Separation of water-oil emulsion by polyamide membranes treated with corona plasma

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Studies were carried out on the separation of the water-oil emulsion by polyamide membranes with a pore size of 0.2 μm treated with corona discharge plasma at a voltage of 5–25 kV and a time of 1–5 minutes. An increase in the productivity and efficiency of the separation of the water-oil emulsion by corona-treated polyamide membranes was revealed. Increase of roughness and change of chemical structure of modified membranes are shown.

全文:

受限制的访问

作者简介

V. Dryakhlov

Kazan National Research Technological University

编辑信件的主要联系方式.
Email: vladisloved@mail.ru
俄罗斯联邦, Kazan, Karl Marx St., 68

I. Shaikhiev

Kazan National Research Technological University

Email: vladisloved@mail.ru
俄罗斯联邦, Kazan, Karl Marx St., 68

D. Fazullin

Kazan (Volga Region) Federal University

Email: vladisloved@mail.ru

Naberezhnye Chelny Institute

俄罗斯联邦, Naberezhnye Chelny, ave. Mira, 68/19

I. Nizameev

Kazan National Research Technical University named after A.N. Tupolev

Email: vladisloved@mail.ru
俄罗斯联邦, Kazan, Karl Marx St., 10

M. Galikhanov

Institute of Applied Research, Tatarstan Academy of Sciences

Email: vladisloved@mail.ru
俄罗斯联邦, Kazan, Bauman str., 20

I. Mukhamadiev

Kazan National Research Technological University

Email: vladisloved@mail.ru
俄罗斯联邦, Kazan, Karl Marx St., 68

参考

  1. McCay D.F., Rowe J.J., Whittier N., Sankaranarayanan S., Etkin D.S. // J. Hazardous Materials. 2004. V. 107. P. 11.
  2. Pak A., Mohammadi T. // Desalination. 2008. V. 222. P. 249.
  3. Nassar N.N., Hassan A., Carbognani L., Lopez- F., Pereira-Almao P. // Fuel. 2012. V. 95. P. 257.
  4. Haruna A., Merican Z.M.A., Musa S.G. // J. Industrial and Engineering Chemistry. 2022. V. 112. P. 20.
  5. Deng S., Wang Z., Gu Q., Meng F., Li J., Wang H. // Fuel Processing Technology. 2011. V. 92(5). P. 1062.
  6. Peng B., Yao Z., Wang X., Crombeen M., Sweeney D.G., Tam K.C. // Green Energy & Environment. 2020 V. 5(1). P. 37.
  7. Albatrni H., Qiblawey H., Almomani F., Adham S., Khraisheh M. // Chemosphere. 2019. V. 233. P. 809.
  8. Varjani S., Joshi R., Srivastava V.K., Ngo H.H., Guo W. // Environmental Science and Pollution Research. 2020. V. 27. P. 27172.
  9. Mohammadi L., Rahdar A., Bazrafshan E., Dahmardeh H., Susan M.A.B.H., Kyzas G.Z. // Processes. 2020. V. 8(4). № 447.
  10. Dmitrieva E.S., Anokhina T.S., Novitsky E.G., Volkov V.V., Borisov I.L., Volkov A.V. // Polymers. 2022. V. 14(5). № 980.
  11. Muthukumar K., Kaleekkal N.J., Lakshmi D.S., et all. // J. Appl. Polym. Sci. 2019. № 24. P. 1–10.
  12. Fazullin D.D., Mavrin G.V. // Chemical and Petroleum Engineering. 2020. № 56. P. 215222.
  13. Шайхиев И.Г., Галиханов М.Ф., Дряхлов В.О., Алексеева М.Ю., Фазуллин Д.Д. // Вода: Химия и Экология. 2019. № 1–2 (118). С. 77–82.
  14. Алексеева М.Ю., Дряхлов В.О., Галиханов М.Ф., Низамеев И.Р., Шайхиев И.Г. // Мембраны И Мембранные Технологии. 2018. Т. 8. № 1. С. 59–65.
  15. Fedotova A.V., Shaikhiev I.G., Dryakhlov V.O., Nizameev. I.R., Abdullin I.S. // Petroleum Chemistry. 2017. V. 57. P. 159.
  16. Fedotova A.V., Dryakhlov V.O., Shaikhiev I.G., Nizameev I.R., Garaeva G.F. // Surface Engineering and Applied Electrochemistry. 2018. V. 54. P. 174.
  17. Shaikhiev I.G., Dryakhlov V.O., Galikhanov M.F., Fazullin D.D., Mavrin G.V // Inorganic Materials: Applied Research. 2020. V. 11. № 5. P. 1160–1164.
  18. Тарасов А.В., Федотов Ю.А., Лепешин С.А., Панов Ю.Т., Окулов К.В., Вдовина А.И. // Известия Самарского научного центра РАН. 2012. № 14 (1–9). С. 2372.
  19. Панов Ю.Т., Тарасов А.В., Лепешин С.А., Ермолаева Е.В. // Современные наукоемкие технологии. 2015. № 12–2. С. 258.
  20. Tusek L., Nitschke M., Werner C. //Colloids and Surfaces. A: Physicochemical and Engineering Aspects. 2001. V. 195. P. 81–95.
  21. Yang Z., Guo H., Tang Y.C. // Journal of membrane science. 2019. V. 590. P. 117297.
  22. Ridgway H.F., Orbell J., Gray S. // J. Membrane Science. 2017. V. 524. P. 436.
  23. Shao S., Zeng F., Long L., Zhu X., Peng L.E., Wang F., Yang Z. Tang C.Y. // Environmental Science & Technology. 2022. V. 56(18). P. 12811.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Corona device diagram: 1 – high voltage source, 2 – grounded electrode, 3 – corona electrode, 4 – membrane sample.

下载 (45KB)
3. Fig. 2. Performance of separation of oil emulsion by PA membranes treated with corona discharge at: a) U = 5 kV; b) U = 15 kV; c) U = 25 kV.

下载 (269KB)
4. Fig. 3. Graph of the dependence of particle sizes and VNE intensity before and after corona treatment.

下载 (77KB)
5. Fig. 4. Diffraction pattern of the original and treated PA membrane with a pore size of 0.2 µm.

下载 (76KB)
6. Fig. 5. IR spectrum of the original and corona-treated PA membranes with a pore size of 0.2 µm.

下载 (79KB)
7. Fig. 6. Images of the surface with corresponding topographic histograms of the PA membrane: a) original; b) corona-treated.

下载 (878KB)

版权所有 © Russian Academy of Sciences, 2024