Separation of water-oil emulsion by polyamide membranes treated with corona plasma

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Studies were carried out on the separation of the water-oil emulsion by polyamide membranes with a pore size of 0.2 μm treated with corona discharge plasma at a voltage of 5–25 kV and a time of 1–5 minutes. An increase in the productivity and efficiency of the separation of the water-oil emulsion by corona-treated polyamide membranes was revealed. Increase of roughness and change of chemical structure of modified membranes are shown.

Full Text

Restricted Access

About the authors

V. O. Dryakhlov

Kazan National Research Technological University

Author for correspondence.
Email: vladisloved@mail.ru
Russian Federation, Kazan, Karl Marx St., 68

I. G. Shaikhiev

Kazan National Research Technological University

Email: vladisloved@mail.ru
Russian Federation, Kazan, Karl Marx St., 68

D. D. Fazullin

Kazan (Volga Region) Federal University

Email: vladisloved@mail.ru

Naberezhnye Chelny Institute

Russian Federation, Naberezhnye Chelny, ave. Mira, 68/19

I. R. Nizameev

Kazan National Research Technical University named after A.N. Tupolev

Email: vladisloved@mail.ru
Russian Federation, Kazan, Karl Marx St., 10

M. F. Galikhanov

Institute of Applied Research, Tatarstan Academy of Sciences

Email: vladisloved@mail.ru
Russian Federation, Kazan, Bauman str., 20

I. F. Mukhamadiev

Kazan National Research Technological University

Email: vladisloved@mail.ru
Russian Federation, Kazan, Karl Marx St., 68

References

  1. McCay D.F., Rowe J.J., Whittier N., Sankaranarayanan S., Etkin D.S. // J. Hazardous Materials. 2004. V. 107. P. 11.
  2. Pak A., Mohammadi T. // Desalination. 2008. V. 222. P. 249.
  3. Nassar N.N., Hassan A., Carbognani L., Lopez- F., Pereira-Almao P. // Fuel. 2012. V. 95. P. 257.
  4. Haruna A., Merican Z.M.A., Musa S.G. // J. Industrial and Engineering Chemistry. 2022. V. 112. P. 20.
  5. Deng S., Wang Z., Gu Q., Meng F., Li J., Wang H. // Fuel Processing Technology. 2011. V. 92(5). P. 1062.
  6. Peng B., Yao Z., Wang X., Crombeen M., Sweeney D.G., Tam K.C. // Green Energy & Environment. 2020 V. 5(1). P. 37.
  7. Albatrni H., Qiblawey H., Almomani F., Adham S., Khraisheh M. // Chemosphere. 2019. V. 233. P. 809.
  8. Varjani S., Joshi R., Srivastava V.K., Ngo H.H., Guo W. // Environmental Science and Pollution Research. 2020. V. 27. P. 27172.
  9. Mohammadi L., Rahdar A., Bazrafshan E., Dahmardeh H., Susan M.A.B.H., Kyzas G.Z. // Processes. 2020. V. 8(4). № 447.
  10. Dmitrieva E.S., Anokhina T.S., Novitsky E.G., Volkov V.V., Borisov I.L., Volkov A.V. // Polymers. 2022. V. 14(5). № 980.
  11. Muthukumar K., Kaleekkal N.J., Lakshmi D.S., et all. // J. Appl. Polym. Sci. 2019. № 24. P. 1–10.
  12. Fazullin D.D., Mavrin G.V. // Chemical and Petroleum Engineering. 2020. № 56. P. 215222.
  13. Шайхиев И.Г., Галиханов М.Ф., Дряхлов В.О., Алексеева М.Ю., Фазуллин Д.Д. // Вода: Химия и Экология. 2019. № 1–2 (118). С. 77–82.
  14. Алексеева М.Ю., Дряхлов В.О., Галиханов М.Ф., Низамеев И.Р., Шайхиев И.Г. // Мембраны И Мембранные Технологии. 2018. Т. 8. № 1. С. 59–65.
  15. Fedotova A.V., Shaikhiev I.G., Dryakhlov V.O., Nizameev. I.R., Abdullin I.S. // Petroleum Chemistry. 2017. V. 57. P. 159.
  16. Fedotova A.V., Dryakhlov V.O., Shaikhiev I.G., Nizameev I.R., Garaeva G.F. // Surface Engineering and Applied Electrochemistry. 2018. V. 54. P. 174.
  17. Shaikhiev I.G., Dryakhlov V.O., Galikhanov M.F., Fazullin D.D., Mavrin G.V // Inorganic Materials: Applied Research. 2020. V. 11. № 5. P. 1160–1164.
  18. Тарасов А.В., Федотов Ю.А., Лепешин С.А., Панов Ю.Т., Окулов К.В., Вдовина А.И. // Известия Самарского научного центра РАН. 2012. № 14 (1–9). С. 2372.
  19. Панов Ю.Т., Тарасов А.В., Лепешин С.А., Ермолаева Е.В. // Современные наукоемкие технологии. 2015. № 12–2. С. 258.
  20. Tusek L., Nitschke M., Werner C. //Colloids and Surfaces. A: Physicochemical and Engineering Aspects. 2001. V. 195. P. 81–95.
  21. Yang Z., Guo H., Tang Y.C. // Journal of membrane science. 2019. V. 590. P. 117297.
  22. Ridgway H.F., Orbell J., Gray S. // J. Membrane Science. 2017. V. 524. P. 436.
  23. Shao S., Zeng F., Long L., Zhu X., Peng L.E., Wang F., Yang Z. Tang C.Y. // Environmental Science & Technology. 2022. V. 56(18). P. 12811.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Corona device diagram: 1 – high voltage source, 2 – grounded electrode, 3 – corona electrode, 4 – membrane sample.

Download (45KB)
3. Fig. 2. Performance of separation of oil emulsion by PA membranes treated with corona discharge at: a) U = 5 kV; b) U = 15 kV; c) U = 25 kV.

Download (269KB)
4. Fig. 3. Graph of the dependence of particle sizes and VNE intensity before and after corona treatment.

Download (77KB)
5. Fig. 4. Diffraction pattern of the original and treated PA membrane with a pore size of 0.2 µm.

Download (76KB)
6. Fig. 5. IR spectrum of the original and corona-treated PA membranes with a pore size of 0.2 µm.

Download (79KB)
7. Fig. 6. Images of the surface with corresponding topographic histograms of the PA membrane: a) original; b) corona-treated.

Download (878KB)

Copyright (c) 2024 Russian Academy of Sciences