMdKKaeuyMdKeapaqa baaaaa@3C3B@  является замыканием пересечения γ 1,0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4SdC2damaaBaaaleaapeGaaGymaiaacYcacaaIWaaapaqabaaa aa@3A33@  и γ ΙΙ,3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4SdC2damaaBaaaleaapeGaeuyMdKKaeuyMdKKaaiilaiaaioda a8aabeaaaaa@3C5B@

Ω 1 Ω ΙΙ = γ 1,0 γ ΙΙ,3 ¯ , γ 1,0 γ ΙΙ,3 , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyOaIyRaeuyQdC1damaaBaaaleaapeGaaGymaaWdaeqaaOWdbiab gMIihlabgkGi2kabfM6ax9aadaWgaaWcbaWdbiabfM5ajjabfM5ajb WdaeqaaOWdbiabg2da98aadaqdaaqaa8qacqaHZoWzpaWaaSbaaSqa a8qacaaIXaGaaiilaiaaicdaa8aabeaak8qacqGHPiYXcqaHZoWzpa WaaSbaaSqaa8qacqqHzoqscqqHzoqscaGGSaGaaG4maaWdaeqaaaaa k8qacaGGSaGaeq4SdC2damaaBaaaleaapeGaaGymaiaacYcacaaIWa aapaqabaGcpeGaeyykICSaeq4SdC2damaaBaaaleaapeGaeuyMdKKa euyMdKKaaiilaiaaiodaa8aabeaak8qacqGHGjsUcqGHfiIXcaGGSa aaaa@6078@

N MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmOta8aagaWca8qacqGHsislaaa@37FE@  теперь внешняя нормаль к Π MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyOaIyRaeuiOdafaaa@38F1@ .

Расширенное пространство содержит в качестве подпространства продолженное пространство решений

V ˘ 1 = V ˘ 1 Π = v ˘ 1 V ˘ : v ˘ 1 Π\ Ω 1 =0 . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacaWGwbaal8aabeqaa8qacaGGylaaaOWdamaaBaaaleaa peGaaGymaaWdaeqaaOWdbiabg2da98aadaWfGaqaa8qacaWGwbaal8 aabeqaa8qacaGGylaaaOWdamaaBaaaleaapeGaaGymaaWdaeqaaOWd bmaabmaapaqaa8qacqqHGoauaiaawIcacaGLPaaacqGH9aqpdaGada WdaeaadaWfGaqaa8qacaWG2baal8aabeqaa8qacaGGylaaaOWdamaa BaaaleaapeGaaGymaaWdaeqaaOWdbiabgIGio=aadaWfGaqaa8qaca WGwbaal8aabeqaa8qacaGGylaaaOGaaiOoamaaeiaapaqaamaaxaca baWdbiaadAhaaSWdaeqabaWdbiaacITaaaGcpaWaaSbaaSqaa8qaca aIXaaapaqabaaak8qacaGLiWoapaWaaSbaaSqaa8qacqqHGoaucaGG CbGaeuyQdC1damaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacq GH9aqpcaaIWaaacaGL7bGaayzFaaGaaiOlaaaa@5BFB@

Вводятся операторы проектирования на продолженное пространство из расширенного пространства

I 1 : V ˘ V ˘ 1 , V ˘ 1 =im I 1 , I 1 = I 1 2 . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamysa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaGG6aWdamaa xacabaWdbiaadAfaaSWdaeqabaWdbiaacITaaaGccqWIMgsypaWaaC biaeaapeGaamOvaaWcpaqabeaapeGaaii2caaak8aadaWgaaWcbaWd biaaigdaa8aabeaak8qacaGGSaWdamaaxacabaWdbiaadAfaaSWdae qabaWdbiaacITaaaGcpaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGa eyypa0JaamyAaiaad2gacaWGjbWdamaaBaaaleaapeGaaGymaaWdae qaaOWdbiaacYcacaWGjbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWd biabg2da9iaadMeapaWaa0baaSqaa8qacaaIXaaapaqaa8qacaaIYa aaaOGaaiOlaaaa@51EF@

Расширенное пространство содержит подпространства

V ˘ 2 = V ˘ 2 Π = v ˘ 2 V ˘ : v ˘ 2 Π\ Ω ΙΙ =0 , V ˘ 0 = V ˘ 1 V ˘ 2 , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacaWGwbaal8aabeqaa8qacaGGylaaaOWdamaaBaaaleaa peGaaGOmaaWdaeqaaOWdbiabg2da98aadaWfGaqaa8qacaWGwbaal8 aabeqaa8qacaGGylaaaOWdamaaBaaaleaapeGaaGOmaaWdaeqaaOWd bmaabmaapaqaa8qacqqHGoauaiaawIcacaGLPaaacqGH9aqpdaGada WdaeaadaWfGaqaa8qacaWG2baal8aabeqaa8qacaGGylaaaOWdamaa BaaaleaapeGaaGOmaaWdaeqaaOWdbiabgIGio=aadaWfGaqaa8qaca WGwbaal8aabeqaa8qacaGGylaaaOGaaiOoamaaeiaapaqaamaaxaca baWdbiaadAhaaSWdaeqabaWdbiaacITaaaGcpaWaaSbaaSqaa8qaca aIYaaapaqabaaak8qacaGLiWoapaWaaSbaaSqaa8qacqqHGoaucaGG CbGaeuyQdC1damaaBaaameaapeGaeuyMdKKaeuyMdKeapaqabaaale qaaOWdbiabg2da9iaaicdaaiaawUhacaGL9baacaGGSaWdamaaxaca baWdbiaadAfaaSWdaeqabaWdbiaacITaaaGcpaWaaSbaaSqaa8qaca aIWaaapaqabaGcpeGaeyypa0ZdamaaxacabaWdbiaadAfaaSWdaeqa baWdbiaacITaaaGcpaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaey yLIu8damaaxacabaWdbiaadAfaaSWdaeqabaWdbiaacITaaaGcpaWa aSbaaSqaa8qacaaIYaaapaqabaGcpeGaaiilaaaa@6DCB@

V ˘ 3 = V ˘ 3 Π = v ˘ 3 V ˘ :Λ v ˘ 3 , v ˘ 0 =0 v ˘ 0 V ˘ 0 . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacaWGwbaal8aabeqaa8qacaGGylaaaOWdamaaBaaaleaa peGaaG4maaWdaeqaaOWdbiabg2da98aadaWfGaqaa8qacaWGwbaal8 aabeqaa8qacaGGylaaaOWdamaaBaaaleaapeGaaG4maaWdaeqaaOWd bmaabmaapaqaa8qacqqHGoauaiaawIcacaGLPaaacqGH9aqpdaGada WdaeaadaWfGaqaa8qacaWG2baal8aabeqaa8qacaGGylaaaOWdamaa BaaaleaapeGaaG4maaWdaeqaaOWdbiabgIGio=aadaWfGaqaa8qaca WGwbaal8aabeqaa8qacaGGylaaaOGaaiOoaiabfU5amnaabmaapaqa amaaxacabaWdbiaadAhaaSWdaeqabaWdbiaacITaaaGcpaWaaSbaaS qaa8qacaaIZaaapaqabaGcpeGaaiila8aadaWfGaqaa8qacaWG2baa l8aabeqaa8qacaGGylaaaOWdamaaBaaaleaapeGaaGimaaWdaeqaaa GcpeGaayjkaiaawMcaaiabg2da9iaaicdacqGHaiIipaWaaCbiaeaa peGaamODaaWcpaqabeaapeGaaii2caaak8aadaWgaaWcbaWdbiaaic daa8aabeaak8qacqGHiiIZpaWaaCbiaeaapeGaamOvaaWcpaqabeaa peGaaii2caaak8aadaWgaaWcbaWdbiaaicdaa8aabeaaaOWdbiaawU hacaGL9baacaGGUaaaaa@6725@

Имеют место разложения

V ˘ = V ˘ 1 V ˘ 2 V ˘ 3 = V ˘ 1 V ˘ ΙΙ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacaWGwbaal8aabeqaa8qacaGGylaaaOGaeyypa0Zdamaa xacabaWdbiaadAfaaSWdaeqabaWdbiaacITaaaGcpaWaaSbaaSqaa8 qacaaIXaaapaqabaGcpeGaeyyLIu8damaaxacabaWdbiaadAfaaSWd aeqabaWdbiaacITaaaGcpaWaaSbaaSqaa8qacaaIYaaapaqabaGcpe GaeyyLIu8damaaxacabaWdbiaadAfaaSWdaeqabaWdbiaacITaaaGc paWaaSbaaSqaa8qacaaIZaaapaqabaGcpeGaeyypa0Zdamaaxacaba WdbiaadAfaaSWdaeqabaWdbiaacITaaaGcpaWaaSbaaSqaa8qacaaI XaaapaqabaGcpeGaeyyLIu8damaaxacabaWdbiaadAfaaSWdaeqaba WdbiaacITaaaGcpaWaaSbaaSqaa8qacqqHzoqscqqHzoqsa8aabeaa aaa@56C7@

и

V ˘ Ι = V ˘ 1 V ˘ 3 , V ˘ ΙΙ = V ˘ 2 V ˘ 3 , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacaWGwbaal8aabeqaa8qacaGGylaaaOWdamaaBaaaleaa peGaeuyMdKeapaqabaGcpeGaeyypa0ZdamaaxacabaWdbiaadAfaaS WdaeqabaWdbiaacITaaaGcpaWaaSbaaSqaa8qacaaIXaaapaqabaGc peGaeyyLIu8damaaxacabaWdbiaadAfaaSWdaeqabaWdbiaacITaaa GcpaWaaSbaaSqaa8qacaaIZaaapaqabaGcpeGaaiila8aadaWfGaqa a8qacaWGwbaal8aabeqaa8qacaGGylaaaOWdamaaBaaaleaapeGaeu yMdKKaeuyMdKeapaqabaGcpeGaeyypa0ZdamaaxacabaWdbiaadAfa aSWdaeqabaWdbiaacITaaaGcpaWaaSbaaSqaa8qacaaIYaaapaqaba GcpeGaeyyLIu8damaaxacabaWdbiaadAfaaSWdaeqabaWdbiaacITa aaGcpaWaaSbaaSqaa8qacaaIZaaapaqabaGcpeGaaiilaaaa@581F@

а разложение в прямые суммы получается при использовании скалярного произведения билинейной формы

Λ u ˘ , v ˘ = Λ 1 u ˘ , v ˘ + Λ ΙΙ u ˘ , v ˘ u ˘ , v ˘ V ˘ . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4MdW0aaeWaa8aabaWaaCbiaeaapeGaamyDaaWcpaqabeaapeGa aii2caaakiaacYcapaWaaCbiaeaapeGaamODaaWcpaqabeaapeGaai i2caaaaOGaayjkaiaawMcaaiabg2da9iabfU5am9aadaWgaaWcbaWd biaaigdaa8aabeaak8qadaqadaWdaeaadaWfGaqaa8qacaWG1baal8 aabeqaa8qacaGGylaaaOGaaiila8aadaWfGaqaa8qacaWG2baal8aa beqaa8qacaGGylaaaaGccaGLOaGaayzkaaGaey4kaSIaeu4MdW0dam aaBaaaleaapeGaeuyMdKKaeuyMdKeapaqabaGcpeWaaeWaa8aabaWa aCbiaeaapeGaamyDaaWcpaqabeaapeGaaii2caaakiaacYcapaWaaC biaeaapeGaamODaaWcpaqabeaapeGaaii2caaaaOGaayjkaiaawMca aiabgcGiI8aadaWfGaqaa8qacaWG1baal8aabeqaa8qacaGGylaaaO Gaaiila8aadaWfGaqaa8qacaWG2baal8aabeqaa8qacaGGylaaaOGa eyicI48damaaxacabaWdbiaadAfaaSWdaeqabaWdbiaacITaaaGcca GGUaaaaa@654E@

Как и ранее, достаточно обычно предположить, что билинейная форма порождает эквивалентную нормировку пространства функций Соболева в расширенном пространстве

c 1 , c 2 >0: c 1 v ˘ W 2 2 Π 2 Λ v ˘ , v ˘ c 2 v ˘ W 2 2 Π 2 v ˘ V ˘ . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaey4aIqIaam4ya8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaGG SaGaam4ya8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacqGH+aGpca aIWaGaaiOoaiaadogapaWaaSbaaSqaa8qacaaIXaaapaqabaGcdaWf Gaqaa8qacaWG2baal8aabeqaa8qacaGGylaaaOWdamaaDaaaleaape Gaam4va8aadaqhaaadbaWdbiaaikdaa8aabaWdbiaaikdaaaWcdaqa daWdaeaapeGaeuiOdafacaGLOaGaayzkaaaapaqaa8qacaaIYaaaaO GaeyizImQaeu4MdW0aaeWaa8aabaWaaCbiaeaapeGaamODaaWcpaqa beaapeGaaii2caaakiaacYcapaWaaCbiaeaapeGaamODaaWcpaqabe aapeGaaii2caaaaOGaayjkaiaawMcaaiabgsMiJkaadogapaWaaSba aSqaa8qacaaIYaaapaqabaGcdaWfGaqaa8qacaWG2baal8aabeqaa8 qacaGGylaaaOWdamaaDaaaleaapeGaam4va8aadaqhaaadbaWdbiaa ikdaa8aabaWdbiaaikdaaaWcdaqadaWdaeaapeGaeuiOdafacaGLOa Gaayzkaaaapaqaa8qacaaIYaaaaOGaeyiaIiYdamaaxacabaWdbiaa dAhaaSWdaeqabaWdbiaacITaaaGccqGHiiIZpaWaaCbiaeaapeGaam OvaaWcpaqabeaapeGaaii2caaakiaac6caaaa@6BF0@

Как обычно в рамках используемого направления, полагаем, что в расширенном пространстве, являющемся пространством функций Соболева, имеют место положения о продолжении функций в следующем виде:

β ˘ 1 0;1 , β ˘ 2 β ˘ 1 ;1 : β ˘ 1 Λ v ˘ 3 , v ˘ 3 Λ ΙΙ v ˘ 3 , v ˘ 3 β ˘ 2 Λ v ˘ 3 , v ˘ 3 v ˘ 3 V ˘ 3 . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaey4aIqYdamaaxacabaWdbiabek7aIbWcpaqabeaapeGaaii2caaa k8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGHiiIZdaqcWaWdae aapeGaaGimaiaacUdacaaIXaaacaGLOaGaayzxaaGaaiila8aadaWf Gaqaa8qacqaHYoGyaSWdaeqabaWdbiaacITaaaGcpaWaaSbaaSqaa8 qacaaIYaaapaqabaGcpeGaeyicI48aamWaa8aabaWaaCbiaeaapeGa eqOSdigal8aabeqaa8qacaGGylaaaOWdamaaBaaaleaapeGaaGymaa WdaeqaaOWdbiaacUdacaaIXaaacaGLBbGaayzxaaGaaiOoa8aadaWf Gaqaa8qacqaHYoGyaSWdaeqabaWdbiaacITaaaGcpaWaaSbaaSqaa8 qacaaIXaaapaqabaGcpeGaeu4MdW0aaeWaa8aabaWaaCbiaeaapeGa amODaaWcpaqabeaapeGaaii2caaak8aadaWgaaWcbaWdbiaaiodaa8 aabeaak8qacaGGSaWdamaaxacabaWdbiaadAhaaSWdaeqabaWdbiaa cITaaaGcpaWaaSbaaSqaa8qacaaIZaaapaqabaaak8qacaGLOaGaay zkaaGaeyizImQaeu4MdW0damaaBaaaleaapeGaeuyMdKKaeuyMdKea paqabaGcpeWaaeWaa8aabaWaaCbiaeaapeGaamODaaWcpaqabeaape Gaaii2caaak8aadaWgaaWcbaWdbiaaiodaa8aabeaak8qacaGGSaWd amaaxacabaWdbiaadAhaaSWdaeqabaWdbiaacITaaaGcpaWaaSbaaS qaa8qacaaIZaaapaqabaaak8qacaGLOaGaayzkaaGaeyizIm6damaa xacabaWdbiabek7aIbWcpaqabeaapeGaaii2caaak8aadaWgaaWcba Wdbiaaikdaa8aabeaak8qacqqHBoatdaqadaWdaeaadaWfGaqaa8qa caWG2baal8aabeqaa8qacaGGylaaaOWdamaaBaaaleaapeGaaG4maa WdaeqaaOWdbiaacYcapaWaaCbiaeaapeGaamODaaWcpaqabeaapeGa aii2caaak8aadaWgaaWcbaWdbiaaiodaa8aabeaaaOWdbiaawIcaca GLPaaacqGHaiIipaWaaCbiaeaapeGaamODaaWcpaqabeaapeGaaii2 caaak8aadaWgaaWcbaWdbiaaiodaa8aabeaak8qacqGHiiIZpaWaaC biaeaapeGaamOvaaWcpaqabeaapeGaaii2caaak8aadaWgaaWcbaWd biaaiodaa8aabeaak8qacaGGUaaaaa@904C@

Указанные выше положения и предположения обеспечивают существование и единственность решения задачи (4). Функцию и ее продолжение удобно обозначать одинаково на соответствующих областях

H ˘ ω Ω ω = V ˘ ω Ω ω ,ω 1,ΙΙ . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacaWGibaal8aabeqaa8qacaGGylaaaOWdamaaBaaaleaa peGaeqyYdChapaqabaGcpeWaaeWaa8aabaWdbiabfM6ax9aadaWgaa WcbaWdbiabeM8a3bWdaeqaaaGcpeGaayjkaiaawMcaaiabg2da98aa daWfGaqaa8qacaWGwbaal8aabeqaa8qacaGGylaaaOWdamaaBaaale aapeGaeqyYdChapaqabaGcpeWaaeWaa8aabaWdbiabfM6ax9aadaWg aaWcbaWdbiabeM8a3bWdaeqaaaGcpeGaayjkaiaawMcaaiaacYcacq aHjpWDcqGHiiIZdaGadaWdaeaapeGaaGymaiaacYcacqqHzoqscqqH zoqsaiaawUhacaGL9baacaGGUaaaaa@5738@

При исследовании продолженной задачи можно применить модифицированный метод фиктивных компонент:

u ˘ k V ˘ :Λ u ˘ k u ˘ k1 , v ˘ = τ k1 Λ 1 u ˘ k1 , I 1 v ˘ + Λ ΙΙ u ˘ k1 , v ˘ F 1 I 1 v ˘ v ˘ V ˘ , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacaWG1baal8aabeqaa8qacaGGylaaaOWdamaaCaaaleqa baWdbiaadUgaaaGccqGHiiIZpaWaaCbiaeaapeGaamOvaaWcpaqabe aapeGaaii2caaakiaacQdacqqHBoatdaqadaWdaeaadaWfGaqaa8qa caWG1baal8aabeqaa8qacaGGylaaaOWdamaaCaaaleqabaWdbiaadU gaaaGccqGHsislpaWaaCbiaeaapeGaamyDaaWcpaqabeaapeGaaii2 caaak8aadaahaaWcbeqaa8qacaWGRbGaeyOeI0IaaGymaaaakiaacY capaWaaCbiaeaapeGaamODaaWcpaqabeaapeGaaii2caaaaOGaayjk aiaawMcaaiabg2da9iabgkHiTiabes8a09aadaWgaaWcbaWdbiaadU gacqGHsislcaaIXaaapaqabaGcpeWaaeWaa8aabaWdbiabfU5am9aa daWgaaWcbaWdbiaaigdaa8aabeaak8qadaqadaWdaeaadaWfGaqaa8 qacaWG1baal8aabeqaa8qacaGGylaaaOWdamaaCaaaleqabaWdbiaa dUgacqGHsislcaaIXaaaaOGaaiilaiaadMeapaWaaSbaaSqaa8qaca aIXaaapaqabaGcdaWfGaqaa8qacaWG2baal8aabeqaa8qacaGGylaa aaGccaGLOaGaayzkaaGaey4kaSIaeu4MdW0damaaBaaaleaapeGaeu yMdKKaeuyMdKeapaqabaGcpeWaaeWaa8aabaWaaCbiaeaapeGaamyD aaWcpaqabeaapeGaaii2caaak8aadaahaaWcbeqaa8qacaWGRbGaey OeI0IaaGymaaaakiaacYcapaWaaCbiaeaapeGaamODaaWcpaqabeaa peGaaii2caaaaOGaayjkaiaawMcaaiabgkHiTiaadAeapaWaaSbaaS qaa8qacaaIXaaapaqabaGcpeWaaeWaa8aabaWdbiaadMeapaWaaSba aSqaa8qacaaIXaaapaqabaGcdaWfGaqaa8qacaWG2baal8aabeqaa8 qacaGGylaaaaGccaGLOaGaayzkaaaacaGLOaGaayzkaaGaeyiaIiYd amaaxacabaWdbiaadAhaaSWdaeqabaWdbiaacITaaaGccqGHiiIZpa WaaCbiaeaapeGaamOvaaWcpaqabeaapeGaaii2caaakiaacYcaaaa@8B50@

τ 0 =1, τ k1 =τ= 2 ( β ˘ 1 + β ˘ 2 ),k\ 1 , u ˘ 0 V ˘ 1 V ˘ . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiXdq3damaaBaaaleaapeGaaGimaaWdaeqaaOWdbiabg2da9iaa igdacaGGSaGaeqiXdq3damaaBaaaleaapeGaam4AaiabgkHiTiaaig daa8aabeaak8qacqGH9aqpcqaHepaDcqGH9aqpdaWcaaWdaeaapeGa aGOmaaWdaeaapeGaaiikaaaapaWaaCbiaeaapeGaeqOSdigal8aabe qaa8qacaGGylaaaOWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiab gUcaR8aadaWfGaqaa8qacqaHYoGyaSWdaeqabaWdbiaacITaaaGcpa WaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaaiykaiaacYcacaWGRbGa eyicI48efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacq WFveItcaGGCbWaaiWaa8aabaWdbiaaigdaaiaawUhacaGL9baacaGG SaGaeyiaIiYdamaaxacabaWdbiaadwhaaSWdaeqabaWdbiaacITaaa GcpaWaaWbaaSqabeaapeGaaGimaaaakiabgIGio=aadaWfGaqaa8qa caWGwbaal8aabeqaa8qacaGGylaaaOWdamaaBaaaleaapeGaaGymaa WdaeqaaOWdbiabgkOim=aadaWfGaqaa8qacaWGwbaal8aabeqaa8qa caGGylaaaOGaaiOlaaaa@7300@  (5)

Определим норму в пространстве V ˘ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacaWGwbaal8aabeqaa8qacaGGylaaaaaa@38AE@  через скалярное произведение

v ˘ V ˘ = Λ v ˘ , v ˘ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacaWG2baal8aabeqaa8qacaGGylaaaOWdamaaBaaaleaa daWfGaqaa8qacaWGwbaam8aabeqaa8qacaGGylaaaaWcpaqabaGcpe Gaeyypa0ZaaOaaa8aabaWdbiabfU5amnaabmaapaqaamaaxacabaWd biaadAhaaSWdaeqabaWdbiaacITaaaGccaGGSaWdamaaxacabaWdbi aadAhaaSWdaeqabaWdbiaacITaaaaakiaawIcacaGLPaaaaSqabaaa aa@46BB@ .

Теорема 1. В итерационном процессе (5) выполняются оценки сходимости для относительных ошибок

u ˘ k u ˘ V ˘ ε ˘ u ˘ 0 u ˘ V ˘ ,k, MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacaWG1baal8aabeqaa8qacaGGylaaaOWdamaaCaaaleqa baWdbiaadUgaaaGccqGHsislpaWaaCbiaeaapeGaamyDaaWcpaqabe aapeGaaii2caaak8aadaWgaaWcbaWaaCbiaeaapeGaamOvaaadpaqa beaapeGaaii2caaaaSWdaeqaaOWdbiabgsMiJ+aadaWfGaqaa8qacq aH1oqzaSWdaeqabaWdbiaacITaaaGcpaWaaCbiaeaapeGaamyDaaWc paqabeaapeGaaii2caaak8aadaahaaWcbeqaa8qacaaIWaaaaOGaey OeI0YdamaaxacabaWdbiaadwhaaSWdaeqabaWdbiaacITaaaGcpaWa aSbaaSqaamaaxacabaWdbiaadAfaaWWdaeqabaWdbiaacITaaaaal8 aabeaak8qacaGGSaGaaGzaVlaaygW7caWGRbGaeyicI48efv3ySLgz nfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFveItcaGGSaaaaa@62E3@

где

ε ˘ = δ ˘ 1 q ˘ k1 , δ ˘ 1 = I 1 V ˘ 2 1 ,0 q ˘ = β ˘ 2 β ˘ 1 β ˘ 1 + β ˘ 2 <1. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacqaH1oqzaSWdaeqabaWdbiaacITaaaGccqGH9aqppaWa aCbiaeaapeGaeqiTdqgal8aabeqaa8qacaGGylaaaOWdamaaBaaale aapeGaaGymaaWdaeqaaOWaaCbiaeaapeGaamyCaaWcpaqabeaapeGa aii2caaak8aadaahaaWcbeqaa8qacaWGRbGaeyOeI0IaaGymaaaaki aacYcapaWaaCbiaeaapeGaeqiTdqgal8aabeqaa8qacaGGylaaaOWd amaaBaaaleaapeGaaGymaaWdaeqaaOWdbiabg2da9maakaaapaqaa8 qacaWGjbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWaa0baaSqaamaa xacabaWdbiaadAfaaWWdaeqabaWdbiaacITaaaaal8aabaWdbiaaik daaaGccqGHsislcaaIXaaaleqaaOGaaiilaiaaicdacqGHKjYOpaWa aCbiaeaapeGaamyCaaWcpaqabeaapeGaaii2caaakiabg2da9maala aapaqaa8qadaqadaWdaeaadaWfGaqaa8qacqaHYoGyaSWdaeqabaWd biaacITaaaGcpaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaeyOeI0 YdamaaxacabaWdbiabek7aIbWcpaqabeaapeGaaii2caaak8aadaWg aaWcbaWdbiaaigdaa8aabeaaaOWdbiaawIcacaGLPaaaa8aabaWdbm aabmaapaqaamaaxacabaWdbiabek7aIbWcpaqabeaapeGaaii2caaa k8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGHRaWkpaWaaCbiae aapeGaeqOSdigal8aabeqaa8qacaGGylaaaOWdamaaBaaaleaapeGa aGOmaaWdaeqaaaGcpeGaayjkaiaawMcaaaaacqGH8aapcaaIXaGaai Olaaaa@74CA@

Продолженную задачу на прямоугольной области рассмотрим на конечномерном подпространстве пространства Соболева. Для аппроксимации продолженной задачи применим метод конечных элементов, используя в нем кусочно-параболические функции, полагая, что

Π= 0; b 1 × 0; b 2 , Γ 0 =, Γ 1 = b 1 × 0; b 2 0; b 1 × b 2 , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeuiOdaLaeyypa0ZaaeWaa8aabaWdbiaaicdacaGG7aGaamOya8aa daWgaaWcbaWdbiaaigdaa8aabeaaaOWdbiaawIcacaGLPaaacqGHxd aTdaqadaWdaeaapeGaaGimaiaacUdacaWGIbWdamaaBaaaleaapeGa aGOmaaWdaeqaaaGcpeGaayjkaiaawMcaaiaacYcacqqHtoWrpaWaaS baaSqaa8qacaaIWaaapaqabaGcpeGaeyypa0JaeyybIySaaiilaiab fo5ah9aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGH9aqpdaGada WdaeaapeGaamOya8aadaWgaaWcbaWdbiaaigdaa8aabeaaaOWdbiaa wUhacaGL9baacqGHxdaTdaqadaWdaeaapeGaaGimaiaacUdacaWGIb WdamaaBaaaleaapeGaaGOmaaWdaeqaaaGcpeGaayjkaiaawMcaaiab gQIiipaabmaapaqaa8qacaaIWaGaai4oaiaadkgapaWaaSbaaSqaa8 qacaaIXaaapaqabaaak8qacaGLOaGaayzkaaGaey41aq7aaiWaa8aa baWdbiaadkgapaWaaSbaaSqaa8qacaaIYaaapaqabaaak8qacaGL7b GaayzFaaGaaiilaaaa@68E3@

Γ 2 = 0 × 0; b 2 0; b 1 × 0 , Γ 3 =, b 1 , b 2 0;+ . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4KdC0damaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiabg2da9maa cmaapaqaa8qacaaIWaaacaGL7bGaayzFaaGaey41aq7aaeWaa8aaba WdbiaaicdacaGG7aGaamOya8aadaWgaaWcbaWdbiaaikdaa8aabeaa aOWdbiaawIcacaGLPaaacqGHQicYdaqadaWdaeaapeGaaGimaiaacU dacaWGIbWdamaaBaaaleaapeGaaGymaaWdaeqaaaGcpeGaayjkaiaa wMcaaiabgEna0oaacmaapaqaa8qacaaIWaaacaGL7bGaayzFaaGaai ilaiabfo5ah9aadaWgaaWcbaWdbiaaiodaa8aabeaak8qacqGH9aqp cqGHfiIXcaGGSaGaamOya8aadaWgaaWcbaWdbiaaigdaa8aabeaak8 qacaGGSaGaamOya8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacqGH iiIZdaqadaWdaeaapeGaaGimaiaacUdacqGHRaWkcqGHEisPaiaawI cacaGLPaaacaGGUaaaaa@62FB@

В прямоугольной области определяем сетку с выбираемыми узлами

x i ; y j = i1,5 h 1 ; j1,5 h 2 , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiaadIhapaWaaSbaaSqaa8qacaWGPbaapaqabaGc peGaai4oaiaadMhapaWaaSbaaSqaa8qacaWGQbaapaqabaaak8qaca GLOaGaayzkaaGaeyypa0ZaaeWaa8aabaWdbmaabmaapaqaa8qacaWG PbGaeyOeI0IaaGymaiaacYcacaaI1aaacaGLOaGaayzkaaGaamiAa8 aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaGG7aWaaeWaa8aabaWd biaadQgacqGHsislcaaIXaGaaiilaiaaiwdaaiaawIcacaGLPaaaca WGObWdamaaBaaaleaapeGaaGOmaaWdaeqaaaGcpeGaayjkaiaawMca aiaacYcaaaa@50E5@

h 1 = b 1 / m1,5 , h 2 = b 2 / n1,5 ,i=1,2,...,m,j=1,2,...,n,m2,n2. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiAa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGH9aqpcaWG IbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaac+cadaqadaWdae aapeGaamyBaiabgkHiTiaaigdacaGGSaGaaGynaaGaayjkaiaawMca aiaacYcacaWGObWdamaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiabg2 da9iaadkgapaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaai4lamaa bmaapaqaa8qacaWGUbGaeyOeI0IaaGymaiaacYcacaaI1aaacaGLOa GaayzkaaGaaiilaiaadMgacqGH9aqpcaaIXaGaaiilaiaaikdacaGG SaGaaiOlaiaac6cacaGGUaGaaiilaiaad2gacaGGSaGaamOAaiabg2 da9iaaigdacaGGSaGaaGOmaiaacYcacaGGUaGaaiOlaiaac6cacaGG SaGaamOBaiaacYcacaWGTbGaeyOeI0IaaGOmaiaacYcacaWGUbGaey OeI0IaaGOmaiabgIGioprr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhA Gq1DVbacfaGae8xfH4KaaiOlaaaa@73D9@

На множестве выбранных узлов рассматриваем сеточные функции

v i,j =v x i ; y j ,i=1,2,...,m,j=1,2,...,n,m2,n2. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamODa8aadaWgaaWcbaWdbiaadMgacaGGSaGaamOAaaWdaeqaaOWd biabg2da9iaadAhadaqadaWdaeaapeGaamiEa8aadaWgaaWcbaWdbi aadMgaa8aabeaak8qacaGG7aGaamyEa8aadaWgaaWcbaWdbiaadQga a8aabeaaaOWdbiaawIcacaGLPaaacqGHiiIZtuuDJXwAK1uy0HMmae Hbfv3ySLgzG0uy0HgiuD3BaGqbaiab=1risjaacYcacaWGPbGaeyyp a0JaaGymaiaacYcacaaIYaGaaiilaiaac6cacaGGUaGaaiOlaiaacY cacaWGTbGaaiilaiaadQgacqGH9aqpcaaIXaGaaiilaiaaikdacaGG SaGaaiOlaiaac6cacaGGUaGaaiilaiaad6gacaGGSaGaamyBaiabgk HiTiaaikdacaGGSaGaamOBaiabgkHiTiaaikdacqGHiiIZcqWFveIt caGGUaaaaa@6BAB@

По сеточным функциям проводим их восполнения с использованием кусочно-параболических функций, определив следующие базисные функции

Φ i,j x;y = Ψ 1,i x Ψ 2,j y ,i=2,...,m1,j=2,...,n1,m2,n2, MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeuOPdy0damaaCaaaleqabaWdbiaadMgacaGGSaGaamOAaaaakmaa bmaapaqaa8qacaWG4bGaai4oaiaadMhaaiaawIcacaGLPaaacqGH9a qpcqqHOoqwpaWaaWbaaSqabeaapeGaaGymaiaacYcacaWGPbaaaOWa aeWaa8aabaWdbiaadIhaaiaawIcacaGLPaaacqqHOoqwpaWaaWbaaS qabeaapeGaaGOmaiaacYcacaWGQbaaaOWaaeWaa8aabaWdbiaadMha aiaawIcacaGLPaaacaGGSaGaamyAaiabg2da9iaaikdacaGGSaGaai Olaiaac6cacaGGUaGaaiilaiaad2gacqGHsislcaaIXaGaaiilaiaa dQgacqGH9aqpcaaIYaGaaiilaiaac6cacaGGUaGaaiOlaiaacYcaca WGUbGaeyOeI0IaaGymaiaacYcacaWGTbGaeyOeI0IaaGOmaiaacYca caWGUbGaeyOeI0IaaGOmaiabgIGioprr1ngBPrwtHrhAYaqeguuDJX wAKbstHrhAGq1DVbacfaGae8xfH4Kaaiilaaaa@73F4@

Ψ 1,i x = 2 i Ψ x h 1 i+4 +Ψ x h 1 i+3 i+1 m Ψ x h 1 i+1 , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeuiQdK1damaaCaaaleqabaWdbiaaigdacaGGSaGaamyAaaaakmaa bmaapaqaa8qacaWG4baacaGLOaGaayzkaaGaeyypa0ZaamWaa8aaba Wdbmaalaaapaqaa8qacaaIYaaapaqaa8qacaWGPbaaaaGaay5waiaa w2faaiabfI6aznaabmaapaqaa8qadaWcaaWdaeaapeGaamiEaaWdae aapeGaamiAa8aadaWgaaWcbaWdbiaaigdaa8aabeaaaaGcpeGaeyOe I0IaamyAaiabgUcaRiaaisdaaiaawIcacaGLPaaacqGHRaWkcqqHOo qwdaqadaWdaeaapeWaaSaaa8aabaWdbiaadIhaa8aabaWdbiaadIga paWaaSbaaSqaa8qacaaIXaaapaqabaaaaOWdbiabgkHiTiaadMgacq GHRaWkcaaIZaaacaGLOaGaayzkaaGaeyOeI0YaamWaa8aabaWdbmaa laaapaqaa8qadaqadaWdaeaapeGaamyAaiabgUcaRiaaigdaaiaawI cacaGLPaaaa8aabaWdbiaad2gaaaaacaGLBbGaayzxaaGaeuiQdK1a aeWaa8aabaWdbmaalaaapaqaa8qacaWG4baapaqaa8qacaWGObWdam aaBaaaleaapeGaaGymaaWdaeqaaaaak8qacqGHsislcaWGPbGaey4k aSIaaGymaaGaayjkaiaawMcaaiaacYcaaaa@6A49@

Ψ 2,j y = 2 j Ψ y h 2 j+4 +Ψ y h 2 j+3 + j+1 n Ψ y h 2 j+1 , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeuiQdK1damaaCaaaleqabaWdbiaaikdacaGGSaGaamOAaaaakmaa bmaapaqaa8qacaWG5baacaGLOaGaayzkaaGaeyypa0ZaamWaa8aaba Wdbmaalaaapaqaa8qacaaIYaaapaqaa8qacaWGQbaaaaGaay5waiaa w2faaiabfI6aznaabmaapaqaa8qadaWcaaWdaeaapeGaamyEaaWdae aapeGaamiAa8aadaWgaaWcbaWdbiaaikdaa8aabeaaaaGcpeGaeyOe I0IaamOAaiabgUcaRiaaisdaaiaawIcacaGLPaaacqGHRaWkcqqHOo qwdaqadaWdaeaapeWaaSaaa8aabaWdbiaadMhaa8aabaWdbiaadIga paWaaSbaaSqaa8qacaaIYaaapaqabaaaaOWdbiabgkHiTiaadQgacq GHRaWkcaaIZaaacaGLOaGaayzkaaGaey4kaSYaamWaa8aabaWdbmaa laaapaqaa8qadaqadaWdaeaapeGaamOAaiabgUcaRiaaigdaaiaawI cacaGLPaaaa8aabaWdbiaad6gaaaaacaGLBbGaayzxaaGaeuiQdK1a aeWaa8aabaWdbmaalaaapaqaa8qacaWG5baapaqaa8qacaWGObWdam aaBaaaleaapeGaaGOmaaWdaeqaaaaak8qacqGHsislcaWGQbGaey4k aSIaaGymaaGaayjkaiaawMcaaiaacYcaaaa@6A4D@

при

Ψ t = 0,5 t 2 , t 2 +3t1,5, 0,5 t 2 3t+4,5, 0, t 0;1 , t 1;2 , t 2;3 , t 0;3 , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeuiQdK1aaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaacqGH9aqp daGabaWdaeaafaqabeabbaaaaeaapeGaaGimaiaacYcacaaI1aGaam iDa8aadaahaaWcbeqaa8qacaaIYaaaaOGaaiilaaWdaeaapeGaeyOe I0IaamiDa8aadaahaaWcbeqaa8qacaaIYaaaaOGaey4kaSIaaG4mai aadshacqGHsislcaaIXaGaaiilaiaaiwdacaGGSaaapaqaa8qacaaI WaGaaiilaiaaiwdacaWG0bWdamaaCaaaleqabaWdbiaaikdaaaGccq GHsislcaaIZaGaamiDaiabgUcaRiaaisdacaGGSaGaaGynaiaacYca a8aabaWdbiaaicdacaGGSaaaaaGaay5EaaWdauaabeqaeeaaaaqaa8 qacaWG0bGaeyicI48aamWaa8aabaWdbiaaicdacaGG7aGaaGymaaGa ay5waiaaw2faaiaacYcaa8aabaWdbiaadshacqGHiiIZdaWadaWdae aapeGaaGymaiaacUdacaaIYaaacaGLBbGaayzxaaGaaiilaaWdaeaa peGaamiDaiabgIGiopaadmaapaqaa8qacaaIYaGaai4oaiaaiodaai aawUfacaGLDbaacaGGSaaapaqaa8qacaWG0bGaeyycI88aaeWaa8aa baWdbiaaicdacaGG7aGaaG4maaGaayjkaiaawMcaaiaacYcaaaaaaa@751B@

MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaamWaa8aabaWdbiaackciaiaawUfacaGLDbaacqGHsislaaa@39D1@  функция взятия целой части числа, функции Φ i,j x;y MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeuOPdy0damaaCaaaleqabaWdbiaadMgacaGGSaGaamOAaaaakmaa bmaapaqaa8qacaWG4bGaai4oaiaadMhaaiaawIcacaGLPaaaaaa@3ECC@  нулевые вне Π. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeuiOdaLaaiOlaaaa@383D@

Φ i,j x;y =0, x;y Π,i=2,...,m1,j=2,...,n1,m2,n2. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeuOPdy0damaaCaaaleqabaWdbiaadMgacaGGSaGaamOAaaaakmaa bmaapaqaa8qacaWG4bGaai4oaiaadMhaaiaawIcacaGLPaaacqGH9a qpcaaIWaGaaiilamaabmaapaqaa8qacaWG4bGaai4oaiaadMhaaiaa wIcacaGLPaaacqGHjiYZcqqHGoaucaGGSaGaamyAaiabg2da9iaaik dacaGGSaGaaiOlaiaac6cacaGGUaGaaiilaiaad2gacqGHsislcaaI XaGaaiilaiaadQgacqGH9aqpcaaIYaGaaiilaiaac6cacaGGUaGaai OlaiaacYcacaWGUbGaeyOeI0IaaGymaiaacYcacaWGTbGaeyOeI0Ia aGOmaiaacYcacaWGUbGaeyOeI0IaaGOmaiabgIGioprr1ngBPrwtHr hAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xfH4KaaiOlaaaa@6EFD@

В расширенном пространстве базисные функции образуют подпространство

V ˜ = v ˜ = i=2 m1 j=2 n1 v i,j Φ i,j x;y V ˘ . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmOva8aagaaca8qacqGH9aqpdaGadaWdaeaapeGabmODa8aagaac a8qacqGH9aqpdaqfWaqabSWdaeaapeGaamyAaiabg2da9iaaikdaa8 aabaWdbiaad2gacqGHsislcaaIXaaan8aabaWdbiabggHiLdaakmaa vadabeWcpaqaa8qacaWGQbGaeyypa0JaaGOmaaWdaeaapeGaamOBai abgkHiTiaaigdaa0WdaeaapeGaeyyeIuoaaOGaamODa8aadaWgaaWc baWdbiaadMgacaGGSaGaamOAaaWdaeqaaOWdbiabfA6ag9aadaahaa Wcbeqaa8qacaWGPbGaaiilaiaadQgaaaGcdaqadaWdaeaapeGaamiE aiaacUdacaWG5baacaGLOaGaayzkaaaacaGL7bGaayzFaaGaeyOGIW 8damaaxacabaWdbiaadAfaaSWdaeqabaWdbiaacITaaaGccaGGUaaa aa@5E44@

Продолженная ранее задача аппроксимируется по методу конечных элементов, и получается задача в матричной записи

u ¯ N : B ^ u ¯ = f ¯ , f ¯ N . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qaceWG1bGbaebaaSWdaeqabaaaaOWdbiabgIGioprr1ngB PrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xhHi1damaaCa aaleqabaWdbiaad6eaaaGccaGG6aGabmOqa8aagaqcamaaxacabaWd biqadwhagaqeaaWcpaqabeaaaaGcpeGaeyypa0ZdamaaxacabaWdbi qadAgagaqeaaWcpaqabeaaaaGcpeGaaiila8aadaWfGaqaa8qaceWG MbGbaebaaSWdaeqabaaaaOWdbiabgIGiolab=1ris9aadaahaaWcbe qaa8qacaWGobaaaOGaaiOlaaaa@5180@   (6)

Выбирается оператор проектирования на конечномерном подпространстве, который полагает равными нулю коэффициенты у базисных функций, если их носители не содержатся в Ω ¯ 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GafuyQdCLbaebapaWaaSbaaSqaa8qacaaIXaaapaqabaaaaa@38C8@ . При аппроксимации продолженной задачи задаются продолженные матрица и правая часть следующими формулами:

B ^ u ¯ , v ¯ = Λ 1 u ˜ , I 1 v ˜ + Λ ΙΙ u ˜ , v ˜ u ˜ , v ˜ V ˜ , f ¯ , v ¯ = F 1 I 1 v ˜ v ˜ V ˜ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaaqaaeaaceWGcbWdayaajaaapeGaayzkJaWdamaaxacabaWdbiqa dwhagaqeaaWcpaqabeaaaaGcpeGaaiila8aadaWfGaqaa8qadaaaca qaaiqadAhagaqeaaGaayPkJaaal8aabeqaaaaak8qacqGH9aqpcqqH BoatpaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeWaaeWaa8aabaWdbi qadwhapaGbaGaapeGaaiilaiaadMeapaWaaSbaaSqaa8qacaaIXaaa paqabaGcpeGabmODa8aagaacaaWdbiaawIcacaGLPaaacqGHRaWkcq qHBoatpaWaaSbaaSqaa8qacqqHzoqscqqHzoqsa8aabeaak8qadaqa daWdaeaapeGabmyDa8aagaaca8qacaGGSaGabmODa8aagaacaaWdbi aawIcacaGLPaaacqGHaiIiceWG1bWdayaaiaWdbiaacYcaceWG2bWd ayaaiaWdbiabgIGiolqadAfapaGbaGaapeGaaiila8aadaWfGaqaa8 qadaaabaqaaiqadAgagaqeaaGaayzkJaaal8aabeqaaaaak8qacaGG SaWdamaaxacabaWdbmaaaiaabaGabmODayaaraaacaGLQmcaaSWdae qabaaaaOWdbiabg2da9iaadAeapaWaaSbaaSqaa8qacaaIXaaapaqa baGcpeWaaeWaa8aabaWdbiaadMeapaWaaSbaaSqaa8qacaaIXaaapa qabaGcpeGabmODa8aagaacaaWdbiaawIcacaGLPaaacqGHaiIiceWG 2bWdayaaiaWdbiabgIGiolqadAfapaGbaGaapeGaaiilaaaa@6B3F@

f ¯ , v ¯ = f ¯ , v ¯ h 1 h 2 = f ¯ v ¯ h 1 h 2 , v ¯ = ( v 1 , v 2 ,..., v N ) ' R N ,N= m2 n2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaceaa01aeaaaaaa aaa8qadaaabaqaaiqadAgagaqeaaGaayzkJaGaaiilamaaaiaabaGa bmODayaaraaacaGLQmcacqGH9aqpdaqadaWdaeaapeGabmOzayaara GaaiilaiqadAhagaqeaaGaayjkaiaawMcaaiaadIgapaWaaSbaaSqa a8qacaaIXaaapaqabaGcpeGaamiAa8aadaWgaaWcbaWdbiaaikdaa8 aabeaak8qacqGH9aqppaWaaCbiaeaapeGabmOzayaaraaal8aabeqa aaaakmaaxacabaWdbiqadAhagaqeaaWcpaqabeaaaaGcpeGaamiAa8 aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaWGObWdamaaBaaaleaa peGaaGOmaaWdaeqaaOWdbiaacYcaceWG2bGbaebacqGH9aqpcaGGOa GaamODa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaGGSaGaamOD a8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacaGGSaGaaiOlaiaac6 cacaGGUaGaaiilaiaadAhapaWaaSbaaSqaa8qacaWGobaapaqabaGc peGaaiyka8aadaahaaWcbeqaa8qacaGGNaaaaOGaeyicI4SaamOua8 aadaahaaWcbeqaa8qacaWGobaaaOGaaiilaiaad6eacqGH9aqpdaqa daWdaeaapeGaamyBaiabgkHiTiaaikdaaiaawIcacaGLPaaadaqada WdaeaapeGaamOBaiabgkHiTiaaikdaaiaawIcacaGLPaaacaGGUaaa aa@6C55@

Последовательно занумеруем коэффициенты, базисные функции. Коэффициенты, базисные функции с носителями, содержащимися в Ω ¯ 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbfM6axzaara WaaSbaaSqaaabaaaaaaaaapeGaaGymaaWdaeqaaaaa@38A9@ , занумеруем первыми. Коэффициенты, базисные функции с носителями, содержащимися в Ω ¯ ΙΙ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbfM6axzaara WaaSbaaSqaaabaaaaaaaaapeGaeuyMdKKaeuyMdKeapaqabaaaaa@3ACD@ , занумеруем вторыми. Остальные коэффициенты, базисные функции занумеруем третьими. При таком упорядочивании коэффициентов векторы, состоящие из коэффициентов у базисных функций, будут иметь следующий блочный вид v ¯ = ( v ¯ 1 ' , v ¯ 2 ' , v ¯ 3 ' ) ' , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmODayaaraGaeyypa0JaaiikaiqadAhagaqea8aadaWgaaWcbaWd biaaigdaa8aabeaakmaaCaaaleqabaWdbiaacEcaaaGccaGGSaGabm ODayaaraWdamaaBaaaleaapeGaaGOmaaWdaeqaaOWaaWbaaSqabeaa peGaai4jaaaakiaacYcaceWG2bGbaebadaWgaaWcbaGaaG4maaqaba GcpaWaaWbaaSqabeaapeGaai4jaaaakiaacMcapaWaaWbaaSqabeaa peGaai4jaaaakiaacYcaaaa@45E0@  например,

u ¯ = ( u ¯ 1 ' , 0 ¯ ' , 0 ¯ ' ) ' , f ¯ = ( f ¯ 1 ' , 0 ¯ ' , 0 ¯ ' ) ' . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmyDayaaraGaeyypa0JaaiikaiqadwhagaqeamaaBaaaleaacaaI Xaaabeaak8aadaahaaWcbeqaa8qacaGGNaaaaOGaaiilaiqaicdaga qea8aadaahaaWcbeqaa8qacaGGNaaaaOGaaiilaiqaicdagaqea8aa daahaaWcbeqaa8qacaGGNaaaaOGaaiyka8aadaahaaWcbeqaa8qaca GGNaaaaOGaaiilaiqadAgagaqeaiabg2da9iaacIcaceWGMbGbaeba paWaaSbaaSqaa8qacaaIXaaapaqabaGcdaahaaWcbeqaa8qacaGGNa aaaOGaaiilaiqaicdagaqea8aadaahaaWcbeqaa8qacaGGNaaaaOGa aiilaiqaicdagaqea8aadaahaaWcbeqaa8qacaGGNaaaaOGaaiyka8 aadaahaaWcbeqaa8qacaGGNaaaaOGaaiOlaaaa@5068@

Продолженная матрица приобретает следующую блочную форму:

B ^ = Λ ^ 11 0 Λ ^ 13 0 Λ ^ 22 Λ ^ 23 0 Λ ^ 32 Λ ^ 03 . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmOqa8aagaqca8qacqGH9aqpdaWadaWdaeaafaqabeWadaaabaWd biqbfU5am9aagaqcamaaBaaaleaapeGaaGymaiaaigdaa8aabeaaaO qaa8qacaaIWaaapaqaa8qacuqHBoatpaGbaKaadaWgaaWcbaWdbiaa igdacaaIZaaapaqabaaakeaapeGaaGimaaWdaeaapeGafu4MdW0day aajaWaaSbaaSqaa8qacaaIYaGaaGOmaaWdaeqaaaGcbaWdbiqbfU5a m9aagaqcamaaBaaaleaapeGaaGOmaiaaiodaa8aabeaaaOqaa8qaca aIWaaapaqaa8qacuqHBoatpaGbaKaadaWgaaWcbaWdbiaaiodacaaI YaaapaqabaaakeaapeGafu4MdW0dayaajaWaaSbaaSqaa8qacaaIWa GaaG4maaWdaeqaaaaaaOWdbiaawUfacaGLDbaacaGGUaaaaa@5213@

Продолженная задача после аппроксимации записывается в следующей форме:

u ¯ 1 u ¯ 2 u ¯ 3 N : Λ ^ 11 0 Λ ^ 13 0 Λ ^ 22 Λ ^ 23 0 Λ ^ 32 Λ ^ 03 u ¯ 1 u ¯ 2 u ¯ 3 = f ¯ 1 0 ¯ 0 ¯ , f ¯ 1 0 ¯ 0 ¯ N , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaamWaa8aabaqbaeqabmqaaaqaa8qaceWG1bGbaebapaWaaSbaaSqa a8qacaaIXaaapaqabaaakeaapeGabmyDayaaraWdamaaBaaaleaape GaaGOmaaWdaeqaaaGcbaWdbiqadwhagaqea8aadaWgaaWcbaWdbiaa iodaa8aabeaaaaaak8qacaGLBbGaayzxaaGaeyicI48efv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFDeIupaWaaWbaaSqa beaapeGaamOtaaaakiaacQdadaWadaWdaeaafaqabeWadaaabaWdbi qbfU5am9aagaqcamaaBaaaleaapeGaaGymaiaaigdaa8aabeaaaOqa a8qacaaIWaaapaqaa8qacuqHBoatpaGbaKaadaWgaaWcbaWdbiaaig dacaaIZaaapaqabaaakeaapeGaaGimaaWdaeaapeGafu4MdW0dayaa jaWaaSbaaSqaa8qacaaIYaGaaGOmaaWdaeqaaaGcbaWdbiqbfU5am9 aagaqcamaaBaaaleaapeGaaGOmaiaaiodaa8aabeaaaOqaa8qacaaI Waaapaqaa8qacuqHBoatpaGbaKaadaWgaaWcbaWdbiaaiodacaaIYa aapaqabaaakeaapeGafu4MdW0dayaajaWaaSbaaSqaa8qacaaIWaGa aG4maaWdaeqaaaaaaOWdbiaawUfacaGLDbaadaWadaWdaeaafaqabe WabaaabaWdbiqadwhagaqea8aadaWgaaWcbaWdbiaaigdaa8aabeaa aOqaa8qaceWG1bGbaebapaWaaSbaaSqaa8qacaaIYaaapaqabaaake aapeGabmyDayaaraWdamaaBaaaleaapeGaaG4maaWdaeqaaaaaaOWd biaawUfacaGLDbaacqGH9aqpdaWadaWdaeaafaqabeWabaaabaWdbi qadAgagaqea8aadaWgaaWcbaWdbiaaigdaa8aabeaaaOqaaiqaicda gaqeaaqaaiqaicdagaqeaaaaa8qacaGLBbGaayzxaaGaaiilamaadm aapaqaauaabeqadeaaaeaapeGabmOzayaaraWdamaaBaaaleaapeGa aGymaaWdaeqaaaGcbaGabGimayaaraaabaGabGimayaaraaaaaWdbi aawUfacaGLDbaacqGHiiIZcqWFDeIupaWaaWbaaSqabeaapeGaamOt aaaakiaacYcaaaa@8167@  где u ¯ 1 u ¯ 2 u ¯ 3 = u ¯ 1 0 ¯ 0 ¯ . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaamWaa8aabaqbaeqabmqaaaqaaiqadwhagaqeamaaBaaaleaapeGa aGymaaWdaeqaaaGcbaGabmyDayaaraWaaSbaaSqaa8qacaaIYaaapa qabaaakeaaceWG1bGbaebadaWgaaWcbaWdbiaaiodaa8aabeaaaaaa k8qacaGLBbGaayzxaaGaeyypa0ZaamWaa8aabaqbaeqabmqaaaqaai qadwhagaqeamaaBaaaleaapeGaaGymaaWdaeqaaaGcbaGabGimayaa raaabaGabGimayaaraaaaaWdbiaawUfacaGLDbaacaGGUaaaaa@4634@

Исходная задача после аппроксимации записывается в следующей форме:

Λ 11 u ¯ 1 = f ¯ 1 . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4MdW0damaaBaaaleaapeGaaGymaiaaigdaa8aabeaakiqadwha gaqeamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiabg2da9iqadAgaga qea8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaGGUaaaaa@3F78@  

Фиктивная задача после аппроксимации записывается в следующей форме:

Λ ^ 22 Λ ^ 23 Λ ^ 32 Λ ^ 03 u ¯ 2 u ¯ 3 = 0 ¯ 0 ¯ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaamWaa8aabaqbaeqabiGaaaqaa8qacuqHBoatpaGbaKaadaWgaaWc baWdbiaaikdacaaIYaaapaqabaaakeaapeGafu4MdW0dayaajaWaaS baaSqaa8qacaaIYaGaaG4maaWdaeqaaaGcbaWdbiqbfU5am9aagaqc amaaBaaaleaapeGaaG4maiaaikdaa8aabeaaaOqaa8qacuqHBoatpa GbaKaadaWgaaWcbaWdbiaaicdacaaIZaaapaqabaaaaaGcpeGaay5w aiaaw2faamaadmaapaqaauaabeqaceaaaeaapeGabmyDayaaraWdam aaBaaaleaapeGaaGOmaaWdaeqaaaGcbaWdbiqadwhagaqea8aadaWg aaWcbaWdbiaaiodaa8aabeaaaaaak8qacaGLBbGaayzxaaGaeyypa0 ZaamWaa8aabaqbaeqabiqaaaqaa8qaceaIWaGbaebaa8aabaWdbiqa icdagaqeaaaaaiaawUfacaGLDbaacaGGSaaaaa@522C@  где u ¯ 2 u ¯ 3 = 0 ¯ 0 ¯ . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaamWaa8aabaqbaeqabiqaaaqaa8qaceWG1bGbaebapaWaaSbaaSqa a8qacaaIYaaapaqabaaakeaapeGabmyDayaaraWdamaaBaaaleaape GaaG4maaWdaeqaaaaaaOWdbiaawUfacaGLDbaacqGH9aqpdaWadaWd aeaafaqabeGabaaabaWdbiqaicdagaqeaaWdaeaapeGabGimayaara aaaaGaay5waiaaw2faaiaac6caaaa@4249@

Задаем матрицы, определяемые из скалярных произведений:

Λ ^ Ι u ¯ , v ¯ = Λ 1 u ˜ , v ˜ , Λ ^ ΙΙ u ¯ , v ¯ = Λ ΙΙ u ˜ , v ˜ u ˜ , v ˜ V ˜ . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gafu4MdW0dayaajaWaaSbaaSqaa8qacqqHzoqsa8aabeaak8qaceWG 1bGbaebacaGGSaGabmODayaaraGaeyypa0Jaeu4MdW0damaaBaaale aapeGaaGymaaWdaeqaaOWdbmaabmaapaqaa8qaceWG1bWdayaaiaWd biaacYcaceWG2bWdayaaiaaapeGaayjkaiaawMcaaiaacYcacuqHBo atpaGbaKaadaWgaaWcbaWdbiabfM5ajjabfM5ajbWdaeqaaOWdbiqa dwhagaqeaiaacYcaceWG2bGbaebacqGH9aqpcqqHBoatpaWaaSbaaS qaa8qacqqHzoqscqqHzoqsa8aabeaak8qadaqadaWdaeaapeGabmyD a8aagaaca8qacaGGSaGabmODa8aagaacaaWdbiaawIcacaGLPaaacq GHaiIiceWG1bWdayaaiaWdbiaacYcaceWG2bWdayaaiaWdbiabgIGi olqadAfapaGbaGaapeGaaiOlaaaa@5E84@

Эти матрицы принимают следующую блочную форму:

Λ ^ Ι = Λ ^ 11 0 Λ ^ 13 0 0 0 Λ ^ 31 0 Λ ^ 30 , Λ ^ ΙΙ = 0 0 0 0 Λ ^ 22 Λ ^ 23 0 Λ ^ 32 Λ ^ 03 . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gafu4MdW0dayaajaWaaSbaaSqaa8qacqqHzoqsa8aabeaak8qacqGH 9aqpdaWadaWdaeaafaqabeWadaaabaWdbiqbfU5am9aagaqcamaaBa aaleaapeGaaGymaiaaigdaa8aabeaaaOqaa8qacaaIWaaapaqaa8qa cuqHBoatpaGbaKaadaWgaaWcbaWdbiaaigdacaaIZaaapaqabaaake aapeGaaGimaaWdaeaapeGaaGimaaWdaeaapeGaaGimaaWdaeaapeGa fu4MdW0dayaajaWaaSbaaSqaa8qacaaIZaGaaGymaaWdaeqaaaGcba Wdbiaaicdaa8aabaWdbiqbfU5am9aagaqcamaaBaaaleaapeGaaG4m aiaaicdaa8aabeaaaaaak8qacaGLBbGaayzxaaGaaiilaiqbfU5am9 aagaqcamaaBaaaleaapeGaeuyMdKKaeuyMdKeapaqabaGcpeGaeyyp a0ZaamWaa8aabaqbaeqabmWaaaqaa8qacaaIWaaapaqaa8qacaaIWa aapaqaa8qacaaIWaaapaqaa8qacaaIWaaapaqaa8qacuqHBoatpaGb aKaadaWgaaWcbaWdbiaaikdacaaIYaaapaqabaaakeaapeGafu4MdW 0dayaajaWaaSbaaSqaa8qacaaIYaGaaG4maaWdaeqaaaGcbaWdbiaa icdaa8aabaWdbiqbfU5am9aagaqcamaaBaaaleaapeGaaG4maiaaik daa8aabeaaaOqaa8qacuqHBoatpaGbaKaadaWgaaWcbaWdbiaaicda caaIZaaapaqabaaaaaGcpeGaay5waiaaw2faaiaac6caaaa@6A0D@

Вводим векторные подпространства:

V ¯ 1 = v ¯ = ( v ¯ 1 ' , v ¯ 2 ' , v ¯ 3 ' ) ' N : v ¯ 2 = 0 ¯ , v ¯ 3 = 0 ¯ , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmOvayaaraWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiabg2da 9maacmaapaqaa8qaceWG2bGbaebacqGH9aqpcaGGOaGabmODayaara WdamaaBaaaleaapeGaaGymaaWdaeqaaOWaaWbaaSqabeaapeGaai4j aaaakiaacYcaceWG2bGbaebapaWaaSbaaSqaa8qacaaIYaaapaqaba GcdaahaaWcbeqaa8qacaGGNaaaaOGaaiilaiqadAhagaqea8aadaWg aaWcbaWdbiaaiodaa8aabeaakmaaCaaaleqabaWdbiaacEcaaaGcca GGPaWdamaaCaaaleqabaWdbiaacEcaaaGccqGHiiIZtuuDJXwAK1uy 0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=1ris9aadaahaaWcbe qaa8qacaWGobaaaOGaaiOoaiqadAhagaqea8aadaWgaaWcbaWdbiaa ikdaa8aabeaak8qacqGH9aqpceaIWaGbaebacaGGSaGabmODayaara WdamaaBaaaleaapeGaaG4maaWdaeqaaOWdbiabg2da9iqaicdagaqe aaGaay5Eaiaaw2haaiaacYcaaaa@6281@

V ¯ 2 = v ¯ = ( v ¯ 1 ' , v ¯ 2 ' , v ¯ 3 ' ) ' N : v ¯ 1 = 0 ¯ , v ¯ 3 = 0 ¯ . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmOvayaaraWdamaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiabg2da 9maacmaapaqaa8qaceWG2bGbaebacqGH9aqpcaGGOaGabmODayaara WdamaaBaaaleaapeGaaGymaaWdaeqaaOWaaWbaaSqabeaapeGaai4j aaaakiaacYcaceWG2bGbaebapaWaaSbaaSqaa8qacaaIYaaapaqaba GcdaahaaWcbeqaa8qacaGGNaaaaOGaaiilaiqadAhagaqea8aadaWg aaWcbaWdbiaaiodaa8aabeaakmaaCaaaleqabaWdbiaacEcaaaGcca GGPaWdamaaCaaaleqabaWdbiaacEcaaaGccqGHiiIZtuuDJXwAK1uy 0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=1ris9aadaahaaWcbe qaa8qacaWGobaaaOGaaiOoaiqadAhagaqea8aadaWgaaWcbaWdbiaa igdaa8aabeaak8qacqGH9aqpceaIWaGbaebacaGGSaGabmODayaara WdamaaBaaaleaapeGaaG4maaWdaeqaaOWdbiabg2da9iqaicdagaqe aaGaay5Eaiaaw2haaiaac6caaaa@6283@

Еще дополнительно определяем векторное подпространство:

V ¯ 3 = v ¯ = ( v ¯ 1 ' , v ¯ 2 ' , v ¯ 3 ' ) ' N : Λ ^ 11 v ¯ 1 + Λ ^ 13 v ¯ 3 = 0 ¯ , Λ ^ 22 v ¯ 2 + Λ ^ 23 v ¯ 3 = 0 ¯ . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmOvayaaraWdamaaBaaaleaapeGaaG4maaWdaeqaaOWdbiabg2da 9maacmaapaqaa8qaceWG2bGbaebacqGH9aqpcaGGOaGabmODayaara WdamaaBaaaleaapeGaaGymaaWdaeqaaOWaaWbaaSqabeaapeGaai4j aaaakiaacYcaceWG2bGbaebapaWaaSbaaSqaa8qacaaIYaaapaqaba GcdaahaaWcbeqaa8qacaGGNaaaaOGaaiilaiqadAhagaqea8aadaWg aaWcbaWdbiaaiodaa8aabeaakmaaCaaaleqabaWdbiaacEcaaaGcca GGPaWdamaaCaaaleqabaWdbiaacEcaaaGccqGHiiIZtuuDJXwAK1uy 0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=1ris9aadaahaaWcbe qaa8qacaWGobaaaOGaaiOoaiqbfU5am9aagaqcamaaBaaaleaapeGa aGymaiaaigdaa8aabeaak8qaceWG2bGbaebapaWaaSbaaSqaa8qaca aIXaaapaqabaGcpeGaey4kaSIafu4MdW0dayaajaWaaSbaaSqaa8qa caaIXaGaaG4maaWdaeqaaOWdbiqadAhagaqea8aadaWgaaWcbaWdbi aaiodaa8aabeaak8qacqGH9aqpceaIWaGbaebacaGGSaGafu4MdW0d ayaajaWaaSbaaSqaa8qacaaIYaGaaGOmaaWdaeqaaOWdbiqadAhaga qea8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacqGHRaWkcuqHBoat paGbaKaadaWgaaWcbaWdbiaaikdacaaIZaaapaqabaGcpeGabmODay aaraWdamaaBaaaleaapeGaaG4maaWdaeqaaOWdbiabg2da9iqaicda gaqeaaGaay5Eaiaaw2haaiaac6caaaa@7692@

Можно отметить, что

N = V ¯ 1 V ¯ 2 V ¯ 3 = V ¯ 1 V ¯ ΙΙ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAYaqeguuDJXwAKbstHrhAGq1DVbacfaaeaaaaaaaaa8qacqWFDeIu paWaaWbaaSqabeaapeGaamOtaaaakiabg2da9iqadAfagaqea8aada WgaaWcbaWdbiaaigdaa8aabeaak8qacqGHvksXceWGwbGbaebapaWa aSbaaSqaa8qacaaIYaaapaqabaGcpeGaeyyLIuSabmOvayaaraWdam aaBaaaleaapeGaaG4maaWdaeqaaOWdbiabg2da9iqadAfagaqea8aa daWgaaWcbaWdbiaaigdaa8aabeaak8qacqGHvksXceWGwbGbaebapa WaaSbaaSqaa8qacqqHzoqscqqHzoqsa8aabeaaaaa@56CA@

при

V ¯ Ι = V ¯ 1 V ¯ 3 , V ¯ ΙΙ = V ¯ 2 V ¯ 3 . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmOvayaaraWdamaaBaaaleaapeGaeuyMdKeapaqabaGcpeGaeyyp a0JabmOvayaaraWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiabgw PiflqadAfagaqea8aadaWgaaWcbaWdbiaaiodaa8aabeaak8qacaGG SaGabmOvayaaraWdamaaBaaaleaapeGaeuyMdKKaeuyMdKeapaqaba GcpeGaeyypa0JabmOvayaaraWdamaaBaaaleaapeGaaGOmaaWdaeqa aOWdbiabgwPiflqadAfagaqea8aadaWgaaWcbaWdbiaaiodaa8aabe aak8qacaGGUaaaaa@4D36@

Определим расширенную матрицу

C ^ = Λ ^ Ι + μ ^ Λ ^ ΙΙ , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gabm4qa8aagaqca8qacqGH9aqpcuqHBoatpaGbaKaadaWgaaWcbaWd biabfM5ajbWdaeqaaOWdbiabgUcaRiqbeY7aT9aagaqca8qacuqHBo atpaGbaKaadaWgaaWcbaWdbiabfM5ajjabfM5ajbWdaeqaaOWdbiaa cYcaaaa@43C3@

C ^ 11 0 C ^ 13 0 C ^ 22 C ^ 23 C ^ 31 C ^ 32 C ^ 33 = Λ ^ 11 0 Λ ^ 13 0 0 0 Λ ^ 31 0 Λ ^ 30 + μ ^ 0 0 0 0 Λ ^ 22 Λ ^ 23 0 Λ ^ 32 Λ ^ 03 , μ ^ 0;+ . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaamWaa8aabaqbaeqabmWaaaqaa8qaceWGdbWdayaajaWaaSbaaSqa a8qacaaIXaGaaGymaaWdaeqaaaGcbaWdbiaaicdaa8aabaWdbiqado eapaGbaKaadaWgaaWcbaWdbiaaigdacaaIZaaapaqabaaakeaapeGa aGimaaWdaeaapeGabm4qa8aagaqcamaaBaaaleaapeGaaGOmaiaaik daa8aabeaaaOqaa8qaceWGdbWdayaajaWaaSbaaSqaa8qacaaIYaGa aG4maaWdaeqaaaGcbaWdbiqadoeapaGbaKaadaWgaaWcbaWdbiaaio dacaaIXaaapaqabaaakeaapeGabm4qa8aagaqcamaaBaaaleaapeGa aG4maiaaikdaa8aabeaaaOqaa8qaceWGdbWdayaajaWaaSbaaSqaa8 qacaaIZaGaaG4maaWdaeqaaaaaaOWdbiaawUfacaGLDbaacqGH9aqp daWadaWdaeaafaqabeWadaaabaWdbiqbfU5am9aagaqcamaaBaaale aapeGaaGymaiaaigdaa8aabeaaaOqaa8qacaaIWaaapaqaa8qacuqH BoatpaGbaKaadaWgaaWcbaWdbiaaigdacaaIZaaapaqabaaakeaape GaaGimaaWdaeaapeGaaGimaaWdaeaapeGaaGimaaWdaeaapeGafu4M dW0dayaajaWaaSbaaSqaa8qacaaIZaGaaGymaaWdaeqaaaGcbaWdbi aaicdaa8aabaWdbiqbfU5am9aagaqcamaaBaaaleaapeGaaG4maiaa icdaa8aabeaaaaaak8qacaGLBbGaayzxaaGaey4kaSIafqiVd02day aajaWdbmaadmaapaqaauaabeqadmaaaeaapeGaaGimaaWdaeaapeGa aGimaaWdaeaapeGaaGimaaWdaeaapeGaaGimaaWdaeaapeGafu4MdW 0dayaajaWaaSbaaSqaa8qacaaIYaGaaGOmaaWdaeqaaaGcbaWdbiqb fU5am9aagaqcamaaBaaaleaapeGaaGOmaiaaiodaa8aabeaaaOqaa8 qacaaIWaaapaqaa8qacuqHBoatpaGbaKaadaWgaaWcbaWdbiaaioda caaIYaaapaqabaaakeaapeGafu4MdW0dayaajaWaaSbaaSqaa8qaca aIWaGaaG4maaWdaeqaaaaaaOWdbiaawUfacaGLDbaacaGGSaGafqiV d02dayaajaWdbiabgIGiopaabmaapaqaa8qacaaIWaGaai4oaiabgU caRiabg6HiLcGaayjkaiaawMcaaiaac6caaaa@83A1@

Зададим положения, достаточные для сходимости приводимого далее итерационного процесса в развиваемом методе итерационных расширений:

δ ^ 1 0;+ , δ ^ 2 δ ^ 1 ;+ : δ ^ 1 2 C ^ v ¯ 3 , C ^ v ¯ 3 Λ ^ ΙΙ v ¯ 3 , Λ ^ ΙΙ v ¯ 3 δ ^ 2 2 C ^ v ¯ 3 , C ^ v ¯ 3 v ¯ 3 V ¯ 3 , ^ α ^ 0;+ : Λ ^ Ι v ¯ 3 , Λ ^ Ι v ¯ 3 α ^ 2 Λ ^ ΙΙ v ¯ 3 , Λ ^ ΙΙ v ¯ 3 v ¯ 3 V ¯ 3 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaey4aIqIafqiTdq2dayaajaWaaSbaaSqaa8qacaaIXaaapaqabaGc peGaeyicI48aaeWaa8aabaWdbiaaicdacaGG7aGaey4kaSIaeyOhIu kacaGLOaGaayzkaaGaaiilaiqbes7aK9aagaqcamaaBaaaleaapeGa aGOmaaWdaeqaaOWdbiabgIGiopaajibapaqaa8qacuaH0oazpaGbaK aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaGG7aGaey4kaSIaeyOh IukacaGLBbGaayzkaaGaaiOoaiqbes7aK9aagaqcamaaDaaaleaape GaaGymaaWdaeaapeGaaGOmaaaakiqadoeapaGbaKaapeGabmODayaa raWdamaaBaaaleaapeGaaG4maaWdaeqaaOWdbiaacYcaceWGdbWday aajaWdbiqadAhagaqea8aadaWgaaWcbaWdbiaaiodaa8aabeaak8qa cqGHKjYOcuqHBoatpaGbaKaadaWgaaWcbaWdbiabfM5ajjabfM5ajb WdaeqaaOWdbiqadAhagaqea8aadaWgaaWcbaWdbiaaiodaa8aabeaa k8qacaGGSaGafu4MdW0dayaajaWaaSbaaSqaa8qacqqHzoqscqqHzo qsa8aabeaak8qaceWG2bGbaebapaWaaSbaaSqaa8qacaaIZaaapaqa baGcpeGaeyizImQafqiTdq2dayaajaWaa0baaSqaa8qacaaIYaaapa qaa8qacaaIYaaaaOGabm4qa8aagaqca8qaceWG2bGbaebapaWaaSba aSqaa8qacaaIZaaapaqabaGcpeGaaiilaiqadoeapaGbaKaapeGabm ODayaaraWdamaaBaaaleaapeGaaG4maaWdaeqaaOWdbiabgcGiIiqa dAhagaqea8aadaWgaaWcbaWdbiaaiodaa8aabeaak8qacqGHiiIZpa GabmOvayaaraWaaSbaaSqaa8qacaaIZaaapaqabaGcpeGabiila8aa gaqca8qacqGHdicjcuaHXoqypaGbaKaapeGaeyicI48aaeWaa8aaba WdbiaaicdacaGG7aGaey4kaSIaeyOhIukacaGLOaGaayzkaaGaaiOo aiqbfU5am9aagaqcamaaBaaaleaapeGaeuyMdKeapaqabaGcpeGabm ODayaaraWdamaaBaaaleaapeGaaG4maaWdaeqaaOWdbiaacYcacuqH BoatpaGbaKaadaWgaaWcbaWdbiabfM5ajbWdaeqaaOWdbiqadAhaga qea8aadaWgaaWcbaWdbiaaiodaa8aabeaak8qacqGHKjYOcuaHXoqy paGbaKaadaahaaWcbeqaa8qacaaIYaaaaOGafu4MdW0dayaajaWaaS baaSqaa8qacqqHzoqscqqHzoqsa8aabeaak8qaceWG2bGbaebapaWa aSbaaSqaa8qacaaIZaaapaqabaGcpeGaaiilaiqbfU5am9aagaqcam aaBaaaleaapeGaeuyMdKKaeuyMdKeapaqabaGcpeGabmODayaaraWd amaaBaaaleaapeGaaG4maaWdaeqaaOWdbiabgcGiIiqadAhagaqea8 aadaWgaaWcbaWdbiaaiodaa8aabeaak8qacqGHiiIZpaGabmOvayaa raWaaSbaaSqaa8qacaaIZaaapaqabaGcpeGaaiOlaaaa@AF2B@  Для нахождения приближенного решения исходной задачи после ее редукции к системе линейных алгебраических уравнений приведем развиваемый метод итерационных расширений. В этом методе используем дополнительные параметры, минимизируем ошибку в более сильной норме, т. е. выбираем итерационный параметр при минимизации невязок:

u ¯ k N : C ^ u ¯ k u ¯ k1 = τ k1 B ^ u ¯ k1 f ¯ ,k, MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadwhagaqeam aaCaaaleqabaaeaaaaaaaaa8qacaWGRbaaaOGaeyicI48efv3ySLgz nfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFDeIupaWaaWbaaS qabeaapeGaamOtaaaakiaacQdaceWGdbWdayaajaWdbmaabmaapaqa aiqadwhagaqeamaaCaaaleqabaWdbiaadUgaaaGccqGHsislpaGabm yDayaaraWaaWbaaSqabeaapeGaam4AaiabgkHiTiaaigdaaaaakiaa wIcacaGLPaaacqGH9aqpcqGHsislcqaHepaDpaWaaSbaaSqaa8qaca WGRbGaeyOeI0IaaGymaaWdaeqaaOWdbmaabmaapaqaa8qaceWGcbWd ayaajaGabmyDayaaraWaaWbaaSqabeaapeGaam4AaiabgkHiTiaaig daaaGccqGHsislceWGMbGbaebaaiaawIcacaGLPaaacaGGSaGaam4A aiabgIGiolab=vriojaacYcaaaa@643E@  (7)

u ¯ 0 V ¯ 1 , α ^ < μ ^ , τ 0 =1, τ k1 = r ¯ k1 , η ¯ k1 η ¯ k1 , η ¯ k1 ,k\ 1 , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyiaIiIabmyDayaaraWdamaaCaaaleqabaWdbiaaicdaaaGccqGH iiIZceWGwbGbaebapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaai ilaiqbeg7aH9aagaqca8qacqGH8aapcuaH8oqBpaGbaKaapeGaaiil aiabes8a09aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacqGH9aqpca aIXaGaaiilaiabes8a09aadaWgaaWcbaWdbiaadUgacqGHsislcaaI XaaapaqabaGcpeGaeyypa0ZaaSaaa8aabaWdbiqadkhagaqea8aada ahaaWcbeqaa8qacaWGRbGaeyOeI0IaaGymaaaakiaacYcacuaH3oaA gaqea8aadaahaaWcbeqaa8qacaWGRbGaeyOeI0IaaGymaaaaaOWdae aapeGafq4TdGMbaebapaWaaWbaaSqabeaapeGaam4AaiabgkHiTiaa igdaaaGccaGGSaGafq4TdGMbaebapaWaaWbaaSqabeaapeGaam4Aai abgkHiTiaaigdaaaaaaOGaaiilaiaadUgacqGHiiIZtuuDJXwAK1uy 0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=vriojaacYfadaGada WdaeaapeGaaGymaaGaay5Eaiaaw2haaiaacYcaaaa@7423@

Здесь при вычислении оптимального итерационного параметра необходимо поитерационно вычислять векторы невязок, векторы поправок и так называемые векторы эквивалентных невязок

r ¯ k1 = B ^ u ¯ k1 f ¯ , w ¯ k1 = C ^   1 r ¯ k1 , η ¯ k1 = B ^ w ¯ k1 ,k. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmOCayaaraWdamaaCaaaleqabaWdbiaadUgacqGHsislcaaIXaaa aOGaeyypa0JabmOqa8aagaqca8qaceWG1bGbaebapaWaaWbaaSqabe aapeGaam4AaiabgkHiTiaaigdaaaGccqGHsislceWGMbGbaebacaGG SaGabm4DayaaraWdamaaCaaaleqabaWdbiaadUgacqGHsislcaaIXa aaaOGaeyypa0Jabm4qa8aagaqcamaaDaaaleaapeGaaiiOaaWdaeaa peGaeyOeI0IaaGymaaaakiqadkhagaqea8aadaahaaWcbeqaa8qaca WGRbGaeyOeI0IaaGymaaaakiaacYcacuaH3oaAgaqea8aadaahaaWc beqaa8qacaWGRbGaeyOeI0IaaGymaaaakiabg2da9iqadkeapaGbaK aapeGabm4DayaaraWdamaaCaaaleqabaWdbiaadUgacqGHsislcaaI XaaaaOGaaiilaiaadUgacqGHiiIZtuuDJXwAK1uy0HMmaeHbfv3ySL gzG0uy0HgiuD3BaGqbaiab=vriojaac6caaaa@69A5@

Задаем норму

v ¯ C ^ 2 = C ^ 2 v ¯ , v ¯ v ¯ N . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmODayaaraWdamaaBaaaleaapeGabm4qa8aagaqcamaaCaaameqa baWdbiaaikdaaaaal8aabeaak8qacqGH9aqpdaGcaaWdaeaapeGabm 4qa8aagaqcamaaCaaaleqabaWdbiaaikdaaaGcceWG2bGbaebacaGG SaWdamaaxacabaWdbiqadAhagaqeaaWcpaqabeaaaaaapeqabaGccq GHaiIiceWG2bGbaebacqGHiiIZtuuDJXwAK1uy0HMmaeHbfv3ySLgz G0uy0HgiuD3BaGqbaiab=1ris9aadaahaaWcbeqaa8qacaWGobaaaO GaaiOlaaaa@5000@

Теорема 2. В методе итерационных расширений из (7) при решении задачи в (6)

u ¯ k u ¯ C ^ 2 ε ^ u ¯ 0 u ¯ C ^ 2 , ε ^ =2 δ ^ 2 δ ^ 1 ( α ^ μ ^ ) k1 ,k. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmyDayaaraWdamaaCaaaleqabaWdbiaadUgaaaGccqGHsislceWG 1bGbaebapaWaaSbaaSqaa8qaceWGdbWdayaajaWaaWbaaWqabeaape GaaGOmaaaaaSWdaeqaaOWdbiabgsMiJkqbew7aL9aagaqca8qaceWG 1bGbaebapaWaaWbaaSqabeaapeGaaGimaaaakiabgkHiTiqadwhaga qea8aadaWgaaWcbaWdbiqadoeapaGbaKaadaahaaadbeqaa8qacaaI YaaaaaWcpaqabaGcpeGaaiilaiqbew7aL9aagaqca8qacqGH9aqpca aIYaWaaeWaa8aabaWdbiqbes7aK9aagaqca8qadaWcaaWdaeaapeGa aGOmaaWdaeaapeGafqiTdq2dayaajaWaaSbaaSqaa8qacaaIXaaapa qabaaaaaGcpeGaayjkaiaawMcaaiaacIcadaWcaaWdaeaapeGafqyS de2dayaajaaabaWdbiqbeY7aT9aagaqca8qacaGGPaaaa8aadaahaa Wcbeqaa8qacaWGRbGaeyOeI0IaaGymaaaakiaacYcacaWGRbGaeyic I48efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFve ItcaGGUaaaaa@692D@

Данный результат получается аналогично с результатами в [4, 5].

А теперь продолженную задачу аппроксимируем в соответствии с применяемым выше методом конечных элементов, но по смешанному методу аппроксимации по частям [6], тогда получаем в матричной форме систему линейных алгебраических уравнений, записываемую в соответствующем виде

u ¯ N :B u ¯ = f ¯ , f ¯ N . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmyDayaaraGaeyicI48efv3ySLgznfgDOjdaryqr1ngBPrginfgD Obcv39gaiuaacqWFDeIupaWaaWbaaSqabeaapeGaamOtaaaakiaacQ dacaWGcbGabmyDayaaraGaeyypa0JabmOzayaaraGaaiilaiqadAga gaqeaiabgIGiolab=1ris9aadaahaaWcbeqaa8qacaWGobaaaOGaai Olaaaa@4F4B@   (8)

Полагаем, что при аппроксимации области Ω 1 и  Ω ΙΙ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeuyQdC1damaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaadIdbcaGG GcGaeuyQdC1damaaBaaaleaapeGaeuyMdKKaeuyMdKeapaqabaaaaa@3F77@  аппроксимируются областями Ω h,1 , Ω h,ΙΙ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeuyQdC1damaaBaaaleaapeGaamiAaiaacYcacaaIXaaapaqabaGc peGaaiilaiabfM6ax9aadaWgaaWcbaWdbiaadIgacaGGSaGaeuyMdK KaeuyMdKeapaqabaaaaa@417C@ , границы которых проходят/совпадают с линиями сетки.

Здесь также выбираем конкретный оператор проектирования, который во введенном конечномерном подпространстве зануляет коффициенты при базисных функциях с носителями, не содержащимися в замыкании первой области. Нумеруем в первом блоке коэффициенты при базисных функциях с носителями, содержащимися в Ω ¯ h,1 . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GafuyQdCLbaebapaWaaSbaaSqaa8qacaWGObGaaiilaiaaigdaa8aa beaak8qacaGGUaaaaa@3B31@  Нумеруем во втором блоке коэффициенты при базисных функциях с носителями, содержащимися в Ω ¯ h,ΙΙ . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GafuyQdCLbaebapaWaaSbaaSqaa8qacaWGObGaaiilaiabfM5ajjab fM5ajbWdaeqaaOWdbiaac6caaaa@3D56@  И нумеруем в последнем, третьем блоке остальные коэффициенты при остальных базисных функциях. При этой нумерации коэффициентов при базисных функциях тремя блоками рассматриваемые векторы из коффициентов перед базисными функциями принимают такую блочную форму:

v ¯ = ( v ¯ 1 ' , v ¯ 2 ' , v ¯ 3 ' ) ' , u ¯ = ( v ¯ 1 ' , 0 ¯ ' , 0 ¯ ' ) ' , f ¯ = ( f ¯ 1 ' , 0 ¯ ' , 0 ¯ ' ) ' . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmODayaaraGaeyypa0JaaiikaiqadAhagaqea8aadaWgaaWcbaWd biaaigdaa8aabeaakmaaCaaaleqabaWdbiaacEcaaaGccaGGSaGabm ODayaaraWdamaaBaaaleaapeGaaGOmaaWdaeqaaOWaaWbaaSqabeaa peGaai4jaaaakiaacYcaceWG2bGbaebapaWaaSbaaSqaa8qacaaIZa aapaqabaGcdaahaaWcbeqaa8qacaGGNaaaaOGaaiyka8aadaahaaWc beqaa8qacaGGNaaaaOGaaiilaiqadwhagaqeaiabg2da9iaacIcace WG2bGbaebapaWaaSbaaSqaa8qacaaIXaaapaqabaGcdaahaaWcbeqa a8qacaGGNaaaaOGaaiilaiqaicdagaqea8aadaahaaWcbeqaa8qaca GGNaaaaOGaaiilaiqaicdagaqea8aadaahaaWcbeqaa8qacaGGNaaa aOGaaiyka8aadaahaaWcbeqaa8qacaGGNaaaaOGaaiilaiqadAgaga qeaiabg2da9iaacIcaceWGMbGbaebapaWaaSbaaSqaa8qacaaIXaaa paqabaGcdaahaaWcbeqaa8qacaGGNaaaaOGaaiilaiqaicdagaqea8 aadaahaaWcbeqaa8qacaGGNaaaaOGaaiilaiqaicdagaqea8aadaah aaWcbeqaa8qacaGGNaaaaOGaaiyka8aadaahaaWcbeqaa8qacaGGNa aaaOGaaiOlaaaa@607A@

Продолженная матрица принимает следующую блочную форму:

B= Λ 11 0 Λ 13 0 Λ 22 Λ 23 0 Λ 32 Λ 03 . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOqaiabg2da9maadmaapaqaauaabeqadmaaaeaapeGaeu4MdW0d amaaBaaaleaapeGaaGymaiaaigdaa8aabeaaaOqaa8qacaaIWaaapa qaa8qacqqHBoatpaWaaSbaaSqaa8qacaaIXaGaaG4maaWdaeqaaaGc baWdbiaaicdaa8aabaWdbiabfU5am9aadaWgaaWcbaWdbiaaikdaca aIYaaapaqabaaakeaapeGaeu4MdW0damaaBaaaleaapeGaaGOmaiaa iodaa8aabeaaaOqaa8qacaaIWaaapaqaa8qacqqHBoatpaWaaSbaaS qaa8qacaaIZaGaaGOmaaWdaeqaaaGcbaWdbiabfU5am9aadaWgaaWc baWdbiaaicdacaaIZaaapaqabaaaaaGcpeGaay5waiaaw2faaiaac6 caaaa@5184@

Продолженная задача после аппроксимации записывается в следующей форме:

u ¯ 1 u ¯ 2 u ¯ 3 N : Λ 11 0 Λ 13 0 Λ 22 Λ 23 0 Λ 32 Λ 03 u ¯ 1 u ¯ 2 u ¯ 3 = f ¯ 1 0 ¯ 0 ¯ , f ¯ 1 0 ¯ 0 ¯ N , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaamWaa8aabaqbaeqabmqaaaqaa8qaceWG1bGbaebapaWaaSbaaSqa a8qacaaIXaaapaqabaaakeaapeGabmyDayaaraWdamaaBaaaleaape GaaGOmaaWdaeqaaaGcbaWdbiqadwhagaqea8aadaWgaaWcbaWdbiaa iodaa8aabeaaaaaak8qacaGLBbGaayzxaaGaeyicI48efv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFDeIupaWaaWbaaSqa beaapeGaamOtaaaakiaacQdadaWadaWdaeaafaqabeWadaaabaWdbi abfU5am9aadaWgaaWcbaWdbiaaigdacaaIXaaapaqabaaakeaapeGa aGimaaWdaeaapeGaeu4MdW0damaaBaaaleaapeGaaGymaiaaiodaa8 aabeaaaOqaa8qacaaIWaaapaqaa8qacqqHBoatpaWaaSbaaSqaa8qa caaIYaGaaGOmaaWdaeqaaaGcbaWdbiabfU5am9aadaWgaaWcbaWdbi aaikdacaaIZaaapaqabaaakeaapeGaaGimaaWdaeaapeGaeu4MdW0d amaaBaaaleaapeGaaG4maiaaikdaa8aabeaaaOqaa8qacqqHBoatpa WaaSbaaSqaa8qacaaIWaGaaG4maaWdaeqaaaaaaOWdbiaawUfacaGL DbaadaWadaWdaeaafaqabeWabaaabaWdbiqadwhagaqea8aadaWgaa WcbaWdbiaaigdaa8aabeaaaOqaa8qaceWG1bGbaebapaWaaSbaaSqa a8qacaaIYaaapaqabaaakeaapeGabmyDayaaraWdamaaBaaaleaape GaaG4maaWdaeqaaaaaaOWdbiaawUfacaGLDbaacqGH9aqpdaWadaWd aeaafaqabeWabaaabaWdbiqadAgagaqea8aadaWgaaWcbaWdbiaaig daa8aabeaaaOqaa8qaceaIWaGbaebaa8aabaWdbiqaicdagaqeaaaa aiaawUfacaGLDbaacaGGSaWaamWaa8aabaqbaeqabmqaaaqaa8qace WGMbGbaebapaWaaSbaaSqaa8qacaaIXaaapaqabaaakeaapeGabGim ayaaraaapaqaa8qaceaIWaGbaebaaaaacaGLBbGaayzxaaGaeyicI4 Sae8xhHi1damaaCaaaleqabaWdbiaad6eaaaGccaGGSaaaaa@8146@  где u ¯ 1 u ¯ 2 u ¯ 3 = u ¯ 1 0 ¯ 0 ¯ . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaamWaa8aabaqbaeqabmqaaaqaa8qaceWG1bGbaebapaWaaSbaaSqa a8qacaaIXaaapaqabaaakeaapeGabmyDayaaraWdamaaBaaaleaape GaaGOmaaWdaeqaaaGcbaWdbiqadwhagaqea8aadaWgaaWcbaWdbiaa iodaa8aabeaaaaaak8qacaGLBbGaayzxaaGaeyypa0ZaamWaa8aaba qbaeqabmqaaaqaa8qaceWG1bGbaebapaWaaSbaaSqaa8qacaaIXaaa paqabaaakeaapeGabGimayaaraaapaqaa8qaceaIWaGbaebaaaaaca GLBbGaayzxaaGaaiOlaaaa@46CF@

 

Исходная задача после аппроксимации записывается в форме:

Λ 11 u ¯ 1 = f ¯ 1 . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4MdW0damaaBaaaleaapeGaaGymaiaaigdaa8aabeaakmaaxaca baWdbiqadwhagaqeaaWcpaqabeaaaaGcdaWgaaWcbaWdbiaaigdaa8 aabeaak8qacqGH9aqppaWaaCbiaeaapeGabmOzayaaraaal8aabeqa aaaakmaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaac6caaaa@405C@  

Фиктивная задача после аппроксимации записывается в форме:

Λ 22 Λ 23 Λ 32 Λ 03 u ¯ 2 u ¯ 3 = 0 ¯ 0 ¯ , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaamWaa8aabaqbaeqabiGaaaqaa8qacqqHBoatpaWaaSbaaSqaa8qa caaIYaGaaGOmaaWdaeqaaaGcbaWdbiabfU5am9aadaWgaaWcbaWdbi aaikdacaaIZaaapaqabaaakeaapeGaeu4MdW0damaaBaaaleaapeGa aG4maiaaikdaa8aabeaaaOqaa8qacqqHBoatpaWaaSbaaSqaa8qaca aIWaGaaG4maaWdaeqaaaaaaOWdbiaawUfacaGLDbaadaWadaWdaeaa faqabeGabaaabaWdbiqadwhagaqea8aadaWgaaWcbaWdbiaaikdaa8 aabeaaaOqaa8qaceWG1bGbaebapaWaaSbaaSqaa8qacaaIZaaapaqa baaaaaGcpeGaay5waiaaw2faaiabg2da9maadmaapaqaauaabeqace aaaeaapeGabGimayaaraaapaqaa8qaceaIWaGbaebaaaaacaGLBbGa ayzxaaGaaiilaaaa@51ED@  где u ¯ 2 u ¯ 3 = 0 ¯ 0 ¯ . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaamWaa8aabaqbaeqabiqaaaqaa8qaceWG1bGbaebapaWaaSbaaSqa a8qacaaIYaaapaqabaaakeaapeGabmyDayaaraWdamaaBaaaleaape GaaG4maaWdaeqaaaaaaOWdbiaawUfacaGLDbaacqGH9aqpdaWadaWd aeaafaqabeGabaaabaWdbiqaicdagaqeaaWdaeaapeGabGimayaara aaaaGaay5waiaaw2faaiaac6caaaa@4249@

Задаем матрицы, определяемые из скалярных произведений:

Λ Ι u ¯ , v ¯ = Λ 1 u ˜ , v ˜ , Λ ΙΙ u ¯ , v ¯ = Λ ΙΙ u ˜ , v ˜ u ˜ , v ˜ V ˜ . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4MdW0damaaBaaaleaapeGaeuyMdKeapaqabaGcpeGabmyDayaa raGaaiilaiqadAhagaqeaiabg2da9iabfU5am9aadaWgaaWcbaWdbi aaigdaa8aabeaak8qadaqadaWdaeaapeGabmyDa8aagaaca8qacaGG SaGabmODa8aagaacaaWdbiaawIcacaGLPaaacaGGSaGaeu4MdW0dam aaBaaaleaapeGaeuyMdKKaeuyMdKeapaqabaGcpeGabmyDayaaraGa aiilaiqadAhagaqeaiabg2da9iabfU5am9aadaWgaaWcbaWdbiabfM 5ajjabfM5ajbWdaeqaaOWdbmaabmaapaqaa8qaceWG1bWdayaaiaWd biaacYcaceWG2bWdayaaiaaapeGaayjkaiaawMcaaiabgcGiIiqadw hapaGbaGaapeGaaiilaiqadAhapaGbaGaapeGaeyicI4SabmOva8aa gaaca8qacaGGUaaaaa@5E64@ .

Эти матрицы принимают следующую блочную форму:

Λ Ι = Λ 11 0 Λ 13 0 0 0 Λ 31 0 Λ 30 , Λ ΙΙ = 0 0 0 0 Λ 22 Λ 23 0 Λ 32 Λ 03 . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4MdW0damaaBaaaleaapeGaeuyMdKeapaqabaGcpeGaeyypa0Za amWaa8aabaqbaeqabmWaaaqaa8qacqqHBoatpaWaaSbaaSqaa8qaca aIXaGaaGymaaWdaeqaaaGcbaWdbiaaicdaa8aabaWdbiabfU5am9aa daWgaaWcbaWdbiaaigdacaaIZaaapaqabaaakeaapeGaaGimaaWdae aapeGaaGimaaWdaeaapeGaaGimaaWdaeaapeGaeu4MdW0damaaBaaa leaapeGaaG4maiaaigdaa8aabeaaaOqaa8qacaaIWaaapaqaa8qacq qHBoatpaWaaSbaaSqaa8qacaaIZaGaaGimaaWdaeqaaaaaaOWdbiaa wUfacaGLDbaacaGGSaGaeu4MdW0damaaBaaaleaapeGaeuyMdKKaeu yMdKeapaqabaGcpeGaeyypa0ZaamWaa8aabaqbaeqabmWaaaqaa8qa caaIWaaapaqaa8qacaaIWaaapaqaa8qacaaIWaaapaqaa8qacaaIWa aapaqaa8qacqqHBoatpaWaaSbaaSqaa8qacaaIYaGaaGOmaaWdaeqa aaGcbaWdbiabfU5am9aadaWgaaWcbaWdbiaaikdacaaIZaaapaqaba aakeaapeGaaGimaaWdaeaapeGaeu4MdW0damaaBaaaleaapeGaaG4m aiaaikdaa8aabeaaaOqaa8qacqqHBoatpaWaaSbaaSqaa8qacaaIWa GaaG4maaWdaeqaaaaaaOWdbiaawUfacaGLDbaacaGGUaaaaa@696D@

Вводим векторные подпространства:

V ¯ 1 = v ¯ = ( v ¯ 1 ' , v ¯ 2 ' , v ¯ 3 ' ) ' N : v ¯ 2 = 0 ¯ , v ¯ 3 = 0 ¯ , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmOvayaaraWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiabg2da 9maacmaapaqaa8qaceWG2bGbaebacqGH9aqpcaGGOaGabmODayaara WdamaaBaaaleaapeGaaGymaaWdaeqaaOWaaWbaaSqabeaapeGaai4j aaaakiaacYcaceWG2bGbaebapaWaaSbaaSqaa8qacaaIYaaapaqaba GcdaahaaWcbeqaa8qacaGGNaaaaOGaaiilaiqadAhagaqea8aadaWg aaWcbaWdbiaaiodaa8aabeaakmaaCaaaleqabaWdbiaacEcaaaGcca GGPaWdamaaCaaaleqabaWdbiaacEcaaaGccqGHiiIZtuuDJXwAK1uy 0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=1ris9aadaahaaWcbe qaa8qacaWGobaaaOGaaiOoaiqadAhagaqea8aadaWgaaWcbaWdbiaa ikdaa8aabeaak8qacqGH9aqpceaIWaGbaebacaGGSaGabmODayaara WdamaaBaaaleaapeGaaG4maaWdaeqaaOWdbiabg2da9iqaicdagaqe aaGaay5Eaiaaw2haaiaacYcaaaa@6281@

V ¯ 2 = v ¯ = ( v ¯ 1 ' , v ¯ 2 ' , v ¯ 3 ' ) ' N : v ¯ 1 = 0 ¯ , v ¯ 3 = 0 ¯ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmOvayaaraWdamaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiabg2da 9maacmaapaqaa8qaceWG2bGbaebacqGH9aqpcaGGOaGabmODayaara WdamaaBaaaleaapeGaaGymaaWdaeqaaOWaaWbaaSqabeaapeGaai4j aaaakiaacYcaceWG2bGbaebapaWaaSbaaSqaa8qacaaIYaaapaqaba GcdaahaaWcbeqaa8qacaGGNaaaaOGaaiilaiqadAhagaqea8aadaWg aaWcbaWdbiaaiodaa8aabeaakmaaCaaaleqabaWdbiaacEcaaaGcca GGPaWdamaaCaaaleqabaWdbiaacEcaaaGccqGHiiIZtuuDJXwAK1uy 0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=1ris9aadaahaaWcbe qaa8qacaWGobaaaOGaaiOoaiqadAhagaqea8aadaWgaaWcbaWdbiaa igdaa8aabeaak8qacqGH9aqpceaIWaGbaebacaGGSaGabmODayaara WdamaaBaaaleaapeGaaG4maaWdaeqaaOWdbiabg2da9iqaicdagaqe aaGaay5Eaiaaw2haaiaac6caaaa@6282@

Еще дополнительно определяем векторное подпространство:

V ¯ 3 = v ¯ = ( v ¯ 1 ' , v ¯ 2 ' , v ¯ 3 ' ) ' N : Λ 11 v ¯ 1 + Λ 13 v ¯ 3 = 0 ¯ , Λ 22 v ¯ 2 + Λ 23 v ¯ 3 = 0 ¯ . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmOvayaaraWdamaaBaaaleaapeGaaG4maaWdaeqaaOWdbiabg2da 9maacmaapaqaa8qaceWG2bGbaebacqGH9aqpcaGGOaGabmODayaara WdamaaBaaaleaapeGaaGymaaWdaeqaaOWaaWbaaSqabeaapeGaai4j aaaakiaacYcaceWG2bGbaebapaWaaSbaaSqaa8qacaaIYaaapaqaba GcdaahaaWcbeqaa8qacaGGNaaaaOGaaiilaiqadAhagaqea8aadaWg aaWcbaWdbiaaiodaa8aabeaakmaaCaaaleqabaWdbiaacEcaaaGcca GGPaWdamaaCaaaleqabaWdbiaacEcaaaGccqGHiiIZtuuDJXwAK1uy 0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=1ris9aadaahaaWcbe qaa8qacaWGobaaaOGaaiOoaiabfU5am9aadaWgaaWcbaWdbiaaigda caaIXaaapaqabaGcpeGabmODayaaraWdamaaBaaaleaapeGaaGymaa WdaeqaaOWdbiabgUcaRiabfU5am9aadaWgaaWcbaWdbiaaigdacaaI ZaaapaqabaGcpeGabmODayaaraWdamaaBaaaleaapeGaaG4maaWdae qaaOWdbiabg2da9iqaicdagaqeaiaacYcacqqHBoatpaWaaSbaaSqa a8qacaaIYaGaaGOmaaWdaeqaaOWdbiqadAhagaqea8aadaWgaaWcba Wdbiaaikdaa8aabeaak8qacqGHRaWkcqqHBoatpaWaaSbaaSqaa8qa caaIYaGaaG4maaWdaeqaaOWdbiqadAhagaqea8aadaWgaaWcbaWdbi aaiodaa8aabeaak8qacqGH9aqpceaIWaGbaebaaiaawUhacaGL9baa caGGUaaaaa@7652@

Можно отметить, что

N = V ¯ 1 V ¯ 2 V ¯ 3 = V ¯ 1 V ¯ ΙΙ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAYaqeguuDJXwAKbstHrhAGq1DVbacfaaeaaaaaaaaa8qacqWFDeIu paWaaWbaaSqabeaapeGaamOtaaaakiabg2da9iqadAfagaqea8aada WgaaWcbaWdbiaaigdaa8aabeaak8qacqGHvksXceWGwbGbaebapaWa aSbaaSqaa8qacaaIYaaapaqabaGcpeGaeyyLIuSabmOvayaaraWdam aaBaaaleaapeGaaG4maaWdaeqaaOWdbiabg2da9iqadAfagaqea8aa daWgaaWcbaWdbiaaigdaa8aabeaak8qacqGHvksXceWGwbGbaebapa WaaSbaaSqaa8qacqqHzoqscqqHzoqsa8aabeaaaaa@56CA@ ,

при

V ¯ Ι = V ¯ 1 V ¯ 3 , V ¯ ΙΙ = V ¯ 2 V ¯ 3 . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmOvayaaraWdamaaBaaaleaapeGaeuyMdKeapaqabaGcpeGaeyyp a0JabmOvayaaraWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiabgw PiflqadAfagaqea8aadaWgaaWcbaWdbiaaiodaa8aabeaak8qacaGG SaGabmOvayaaraWdamaaBaaaleaapeGaeuyMdKKaeuyMdKeapaqaba GcpeGaeyypa0JabmOvayaaraWdamaaBaaaleaapeGaaGOmaaWdaeqa aOWdbiabgwPiflqadAfagaqea8aadaWgaaWcbaWdbiaaiodaa8aabe aak8qacaGGUaaaaa@4D36@

Оеделим расширенную матрицу

C= Λ Ι +μ Λ ΙΙ , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qaiabg2da9iabfU5am9aadaWgaaWcbaWdbiabfM5ajbWdaeqa aOWdbiabgUcaRiabeY7aTjabfU5am9aadaWgaaWcbaWdbiabfM5ajj abfM5ajbWdaeqaaOWdbiaacYcaaaa@4345@

C 11 0 C 13 0 C 22 C 23 C 31 C 32 C 33 = Λ 11 0 Λ 13 0 0 0 Λ 31 0 Λ 30 +μ 0 0 0 0 Λ 22 Λ 23 0 Λ 32 Λ 03 ,μ 0;+ . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaamWaa8aabaqbaeqabmWaaaqaa8qacaWGdbWdamaaBaaaleaapeGa aGymaiaaigdaa8aabeaaaOqaa8qacaaIWaaapaqaa8qacaWGdbWdam aaBaaaleaapeGaaGymaiaaiodaa8aabeaaaOqaa8qacaaIWaaapaqa a8qacaWGdbWdamaaBaaaleaapeGaaGOmaiaaikdaa8aabeaaaOqaa8 qacaWGdbWdamaaBaaaleaapeGaaGOmaiaaiodaa8aabeaaaOqaa8qa caWGdbWdamaaBaaaleaapeGaaG4maiaaigdaa8aabeaaaOqaa8qaca WGdbWdamaaBaaaleaapeGaaG4maiaaikdaa8aabeaaaOqaa8qacaWG dbWdamaaBaaaleaapeGaaG4maiaaiodaa8aabeaaaaaak8qacaGLBb GaayzxaaGaeyypa0ZaamWaa8aabaqbaeqabmWaaaqaa8qacqqHBoat paWaaSbaaSqaa8qacaaIXaGaaGymaaWdaeqaaaGcbaWdbiaaicdaa8 aabaWdbiabfU5am9aadaWgaaWcbaWdbiaaigdacaaIZaaapaqabaaa keaapeGaaGimaaWdaeaapeGaaGimaaWdaeaapeGaaGimaaWdaeaape Gaeu4MdW0damaaBaaaleaapeGaaG4maiaaigdaa8aabeaaaOqaa8qa caaIWaaapaqaa8qacqqHBoatpaWaaSbaaSqaa8qacaaIZaGaaGimaa WdaeqaaaaaaOWdbiaawUfacaGLDbaacqGHRaWkcqaH8oqBdaWadaWd aeaafaqabeWadaaabaWdbiaaicdaa8aabaWdbiaaicdaa8aabaWdbi aaicdaa8aabaWdbiaaicdaa8aabaWdbiabfU5am9aadaWgaaWcbaWd biaaikdacaaIYaaapaqabaaakeaapeGaeu4MdW0damaaBaaaleaape GaaGOmaiaaiodaa8aabeaaaOqaa8qacaaIWaaapaqaa8qacqqHBoat paWaaSbaaSqaa8qacaaIZaGaaGOmaaWdaeqaaaGcbaWdbiabfU5am9 aadaWgaaWcbaWdbiaaicdacaaIZaaapaqabaaaaaGcpeGaay5waiaa w2faaiaacYcacqaH8oqBcqGHiiIZdaqadaWdaeaapeGaaGimaiaacU dacqGHRaWkcqGHEisPaiaawIcacaGLPaaacaGGUaaaaa@8253@

Зададим положения, достаточные для сходимости приводимого далее итерационного процесса в развиваемом методе итерационных расширений:

δ 1 0;+ , δ 2 δ 1 ;+ : δ 1 2 C v ¯ 3 ,C v ¯ 3 Λ ΙΙ v ¯ 3 , Λ ΙΙ v ¯ 3 δ 2 2 C v ¯ 3 ,C v ¯ 3 v ¯ 3 V ¯ 3 ,α 0;+ : Λ Ι v ¯ 3 , Λ Ι v ¯ 3 α 2 Λ ΙΙ v ¯ 3 , Λ ΙΙ v ¯ 3 v ¯ 3 V ¯ 3 . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaey4aIqIaeqiTdq2damaaBaaaleaapeGaaGymaaWdaeqaaOWdbiab gIGiopaabmaapaqaa8qacaaIWaGaai4oaiabgUcaRiabg6HiLcGaay jkaiaawMcaaiaacYcacqaH0oazpaWaaSbaaSqaa8qacaaIYaaapaqa baGcpeGaeyicI48aaKGea8aabaWdbiabes7aK9aadaWgaaWcbaWdbi aaigdaa8aabeaak8qacaGG7aGaey4kaSIaeyOhIukacaGLBbGaayzk aaGaaiOoaiabes7aK9aadaqhaaWcbaWdbiaaigdaa8aabaWdbiaaik daaaGccaWGdbGabmODayaaraWdamaaBaaaleaapeGaaG4maaWdaeqa aOWdbiaacYcacaWGdbGabmODayaaraWdamaaBaaaleaapeGaaG4maa WdaeqaaOWdbiabgsMiJkabfU5am9aadaWgaaWcbaWdbiabfM5ajjab fM5ajbWdaeqaaOWdbiqadAhagaqea8aadaWgaaWcbaWdbiaaiodaa8 aabeaak8qacaGGSaGaeu4MdW0damaaBaaaleaapeGaeuyMdKKaeuyM dKeapaqabaGcpeGabmODayaaraWdamaaBaaaleaapeGaaG4maaWdae qaaOWdbiabgsMiJkabes7aK9aadaqhaaWcbaWdbiaaikdaa8aabaWd biaaikdaaaGccaWGdbGabmODayaaraWdamaaBaaaleaapeGaaG4maa WdaeqaaOWdbiaacYcacaWGdbGabmODayaaraWdamaaBaaaleaapeGa aG4maaWdaeqaaOWdbiabgcGiIiqadAhagaqea8aadaWgaaWcbaWdbi aaiodaa8aabeaak8qacqGHiiIZceWGwbGbaebapaWaaSbaaSqaa8qa caaIZaaapaqabaGcpeGaaiilaiabgoGiKiabeg7aHjabgIGiopaabm aapaqaa8qacaaIWaGaai4oaiabgUcaRiabg6HiLcGaayjkaiaawMca aiaacQdacqqHBoatpaWaaSbaaSqaa8qacqqHzoqsa8aabeaak8qace WG2bGbaebapaWaaSbaaSqaa8qacaaIZaaapaqabaGcpeGaaiilaiab fU5am9aadaWgaaWcbaWdbiabfM5ajbWdaeqaaOWdbiqadAhagaqea8 aadaWgaaWcbaWdbiaaiodaa8aabeaak8qacqGHKjYOcqaHXoqypaWa aWbaaSqabeaapeGaaGOmaaaakiabfU5am9aadaWgaaWcbaWdbiabfM 5ajjabfM5ajbWdaeqaaOWdbiqadAhagaqea8aadaWgaaWcbaWdbiaa iodaa8aabeaak8qacaGGSaGaeu4MdW0damaaBaaaleaapeGaeuyMdK KaeuyMdKeapaqabaGcpeGabmODayaaraWdamaaBaaaleaapeGaaG4m aaWdaeqaaOWdbiabgcGiIiqadAhagaqea8aadaWgaaWcbaWdbiaaio daa8aabeaak8qacqGHiiIZceWGwbGbaebapaWaaSbaaSqaa8qacaaI ZaaapaqabaGcpeGaaiOlaaaa@AD52@

Для нахождения приближенного решения исходной задачи после ее редукции к системе линейных алгебраических уравнений приведем развиваемый метод итерационных расширений. В этом методе используем дополнительные параметры, минимизируем ошибку в более сильной норме, т. е. выбираем итерационный параметр при минимизации невязок.

u ¯ k N :C u ¯ k u ¯ k1 = τ k1 B u ¯ k1 f ¯ ,k, MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmyDayaaraWdamaaCaaaleqabaWdbiaadUgaaaGccqGHiiIZtuuD JXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=1ris9aada ahaaWcbeqaa8qacaWGobaaaOGaaiOoaiaadoeadaqadaWdaeaapeGa bmyDayaaraWdamaaCaaaleqabaWdbiaadUgaaaGccqGHsislceWG1b GbaebapaWaaWbaaSqabeaapeGaam4AaiabgkHiTiaaigdaaaaakiaa wIcacaGLPaaacqGH9aqpcqGHsislcqaHepaDpaWaaSbaaSqaa8qaca WGRbGaeyOeI0IaaGymaaWdaeqaaOWdbmaabmaapaqaa8qacaWGcbGa bmyDayaaraWdamaaCaaaleqabaWdbiaadUgacqGHsislcaaIXaaaaO GaeyOeI0IabmOzayaaraaacaGLOaGaayzkaaGaaiilaiaadUgacqGH iiIZcqWFveItcaGGSaaaaa@643D@  (9)

u ¯ 0 V ¯ 1 ,α<μ, τ 0 =1, τ k1 = r ¯ k1 , η ¯ k1 η ¯ k1 , η ¯ k1 ,k\ 1 . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyiaIiIabmyDayaaraWdamaaCaaaleqabaWdbiaaicdaaaGccqGH iiIZceWGwbGbaebapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaai ilaiabeg7aHjabgYda8iabeY7aTjaacYcacqaHepaDpaWaaSbaaSqa a8qacaaIWaaapaqabaGcpeGaeyypa0JaaGymaiaacYcacqaHepaDpa WaaSbaaSqaa8qacaWGRbGaeyOeI0IaaGymaaWdaeqaaOWdbiabg2da 9maalaaapaqaa8qaceWGYbGbaebapaWaaWbaaSqabeaapeGaam4Aai abgkHiTiaaigdaaaGccaGGSaGafq4TdGMbaebapaWaaWbaaSqabeaa peGaam4AaiabgkHiTiaaigdaaaaak8aabaWdbiqbeE7aOzaaraWdam aaCaaaleqabaWdbiaadUgacqGHsislcaaIXaaaaOGaaiilaiqbeE7a OzaaraWdamaaCaaaleqabaWdbiaadUgacqGHsislcaaIXaaaaaaaki aacYcacaWGRbGaeyicI48efv3ySLgznfgDOjdaryqr1ngBPrginfgD Obcv39gaiuaacqWFveItcaGGCbWaaiWaa8aabaWdbiaaigdaaiaawU hacaGL9baacaGGUaaaaa@73C7@

Здесь при вычислении оптимального итерационного параметра необходимо поитерационно вычислять векторы невязок, векторы поправок и так называемые векторы эквивалентных невязок

r ¯ k1 =B u ¯ k1 f ¯ , w ¯ k1 = C   1 r ¯ k1 , η ¯ k1 =B w ¯ k1 ,k. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmOCayaaraWdamaaCaaaleqabaWdbiaadUgacqGHsislcaaIXaaa aOGaeyypa0JaamOqaiqadwhagaqea8aadaahaaWcbeqaa8qacaWGRb GaeyOeI0IaaGymaaaakiabgkHiTiqadAgagaqeaiaacYcaceWG3bGb aebapaWaaWbaaSqabeaapeGaam4AaiabgkHiTiaaigdaaaGccqGH9a qpcaWGdbWdamaaDaaaleaapeGaaiiOaaWdaeaapeGaeyOeI0IaaGym aaaakiqadkhagaqea8aadaahaaWcbeqaa8qacaWGRbGaeyOeI0IaaG ymaaaakiaacYcacuaH3oaAgaqea8aadaahaaWcbeqaa8qacaWGRbGa eyOeI0IaaGymaaaakiabg2da9iaadkeaceWG3bGbaebapaWaaWbaaS qabeaapeGaam4AaiabgkHiTiaaigdaaaGccaGGSaGaam4AaiabgIGi oprr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xfH4 KaaiOlaaaa@6938@

Задаем норму

v ¯ C 2 = C 2 v ¯ , v ¯ v ¯ N . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmODayaaraWdamaaBaaaleaapeGaam4qa8aadaahaaadbeqaa8qa caaIYaaaaaWcpaqabaGcpeGaeyypa0ZaaOaaa8aabaWdbiaadoeapa WaaWbaaSqabeaapeGaaGOmaaaakiqadAhagaqeaiaacYcaceWG2bGb aebaaSqabaGccqGHaiIiceWG2bGbaebacqGHiiIZtuuDJXwAK1uy0H MmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=1ris9aadaahaaWcbeqa a8qacaWGobaaaOGaaiOlaaaa@4F64@

Теорема 3. В методе итерационных расширений из (9) при решении задачи в (1), (2), (3), (8)

u ¯ k u ¯ C 2 ε u ¯ 0 u ¯ C 2 ,ε=2 δ 2 δ 1 ( α μ) k1 ,k. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmyDayaaraWdamaaCaaaleqabaWdbiaadUgaaaGccqGHsislceWG 1bGbaebapaWaaSbaaSqaa8qacaWGdbWdamaaCaaameqabaWdbiaaik daaaaal8aabeaak8qacqGHKjYOcqaH1oqzceWG1bGbaebapaWaaWba aSqabeaapeGaaGimaaaakiabgkHiTiqadwhagaqea8aadaWgaaWcba WdbiaadoeapaWaaWbaaWqabeaapeGaaGOmaaaaaSWdaeqaaOWdbiaa cYcacqaH1oqzcqGH9aqpcaaIYaWaaeWaa8aabaWdbiabes7aKnaala aapaqaa8qacaaIYaaapaqaa8qacqaH0oazpaWaaSbaaSqaa8qacaaI XaaapaqabaaaaaGcpeGaayjkaiaawMcaaiaacIcadaWcaaWdaeaape GaeqySdegapaqaa8qacqaH8oqBcaGGPaaaa8aadaahaaWcbeqaa8qa caWGRbGaeyOeI0IaaGymaaaakiaacYcacaWGRbGaeyicI48efv3ySL gznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFveItcaGGUaaa aa@6831@

Данный результат получается аналогично с результатами в [4, 5].

Выпишем алгоритм, в котором реализуем развиваемый метод итерационных расширений.

1. Начальное приближение, начальный параметр

u ¯ 0 V ¯ 1 , τ 0 =1. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyiaIiIabmyDayaaraWdamaaCaaaleqabaWdbiaaicdaaaGccqGH iiIZceWGwbGbaebapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaai ilaiabes8a09aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacqGH9aqp caaIXaGaaiOlaaaa@42BB@

2. Вектор невязки

r ¯ k1 =B u ¯ k1 f ¯ ,k. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmOCayaaraWdamaaCaaaleqabaWdbiaadUgacqGHsislcaaIXaaa aOGaeyypa0JaamOqaiqadwhagaqea8aadaahaaWcbeqaa8qacaWGRb GaeyOeI0IaaGymaaaakiabgkHiTiqadAgagaqeaiaacYcacaWGRbGa eyicI48efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacq WFveItcaGGUaaaaa@5049@

3. Норма абсолютной ошибки в квадрате

e k1 = r ¯ k1 , r ¯ k1 ,k. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyza8aadaWgaaWcbaWdbiaadUgacqGHsislcaaIXaaapaqabaGc peGaeyypa0JabmOCayaaraWdamaaCaaaleqabaWdbiaadUgacqGHsi slcaaIXaaaaOGaaiilaiqadkhagaqea8aadaahaaWcbeqaa8qacaWG RbGaeyOeI0IaaGymaaaakiaacYcacaWGRbGaeyicI48efv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFveItcaGGUaaaaa@5235@

4. Вектор поправки

w ¯ k1 :C w ¯ k1 = r ¯ k1 ,k. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gabm4DayaaraWdamaaCaaaleqabaWdbiaadUgacqGHsislcaaIXaaa aOGaaiOoaiaadoeaceWG3bGbaebapaWaaWbaaSqabeaapeGaam4Aai abgkHiTiaaigdaaaGccqGH9aqpceWGYbGbaebapaWaaWbaaSqabeaa peGaam4AaiabgkHiTiaaigdaaaGccaGGSaGaam4AaiabgIGioprr1n gBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xfH4KaaiOl aaaa@531C@

5. Вектор эквивалентной невязки

η ¯ k1 =B w ¯ k1 ,k\ 1 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gafq4TdGMbaebapaWaaWbaaSqabeaapeGaam4AaiabgkHiTiaaigda aaGccqGH9aqpcaWGcbGabm4DayaaraWdamaaCaaaleqabaWdbiaadU gacqGHsislcaaIXaaaaOGaaiilaiaadUgacqGHiiIZtuuDJXwAK1uy 0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=vriojaacYfadaGada WdaeaapeGaaGymaaGaay5Eaiaaw2haaiaac6caaaa@52FA@

6. Оптимальный итерационный параметр

τ k1 = r ¯ k1 , η ¯ k1 η ¯ k1 , η ¯ k1 ,k\ 1 . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiXdq3damaaBaaaleaapeGaam4AaiabgkHiTiaaigdaa8aabeaa k8qacqGH9aqpdaWcaaWdaeaapeGabmOCayaaraWdamaaCaaaleqaba WdbiaadUgacqGHsislcaaIXaaaaOGaaiilaiqbeE7aOzaaraWdamaa CaaaleqabaWdbiaadUgacqGHsislcaaIXaaaaaGcpaqaa8qacuaH3o aAgaqea8aadaahaaWcbeqaa8qacaWGRbGaeyOeI0IaaGymaaaakiaa cYcacuaH3oaAgaqea8aadaahaaWcbeqaa8qacaWGRbGaeyOeI0IaaG ymaaaaaaGccaGGSaGaam4AaiabgIGioprr1ngBPrwtHrhAYaqeguuD JXwAKbstHrhAGq1DVbacfaGae8xfH4Kaaiixamaacmaapaqaa8qaca aIXaaacaGL7bGaayzFaaGaaiOlaaaa@6212@

7. Вектор приближения

u ¯ k = u ¯ k1 τ k1 w ¯ k1 ,k. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmyDayaaraWdamaaCaaaleqabaWdbiaadUgaaaGccqGH9aqpceWG 1bGbaebapaWaaWbaaSqabeaapeGaam4AaiabgkHiTiaaigdaaaGccq GHsislcqaHepaDpaWaaSbaaSqaa8qacaWGRbGaeyOeI0IaaGymaaWd aeqaaOWdbiqadEhagaqea8aadaahaaWcbeqaa8qacaWGRbGaeyOeI0 IaaGymaaaakiaacYcacaWGRbGaeyicI48efv3ySLgznfgDOjdaryqr 1ngBPrginfgDObcv39gaiuaacqWFveItcaGGUaaaaa@55AD@

8. Критерий остановки итераций

e k1 δ 2 e 0 ,k\ 1 ,δ 0;1 . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyza8aadaWgaaWcbaWdbiaadUgacqGHsislcaaIXaaapaqabaGc peGaeyizImQaeqiTdq2damaaCaaaleqabaWdbiaaikdaaaGccaWGLb WdamaaBaaaleaapeGaaGimaaWdaeqaaOWdbiaacYcacaWGRbGaeyic I48efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFve ItcaGGCbWaaiWaa8aabaWdbiaaigdaaiaawUhacaGL9baacaGGSaGa eqiTdqMaeyicI48aaeWaa8aabaWdbiaaicdacaGG7aGaaGymaaGaay jkaiaawMcaaiaac6caaaa@5AA9@

Пример 1. Рассматривалось численное решение задачи при условиях, что константы a 1 , ρ 1 =1, MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyya8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaGGSaGaeqyW di3damaaBaaaleaapeGaaGymaaWdaeqaaOWdbiabg2da9iaaigdaca GGSaaaaa@3E32@  исходная L-образная область дополнялась до квадратной области

Ω 1 = 0;3,5 × 0;3,5 \ 1;3,5 × 1;3,5 , Ω ΙΙ = 1;3,5 × 1;3,5 ,Π= 0;3,5 × 0;3,5 , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeuyQdC1damaaBaaaleaapeGaaGymaaWdaeqaaOWdbiabg2da9maa bmaapaqaa8qacaaIWaGaai4oaiaaiodacaGGSaGaaGynaaGaayjkai aawMcaaiabgEna0oaabmaapaqaa8qacaaIWaGaai4oaiaaiodacaGG SaGaaGynaaGaayjkaiaawMcaaiaacYfadaqcsaWdaeaapeGaaGymai aacUdacaaIZaGaaiilaiaaiwdaaiaawUfacaGLPaaacqGHxdaTdaqc saWdaeaapeGaaGymaiaacUdacaaIZaGaaiilaiaaiwdaaiaawUfaca GLPaaacaGGSaGaeuyQdC1damaaBaaaleaapeGaeuyMdKKaeuyMdKea paqabaGcpeGaeyypa0ZaaeWaa8aabaWdbiaaigdacaGG7aGaaG4mai aacYcacaaI1aaacaGLOaGaayzkaaGaey41aq7aaeWaa8aabaWdbiaa igdacaGG7aGaaG4maiaacYcacaaI1aaacaGLOaGaayzkaaGaaiilai abfc6aqjabg2da9maabmaapaqaa8qacaaIWaGaai4oaiaaiodacaGG SaGaaGynaaGaayjkaiaawMcaaiabgEna0oaabmaapaqaa8qacaaIWa Gaai4oaiaaiodacaGGSaGaaGynaaGaayjkaiaawMcaaiaacYcaaaa@7888@  границы областей имели следующие части:

γ 1,0 = 1 × 1;3,5 1;3,5 × 1 , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4SdC2damaaBaaaleaapeGaaGymaiaacYcacaaIWaaapaqabaGc peGaeyypa0ZaaiWaa8aabaWdbiaaigdaaiaawUhacaGL9baacqGHxd aTdaqadaWdaeaapeGaaGymaiaacUdacaaIZaGaaiilaiaaiwdaaiaa wIcacaGLPaaacqGHQicYdaqadaWdaeaapeGaaGymaiaacUdacaaIZa GaaiilaiaaiwdaaiaawIcacaGLPaaacqGHxdaTdaGadaWdaeaapeGa aGymaaGaay5Eaiaaw2haaiaacYcaaaa@5283@   γ 1,1 = 3,5 × 0;1 0;1 × 3,5 , γ 1,2 = 0 × 0;3,5 0;3,5 × 0 , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4SdC2damaaBaaaleaapeGaaGymaiaacYcacaaIXaaapaqabaGc peGaeyypa0ZaaiWaa8aabaWdbiaaiodacaGGSaGaaGynaaGaay5Eai aaw2haaiabgEna0oaabmaapaqaa8qacaaIWaGaai4oaiaaigdaaiaa wIcacaGLPaaacqGHQicYdaqadaWdaeaapeGaaGimaiaacUdacaaIXa aacaGLOaGaayzkaaGaey41aq7aaiWaa8aabaWdbiaaiodacaGGSaGa aGynaaGaay5Eaiaaw2haaiaacYcacqaHZoWzpaWaaSbaaSqaa8qaca aIXaGaaiilaiaaikdaa8aabeaak8qacqGH9aqpdaGadaWdaeaapeGa aGimaaGaay5Eaiaaw2haaiabgEna0oaabmaapaqaa8qacaaIWaGaai 4oaiaaiodacaGGSaGaaGynaaGaayjkaiaawMcaaiabgQIiipaabmaa paqaa8qacaaIWaGaai4oaiaaiodacaGGSaGaaGynaaGaayjkaiaawM caaiabgEna0oaacmaapaqaa8qacaaIWaaacaGL7bGaayzFaaGaaiil aaaa@6EF6@

γ ΙΙ,1 = 3,5 × 1;3,5 1;3,5 × 3,5 , γ ΙΙ,3 = 1 × 1;3,5 1;3,5 × 1 , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4SdC2damaaBaaaleaapeGaeuyMdKKaeuyMdKKaaiilaiaaigda a8aabeaak8qacqGH9aqpdaGadaWdaeaapeGaaG4maiaacYcacaaI1a aacaGL7bGaayzFaaGaey41aq7aaeWaa8aabaWdbiaaigdacaGG7aGa aG4maiaacYcacaaI1aaacaGLOaGaayzkaaGaeyOkIG8aaeWaa8aaba WdbiaaigdacaGG7aGaaG4maiaacYcacaaI1aaacaGLOaGaayzkaaGa ey41aq7aaiWaa8aabaWdbiaaiodacaGGSaGaaGynaaGaay5Eaiaaw2 haaiaacYcacqaHZoWzpaWaaSbaaSqaa8qacqqHzoqscqqHzoqscaGG SaGaaG4maaWdaeqaaOWdbiabg2da9maacmaapaqaa8qacaaIXaaaca GL7bGaayzFaaGaey41aq7aaeWaa8aabaWdbiaaigdacaGG7aGaaG4m aiaacYcacaaI1aaacaGLOaGaayzkaaGaeyOkIG8aaeWaa8aabaWdbi aaigdacaGG7aGaaG4maiaacYcacaaI1aaacaGLOaGaayzkaaGaey41 aq7aaiWaa8aabaWdbiaaigdaaiaawUhacaGL9baacaGGSaaaaa@7629@

Γ 1 = 3,5 × 0;3,5 0;3,5 × 3,5 , Γ 2 = 0 × 0;3,5 0;3,5 × 0 , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4KdC0damaaBaaaleaapeGaaGymaaWdaeqaaOWdbiabg2da9maa cmaapaqaa8qacaaIZaGaaiilaiaaiwdaaiaawUhacaGL9baacqGHxd aTdaqadaWdaeaapeGaaGimaiaacUdacaaIZaGaaiilaiaaiwdaaiaa wIcacaGLPaaacqGHQicYdaqadaWdaeaapeGaaGimaiaacUdacaaIZa GaaiilaiaaiwdaaiaawIcacaGLPaaacqGHxdaTdaGadaWdaeaapeGa aG4maiaacYcacaaI1aaacaGL7bGaayzFaaGaaiilaiabfo5ah9aada WgaaWcbaWdbiaaikdaa8aabeaak8qacqGH9aqpdaGadaWdaeaapeGa aGimaaGaay5Eaiaaw2haaiabgEna0oaabmaapaqaa8qacaaIWaGaai 4oaiaaiodacaGGSaGaaGynaaGaayjkaiaawMcaaiabgQIiipaabmaa paqaa8qacaaIWaGaai4oaiaaiodacaGGSaGaaGynaaGaayjkaiaawM caaiabgEna0oaacmaapaqaa8qacaaIWaaacaGL7bGaayzFaaGaaiil aaaa@6E84@

функции решения и правой части задачи:

u ˘ 1 = ( x 2 1) 5 ( y 2 1) 5 , x;y 0;1 × 0;1 , u ˘ 1 =0, x;y Ω 1 \ 0;1 × 0;1 , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacaWG1baal8aabeqaa8qacaGGylaaaOWdamaaBaaaleaa peGaaGymaaWdaeqaaOWdbiabg2da9iaacIcacaWG4bWdamaaCaaale qabaWdbiaaikdaaaGccqGHsislcaaIXaGaaiyka8aadaahaaWcbeqa a8qacaaI1aaaaOGaaiikaiaadMhapaWaaWbaaSqabeaapeGaaGOmaa aakiabgkHiTiaaigdacaGGPaWdamaaCaaaleqabaWdbiaaiwdaaaGc caGGSaWaaeWaa8aabaWdbiaadIhacaGG7aGaamyEaaGaayjkaiaawM caaiabgIGiopaabmaapaqaa8qacaaIWaGaai4oaiaaigdaaiaawIca caGLPaaacqGHxdaTdaqadaWdaeaapeGaaGimaiaacUdacaaIXaaaca GLOaGaayzkaaGaaiila8aadaWfGaqaa8qacaWG1baal8aabeqaa8qa caGGylaaaOWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiabg2da9i aaicdacaGGSaWaaeWaa8aabaWdbiaadIhacaGG7aGaamyEaaGaayjk aiaawMcaaiabgIGiolabfM6ax9aadaWgaaWcbaWdbiaaigdaa8aabe aak8qacaGGCbWaaeWaa8aabaWdbiaaicdacaGG7aGaaGymaaGaayjk aiaawMcaaiabgEna0oaabmaapaqaa8qacaaIWaGaai4oaiaaigdaai aawIcacaGLPaaacaGGSaaaaa@72F6@

f ˘ 1 =(240 ( x 2 1) 3 ( y 2 1) 5 +2880 x 2 ( x 2 1) 2 ( y 2 1) 5 +1920 x 4 x 2 1 ( y 2 1) 5 + MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacaWGMbaal8aabeqaa8qacaGGylaaaOWdamaaBaaaleaa peGaaGymaaWdaeqaaOWdbiabg2da9iaacIcacaaIYaGaaGinaiaaic dacaGGOaGaamiEa8aadaahaaWcbeqaa8qacaaIYaaaaOGaeyOeI0Ia aGymaiaacMcapaWaaWbaaSqabeaapeGaaG4maaaakiaacIcacaWG5b WdamaaCaaaleqabaWdbiaaikdaaaGccqGHsislcaaIXaGaaiyka8aa daahaaWcbeqaa8qacaaI1aaaaOGaey4kaSIaaGOmaiaaiIdacaaI4a GaaGimaiaadIhapaWaaWbaaSqabeaapeGaaGOmaaaakiaacIcacaWG 4bWdamaaCaaaleqabaWdbiaaikdaaaGccqGHsislcaaIXaGaaiyka8 aadaahaaWcbeqaa8qacaaIYaaaaOGaaiikaiaadMhapaWaaWbaaSqa beaapeGaaGOmaaaakiabgkHiTiaaigdacaGGPaWdamaaCaaaleqaba WdbiaaiwdaaaGccqGHRaWkcaaIXaGaaGyoaiaaikdacaaIWaGaamiE a8aadaahaaWcbeqaa8qacaaI0aaaaOWaaeWaa8aabaWdbiaadIhapa WaaWbaaSqabeaapeGaaGOmaaaakiabgkHiTiaaigdaaiaawIcacaGL PaaacaGGOaGaamyEa8aadaahaaWcbeqaa8qacaaIYaaaaOGaeyOeI0 IaaGymaiaacMcapaWaaWbaaSqabeaapeGaaGynaaaakiabgUcaRaaa @6EA7@

+1600 x 2 ( x 2 1) 3 ( y 2 1) 4 +12800 x 2 ( x 2 1) 3 y 2 ( y 2 1) 3 ++240 ( y 2 1) 3 ( x 2 1) 5 +2880 y 2 ( y 2 1) 2 ( x 2 1) 5 +1920 y 4 y 2 1 ( x 2 1) 5 + MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaey4kaSIaaGymaiaaiAdacaaIWaGaaGimaiaadIhapaWaaWbaaSqa beaapeGaaGOmaaaakiaacIcacaWG4bWdamaaCaaaleqabaWdbiaaik daaaGccqGHsislcaaIXaGaaiyka8aadaahaaWcbeqaa8qacaaIZaaa aOGaaiikaiaadMhapaWaaWbaaSqabeaapeGaaGOmaaaakiabgkHiTi aaigdacaGGPaWdamaaCaaaleqabaWdbiaaisdaaaGccqGHRaWkcaaI XaGaaGOmaiaaiIdacaaIWaGaaGimaiaadIhapaWaaWbaaSqabeaape GaaGOmaaaakiaacIcacaWG4bWdamaaCaaaleqabaWdbiaaikdaaaGc cqGHsislcaaIXaGaaiyka8aadaahaaWcbeqaa8qacaaIZaaaaOGaam yEa8aadaahaaWcbeqaa8qacaaIYaaaaOGaaiikaiaadMhapaWaaWba aSqabeaapeGaaGOmaaaakiabgkHiTiaaigdacaGGPaWdamaaCaaale qabaWdbiaaiodaaaGccqGHRaWkcqGHRaWkcaaIYaGaaGinaiaaicda caGGOaGaamyEa8aadaahaaWcbeqaa8qacaaIYaaaaOGaeyOeI0IaaG ymaiaacMcapaWaaWbaaSqabeaapeGaaG4maaaakiaacIcacaWG4bWd amaaCaaaleqabaWdbiaaikdaaaGccqGHsislcaaIXaGaaiyka8aada ahaaWcbeqaa8qacaaI1aaaaOGaey4kaSIaaGOmaiaaiIdacaaI4aGa aGimaiaadMhapaWaaWbaaSqabeaapeGaaGOmaaaakiaacIcacaWG5b WdamaaCaaaleqabaWdbiaaikdaaaGccqGHsislcaaIXaGaaiyka8aa daahaaWcbeqaa8qacaaIYaaaaOGaaiikaiaadIhapaWaaWbaaSqabe aapeGaaGOmaaaakiabgkHiTiaaigdacaGGPaWdamaaCaaaleqabaWd biaaiwdaaaGccqGHRaWkcaaIXaGaaGyoaiaaikdacaaIWaGaamyEa8 aadaahaaWcbeqaa8qacaaI0aaaaOWaaeWaa8aabaWdbiaadMhapaWa aWbaaSqabeaapeGaaGOmaaaakiabgkHiTiaaigdaaiaawIcacaGLPa aacaGGOaGaamiEa8aadaahaaWcbeqaa8qacaaIYaaaaOGaeyOeI0Ia aGymaiaacMcapaWaaWbaaSqabeaapeGaaGynaaaakiabgUcaRaaa@91EE@

+10 ( x 2 1) 4 ( y 2 1) 5 +80 x 2 ( x 2 1) 3 ( y 2 1) 5 +10 ( y 2 1) 4 ( x 2 1) 5 +80 y 2 ( y 2 1) 3 ( x 2 1) 5 ++ ( x 2 1) 5 y 2 1 ) 5 , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaey4kaSIaaGymaiaaicdacaGGOaGaamiEa8aadaahaaWcbeqaa8qa caaIYaaaaOGaeyOeI0IaaGymaiaacMcapaWaaWbaaSqabeaapeGaaG inaaaakiaacIcacaWG5bWdamaaCaaaleqabaWdbiaaikdaaaGccqGH sislcaaIXaGaaiyka8aadaahaaWcbeqaa8qacaaI1aaaaOGaey4kaS IaaGioaiaaicdacaWG4bWdamaaCaaaleqabaWdbiaaikdaaaGccaGG OaGaamiEa8aadaahaaWcbeqaa8qacaaIYaaaaOGaeyOeI0IaaGymai aacMcapaWaaWbaaSqabeaapeGaaG4maaaakiaacIcacaWG5bWdamaa CaaaleqabaWdbiaaikdaaaGccqGHsislcaaIXaGaaiyka8aadaahaa Wcbeqaa8qacaaI1aaaaOGaey4kaSIaaGymaiaaicdacaGGOaGaamyE a8aadaahaaWcbeqaa8qacaaIYaaaaOGaeyOeI0IaaGymaiaacMcapa WaaWbaaSqabeaapeGaaGinaaaakiaacIcacaWG4bWdamaaCaaaleqa baWdbiaaikdaaaGccqGHsislcaaIXaGaaiyka8aadaahaaWcbeqaa8 qacaaI1aaaaOGaey4kaSIaaGioaiaaicdacaWG5bWdamaaCaaaleqa baWdbiaaikdaaaGccaGGOaGaamyEa8aadaahaaWcbeqaa8qacaaIYa aaaOGaeyOeI0IaaGymaiaacMcapaWaaWbaaSqabeaapeGaaG4maaaa kiaacIcacaWG4bWdamaaCaaaleqabaWdbiaaikdaaaGccqGHsislca aIXaGaaiyka8aadaahaaWcbeqaa8qacaaI1aaaaOGaey4kaSIaey4k aSIaaiikaiaadIhapaWaaWbaaSqabeaapeGaaGOmaaaakiabgkHiTi aaigdacaGGPaWdamaaCaaaleqabaWdbiaaiwdaaaGcdaqadaWdaeaa peGaamyEa8aadaahaaWcbeqaa8qacaaIYaaaaOGaeyOeI0IaaGymai aacMcapaWaaWbaaSqabeaapeGaaGynaaaaaOGaayjkaiaawMcaaiaa cYcaaaa@8477@

x;y 0;1 × 0;1 , f ˘ 1 =0, x;y Ω 1 \0;1)× 0;1 . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiaadIhacaGG7aGaamyEaaGaayjkaiaawMcaaiab gIGiopaabmaapaqaa8qacaaIWaGaai4oaiaaigdaaiaawIcacaGLPa aacqGHxdaTdaqadaWdaeaapeGaaGimaiaacUdacaaIXaaacaGLOaGa ayzkaaGaaiila8aadaWfGaqaa8qacaWGMbaal8aabeqaa8qacaGGyl aaaOWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiabg2da9iaaicda caGGSaWaaeWaa8aabaWdbiaadIhacaGG7aGaamyEaaGaayjkaiaawM caaiabgIGiolaabM6apaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGa aiixaiaaicdacaGG7aGaaGymaiaacMcacqGHxdaTdaqadaWdaeaape GaaGimaiaacUdacaaIXaaacaGLOaGaayzkaaGaaiOlaaaa@5F95@

Использовалась сетка с узлами

x i ; y j = i1,5 h; j1,5 h ,h=3,5/ n1,5 , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiaadIhapaWaaSbaaSqaa8qacaWGPbaapaqabaGc peGaai4oaiaadMhapaWaaSbaaSqaa8qacaWGQbaapaqabaaak8qaca GLOaGaayzkaaGaeyypa0ZaaeWaa8aabaWdbmaabmaapaqaa8qacaWG PbGaeyOeI0IaaGymaiaacYcacaaI1aaacaGLOaGaayzkaaGaamiAai aacUdadaqadaWdaeaapeGaamOAaiabgkHiTiaaigdacaGGSaGaaGyn aaGaayjkaiaawMcaaiaadIgaaiaawIcacaGLPaaacaGGSaGaamiAai abg2da9iaaiodacaGGSaGaaGynaiaac+cadaqadaWdaeaapeGaamOB aiabgkHiTiaaigdacaGGSaGaaGynaaGaayjkaiaawMcaaiaacYcaaa a@59BA@  

i=1,2...,n,j=1,2...,n. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyAaiabg2da9iaaigdacaGGSaGaaGOmaiaac6cacaGGUaGaaiOl aiaacYcacaWGUbGaaiilaiaadQgacqGH9aqpcaaIXaGaaiilaiaaik dacaGGUaGaaiOlaiaac6cacaGGSaGaamOBaiaac6caaaa@4718@

В вычислительных экспериментах

n=40,75,110,145,180,N=1444,5329,11664,20449,31684. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBaiabg2da9iaaisdacaaIWaGaaiilaiaaiEdacaaI1aGaaiil aiaaigdacaaIXaGaaGimaiaacYcacaaIXaGaaGinaiaaiwdacaGGSa GaaGymaiaaiIdacaaIWaGaaiilaiaad6eacqGH9aqpcaaIXaGaaGin aiaaisdacaaI0aGaaiilaiaaiwdacaaIZaGaaGOmaiaaiMdacaGGSa GaaGymaiaaigdacaaI2aGaaGOnaiaaisdacaGGSaGaaGOmaiaaicda caaI0aGaaGinaiaaiMdacaGGSaGaaG4maiaaigdacaaI2aGaaGioai aaisdacaGGUaaaaa@5B69@

Вектор начального приближения был нулевым. Если n=180, MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBaiabg2da9iaaigdacaaI4aGaaGimaiaacYcaaaa@3AED@  то развиваемый метод итерационных расширений при заданной оценке для ошибки δ=0,001 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiTdqMaeyypa0JaaGimaiaacYcacaaIWaGaaGimaiaaigdaaaa@3C51@ останавливался на пятой итерации.
При этом в норме максимума модуля выполнялась оценка.

max 2i,jn1 u i,j 5 u ˘ i,j max 2i,jn1 u ˘ i,j 0,03, u ˘ i,j = u ˘ x i ; y j . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWaaCbeaeaapeGaamyBaiaadggacaWG4baal8aabaWd biaaikdacqGHKjYOcaWGPbGaaiilaiaadQgacqGHKjYOcaWGUbGaey OeI0IaaGymaaWdaeqaaOWdbmaaemaapaqaa8qacaWG1bWdamaaDaaa leaapeGaamyAaiaacYcacaWGQbaapaqaa8qacaaI1aaaaOGaeyOeI0 YdamaaxacabaWdbiaadwhaaSWdaeqabaWdbiaacITaaaGcpaWaaSba aSqaa8qacaWGPbGaaiilaiaadQgaa8aabeaaaOWdbiaawEa7caGLiW oaa8aabaWaaCbeaeaapeGaamyBaiaadggacaWG4baal8aabaWdbiaa ikdacqGHKjYOcaWGPbGaaiilaiaadQgacqGHKjYOcaWGUbGaeyOeI0 IaaGymaaWdaeqaaOWdbmaaemaapaqaamaaxacabaWdbiaadwhaaSWd aeqabaWdbiaacITaaaGcpaWaaSbaaSqaa8qacaWGPbGaaiilaiaadQ gaa8aabeaaaOWdbiaawEa7caGLiWoaaaGaeyizImQaaGimaiaacYca caaIWaGaaG4maiaacYcapaWaaCbiaeaapeGaamyDaaWcpaqabeaape Gaaii2caaak8aadaWgaaWcbaWdbiaadMgacaGGSaGaamOAaaWdaeqa aOWdbiabg2da98aadaWfGaqaa8qacaWG1baal8aabeqaa8qacaGGyl aaaOWaaeWaa8aabaWdbiaadIhapaWaaSbaaSqaa8qacaWGPbaapaqa baGcpeGaai4oaiaadMhapaWaaSbaaSqaa8qacaWGQbaapaqabaaak8 qacaGLOaGaayzkaaGaaiOlaaaa@7E7A@

Таблица числа итераций в зависимости от числа неизвестных решаемых систем следующая.

 

Таблица 1. Зависимость количества итераций от количества неизвестных

N

1444

5329

11664

20449

31684

k

9

8

7

6

6

 

График точного решения для продолженной задачи:

 

Рисунок 1. график точного решения для продолженной задачи

 

Затем при вычислительных экспериментах получался график приближенного решения на самой мелкой из рассматриваемых сеток, который визуально не отличался от графика точного решения, поэтому, чтобы практически не дублировать предыдущий рисунок на следующем рисунке оси кооодинат Ox, Oy повернуты в обратную сторону:

 

Рисунок 2. График приближенного решения для продолженной задачи

 

ЗАКЛЮЧЕНИЕ И ВЫВОДЫ

Разработан асимптотически оптимальный метод при решении эллиптической краевой задачи с условием Дирихле для моделирования изгиба пластины при продольно-поперечной нагрузке в области сложной геометрической формы. Этот метод имеет простую реализацию по сравнению с методом фиктивного пространства [3].

×

About the authors

Svetlana I. Ebel

South Ural State University

Author for correspondence.
Email: ebelsi@susu.ru

Engineer of the Department of Mathematical and Computer Modeling Institute of Natural and Exact Sciences

Russian Federation, Chelyabinsk

Andrey L. Ushakov

South Ural State University

Email: ushakoval@susu.ru

Doctor of Physics and Mathematics, Associate Professor, Professor of the Department of Mathematical and Computer Modeling Institute of Natural and Exact Sciences

Russian Federation, Chelyabinsk

References

  1. Астраханцев, Г. П. Метод фиктивных областей для эллиптического уравнения второго порядка с естественными граничными условиями / Г. П. Астраханцев // Журнал вычислительной математики и математической физики. – 1978. – Т. 18, № 1. – С. 118–125.
  2. Дьяконов, Е. Г. Минимизация вычислительной работы. Асимптотически оптимальные алгоритмы для эллиптических задач / Е. Г. Дьяконов. – М. : Наука, 1989. – 272 с.
  3. Мацокин, А. М. Метод фиктивного пространства и явные операторы продолжения / А. М. Мацокин, С. В. Непомнящих // Журнал вычислительной математики и математической физики. – 1993. – Т. 33, № 1. – С. 52–68.
  4. Ushakov, A. L. Analysis of Biharmonic and Harmonic Models by the Methods of iterative Extensions / А.L. Ushakov, E.A. Meltsaykin // Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software. – 2022. – V. 15, № 3. – P. 51–66.
  5. Ushakov, A. L. A Analysis of Shielded Harmonic and Biharmonic Systems by the Iterative Extension Method / А. L. Ushakov, S. V. Aliukov, Е. A., Meltsaykin, M. P. Eremchuk // Mathematics. – 2023. – V. 12, № 918. – 15 p.
  6. Обэн, Ж. П. Приближённое решение эллиптических краевых задач / Ж. П. Обэн. – М. : Мир, 1977. – 383 с.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1. Graph of the exact solution for the continued problem

Download (122KB)
3. Figure 2. Graph of the approximate solution for the continued problem

Download (123KB)

Copyright (c) 2025 Yugra State University

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.