p-toluenesulfonic acid monohydrate concentration effect on the cyclohexene methoxycarbonylation reaction
- 作者: Sevostyanova N.T.1
-
隶属关系:
- Tula State Lev Tolstoy Pedagogical University
- 期: 卷 44, 编号 2 (2025)
- 页面: 22-31
- 栏目: Kinetics and mechanism of chemical reactions, catalysis
- URL: https://vestnikugrasu.org/0207-401X/article/view/681123
- DOI: https://doi.org/10.31857/S0207401X25020025
- ID: 681123
如何引用文章
详细
Taking into account the data on water binding to stable acetic acid hydrates, an interpretation of the dependence of the rate of the cyclohexene methoxycarbonylation reaction catalyzed by the system Pd(OAc)2 – PPh3 – p-toluenesulfonic acid monohydrate, depending on the last component concentration is proposed. This reaction mechanism scheme is supplemented by the reaction of formation of stable acetic acid hydrates AcOH×(H2O)n, where n =1–10. The effective rate constant of cyclohexene methoxycarbonylation has been estimated. It is con-cluded that the stable acetic acid hydrates formation in the presence of small water amounts in toluene medium is possible.
全文:

作者简介
N. Sevostyanova
Tula State Lev Tolstoy Pedagogical University
编辑信件的主要联系方式.
Email: sevostyanova.nt@gmail.com
俄罗斯联邦, Tula
参考
- K. Dong, R. Sang, X. Fang et al. Angew. Chem., Int. Ed. 56, 5267 (2017). https://doi.org/10.1002/anie.201700317
- G.M. Yee, M.A. Hillmyer, I.A. Tonks. ACS Sust. Chem. Eng. 6 (8), 9579 (2018). https://doi.org/10.1021/acssuschemeng.8b02359
- J. Yang, J. Liu, Y. Ge et al. Angew. Chem., Int. Ed. 60, 9527 (2021). https://doi.org/10.1002/anie.202015329
- U. Biermann, U. Bornscheuer, I. Feussner, M.A.R. Meier, J.O. Metzger, Ibid. 60, 2 (2021). https://doi.org/10.1002/anie.202100778
- N.T. Sevostyanova, S.A. Batashev. Catalysis in Industry. 15 (4), 333 (2023). https://doi.org/10.1134/S2070050423040104
- N.T. Sevostyanova, S.A. Batashev, A.S. Rodionova, D.K. Kozlenko. Tetrahedron. 146, 133653 (2023). https://doi.org/10.1016/j.tet.2023.133653
- N.T. Sevostyanova, S.A. Batashev. Russ. J. Appl. Chem. 95 (8), 1087 (2022). https://doi.org/10.1134/S107042722208002
- S.O. Dorofeenko, E.V. Pollanezyk. Russ. J. Phys. Chem. B. 16 (2), 242 (2022). https://doi.org/10.1134/S199079312202004X
- N.T. Sevostyanova, S.A. Batashev, A.S. Rodionova. Russ. Chem. Bull. 72 (8), 1936 (2023). https://doi.org/10.1007/s11172-023-3980-1
- N.T. Sevostyanova, S.A. Batashev, A.S. Rodionova. Fine Chem. Technol. 18 (1), 29 (2023). https://doi.org/10.32362/2410-6593-2023-18-1-29-37
- V.A. Averyanov, N.T. Sevostyanova, S.A. Batashev, A.M. Demerliy. Ucheniye zapiski: electronniy nauchniy zhurnal Kurskogo gosudarstvennogo universiteta. 2 (3), 60 (2013). http://scientific-notes.ru/magazine/archive/number/32
- V.A. Aver’yanov, N.T. Sevost’yanova, S.A. Batashev, A.A. Vorob’ev, A.S. Rodionova. Russ. J. Phys. Chem. B. 8 (2), 140 (2014). https://doi.org/10.1134/S1990793114020031
- N.T. Sevostyanova, V.A. Averyanov, S.A. Batashev, A.S. Rodionova, A. A. Vorob’ev. Rus. Chem. Bul, 63 (4), 837 (2014). https://doi.org/10.1007/s11172-014-0518-6
- N.T. Sevostyanova, S.A. Batashev, A.S. Rodionova. Rus. J. Phys. Chem. B. 10, 231 (2016). https://doi.org/10.1134/S199079311602007X
- N.T. Sevostyanova, S.A. Batashev. Rus. J. Phys. Chem. B. 13, 245 (2019). https://doi.org/10.1134/S1990793119020076
- L. Pu, Y.M. Sun, Z.B. Zhang. Sci China Ser B-Chem. 52 (12), 2219 (2009). https://doi.org/10.1007/s11426-009-0288-4
- E.G. Tarakanova, G.V. Yukhnevich // J. Struct. Chem. 58, 1357 (2017). https://doi.org/10.1134/S0022476617070125
- G.M. Nazin, V.V. Dubikhin, A.I. Kazakov, A.V. Nabatova, A.V. Shastin. Russ. J. Phys. Chem. B. 16 (1), 72 (2022). https://doi.org/10.1134/S1990793122010122
- G.M. Nazin, V.V. Dubikhin, A.I. Kazakov et al. Russ. J. Phys. Chem. B. 16 (2), 308 (2022). https://doi.org/10.1134/S1990793122020208
- G.E. Zaikov, M.I. Artsis, V.A. Babkin et al. Russ. J. Phys. Chem. B. 18 (2), 425 (2024). https://doi.org/10.1134/S1990793124020180
补充文件
