The effect of space flight factors on the interaction of Escherichia coli with bacteriophage T7

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

For the first time, the interaction between bacteria and bacteriophage was studied under space conditions. The model system of E. coli and bacteriophage T7 was used. The results of the interaction depended on the duration of exposure of the system to space flight factors. During the first 2 days of microgravity exposure the virus replication rate in Space was higher than on Earth. The bacteria then have adapted to space conditions and acquired resistance to the bacteriophage, which persisted for 2 days after return to Earth. Over the next three days, the sensitivity of the E. coli to the T7 bacteriophage returned to its original level.

Full Text

Restricted Access

About the authors

N. N. Sykilinda

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences

Author for correspondence.
Email: sykilinda@mail.ru
Russian Federation, Moscow, 117997

A. A. Lukianova

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences

Email: sykilinda@mail.ru
Russian Federation, Moscow, 117997

V. V. Lavrikova

JSC “BIOHIMMASH”

Email: sykilinda@mail.ru
Russian Federation, Moscow, 127299

I. V. Kutnik

Yu.A. Gagarin Research and Test Cosmonaut Training Center

Email: sykilinda@mail.ru
Russian Federation, Star City, Moscow region, 141160

N. V. Panin

Lomonosov Moscow State University

Email: sykilinda@mail.ru

Research Belozersky Institute of Physical and Chemical Biology

Russian Federation, Moscow, 119991

N. A. Staritsyn

JSC “BIOHIMMASH”

Email: sykilinda@mail.ru
Russian Federation, Moscow, 127299

K. A. Miroshnikov

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences

Email: sykilinda@mail.ru
Russian Federation, Moscow, 117997

References

  1. Novikova N.D. // Microb. Ecol. 2004. V. 47. №. 2. P. 127–132.
  2. Novikova N., De Boever P., Poddubko S., Deshevaya E., Polikarpov N., Rakova N. et al. // Res. Microbiol. 2006. V. 157. № 1. P. 5–12.
  3. Zhang Y., Zhang L.T., Li Z.D., Xin C.X., Li X.Q., Wang X., Deng Y.L. // Microb. Ecol. 2019. V. 78. № 3. P. 631–650.
  4. Checinska Sielaff A., Urbaniak C., Mohan G.B.M., Stepanov V.G., Tran Q., Wood J.M. et al. // Microbiome. 2019. V. 7(1): 50. https://doi.org/10.1186/s40168-019-0666-x
  5. Ichijo T., Yamaguchi N., Tanigaki F., Shirakawa M., Nasu M. // NPJ Microgravity. 2016. V. 2. 16007. https://doi.org/10.1038/npjmgrav.2016.7
  6. Crucian B., Babiak-Vazquez A., Johnston S., Pierson D.L., Ott C.M., Sams C. // Int. J. Gen. Med. 2016. № 9. P. 383–391.
  7. Gray G.W., Sargsyan A.E., Davis J.R. // Aviat. Space Environ. Med. 2010. V. 81. №. 12. P. 1128–1132.
  8. Nickerson C.A., Ott C.M., Wilson J.W., Ramamurthy R., Pierson D.L. // Microbiol. Mol. Biol. Rev. 2004. V. 68. № 2. P. 345–361.
  9. Senatore G., Mastroleo F, Leys N., Mauriello G. // Future Microbiol. 2018. № 13. P. 831–847.
  10. Huang B., Li D.G., Huang Y., Liu C.T. // Mil. Med. Res. 2018. V. 5. № 1 :18. https://doi.org/10.1186/s40779-018-0162-9
  11. Horneck G., Klaus D.M., Mancinelli R.L. // Microbiol. Mol. Biol. Rev. 2010. V. 74. Р. 121–156.
  12. Kim W., Tengra F.K., Young Z., Shong J., Marchand N., Chan H.K., // PloS One. 2013. V. 8. № 4. e62437. https://doi.org/10.1371/journal.pone.0062437
  13. McLean R.J., Cassanto J.M., Barnes M.B., Koo J.H. // FEMS Microbiol. Lett. 2001. V. 195. № 2. P. 115–119.
  14. Рыбальченко О.В., Орлова О.Г., Вишневская О.Н., Капустина В.В., Потокин И.Л., Лаврикова В.В. // Журнал микробиологии, эпидемиологии и иммунобиологии. 2016. Т. 93. № 6. C. 3–10.
  15. Benoit M.R., Li W., Stodieck L.S., Lam K.S., Winther C.L., Roane T.M., Klaus D.M. // Appl. Microbiol. Biotechnol. 2006. V.70. №. 4. P. 403–411.
  16. Morrison M.D., Fajardo-Cavazos P., Nicholson W.L. // Appl Environ Microbiol. 2017. V. 83. № 21. e01584-17. https://doi.org/10.1128/AEM.01584-17
  17. Leys N.M., Hendrickx L., De Boever P., Baatout S., Mergeay M. // J. Biol. Regul. Homeost. Agents. 2004. V. 18. № 2. P. 193–199.
  18. Padgen M.R., Lera M.P., Parra M.P., Ricco A.J., Chin M., Chinn T.N. et al. // Life Sci. Space Res. (Amst). 2020. V. 18. № 24. https://doi.org/10.1016/j.lssr.2019.10.00719
  19. Zea L., Prasad N., Levy S.E., Stodieck L., Jones A., Shrestha S., Klaus D. A. // PLoS One. 2016. №. 11: e0164359. https://doi.org/10.1371/journal.pone.0164359
  20. Aunins T.R., Erickson K.E., Prasad N., Levy S.E., Jones A., Shrestha S. et al. // Front Microbiol. 2018. V. 9. №. 310. https://doi.org/10.3389/fmicb.2018.00310
  21. Zea L., Larsen M., Estante F., Qvortrup K., Moeller R., Dias de Oliveira S., et al. // Front Microbiol. 2017. V. 8. 1598. https://doi.org/10.3389/fmicb.2017.01598
  22. Urbaniak C., Sielaff A.C., Frey K.G., Allen J.E., Singh N., Jaing C., Wheeler K., Venkateswaran K. // Sci. Rep. 2018. №.8 (814). P. 1–23.
  23. Wilson J.W., Ott C.M., Höner zu Bentrup K., Ramamurthy R., Quick L., Porwollik S. et al. // Proc. Natl. Acad. Sci. U S A. 2007. V. 104. № 41. P. 16299–16304.
  24. Taylor P. // Infect Drug Resist. 2015. №. 8. P. 249–262.
  25. Kutter E.M., Kuhl S.J., Abedon S.T. // Future Microbiology. 2015. V. 10. №. 5. P. 685–688.
  26. Bourdin G., Navarro A., Sarker S.A., Pittet A.C., Qadri F., Sultana S. et al. // Microb Biotechnol. 2014. № 7(2). P. 165–176. https://doi.org/10.1111/1751-7915.12113
  27. Kropinski A.M. // Can. J. Infect. Dis. Med. Microbiol. 2006. V. 17. № 5. P. 297–306.
  28. Donlan R.M. // Trends Microbiol. 2009. № 17. P. 66–72.
  29. Latz S., Wahida A., Arif A., Hafner H., Hoss M., Ritter K., Horz H.P. // J. Basic Microbiol. 2016. V. 56. № 10. P. 1117–1123.
  30. Крылов С.В., Кропински А.М., Плетенева Е.А., Шабурова О.В., Буркальцева М.В., Мирошников К.А., Крылов В.Н. // Генетика. 2012. Т. 48. № 9. С. 1057–1067.
  31. Aleshkin A., Rubalsky E., Popova F., Bogun A., Evstigneev V., Pchelintsev S. et al. // EMBO Conference on Viruses of Microbes. Цюрих, Швейцария, 2014.
  32. Nabergoj D., Modic P., Podgornik A. // Microbiology Open. 2018. V. 7. № 2. e00558. https://doi.org/10.1002/mbo3.558

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Laying out the “Microvir” system in an open position with installed cassettes (a), external view of the “Microvir” cassette (b).

Download (232KB)
3. Fig. 2. Photographs of the NA “Microvir” cassettes immediately after moving the contents of the upper wells to the lower ones in CE (a) and NE (b). Photographs of the NA “Microvir” cassettes after completion of cell lysis in CE (c) and NE (d).

Download (563KB)
4. Fig. 3. Sensitivity of control E. coli cells from CE to bacteriophage T7 after the return of the Microvir NA from the ISS (a): 1 – 1 day, 2 – 2 days, 3 – 3 days (experiment of the second day), 4 – 3 days (experiment of the first day), 5 – 5 days (experiment of the second day), 6 – 5 days (experiment of the first day). Sensitivity of control E. coli cells from NE to bacteriophage T7 after the completion of the experiment (b): 1 – 1 day, 2 – 1 day, 3 – 3 days, 4 – 5 days.

Download (184KB)

Copyright (c) 2024 Russian Academy of Sciences