p-toluenesulfonic acid monohydrate concentration effect on the cyclohexene methoxycarbonylation reaction

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Taking into account the data on water binding to stable acetic acid hydrates, an interpretation of the dependence of the rate of the cyclohexene methoxycarbonylation reaction catalyzed by the system Pd(OAc)2 – PPh3 – p-toluenesulfonic acid monohydrate, depending on the last component concentration is proposed. This reaction mechanism scheme is supplemented by the reaction of formation of stable acetic acid hydrates AcOH×(H2O)n, where n =1–10. The effective rate constant of cyclohexene methoxycarbonylation has been estimated. It is con-cluded that the stable acetic acid hydrates formation in the presence of small water amounts in toluene medium is possible.

Full Text

Restricted Access

About the authors

N. T. Sevostyanova

Tula State Lev Tolstoy Pedagogical University

Author for correspondence.
Email: sevostyanova.nt@gmail.com
Russian Federation, Tula

References

  1. K. Dong, R. Sang, X. Fang et al. Angew. Chem., Int. Ed. 56, 5267 (2017). https://doi.org/10.1002/anie.201700317
  2. G.M. Yee, M.A. Hillmyer, I.A. Tonks. ACS Sust. Chem. Eng. 6 (8), 9579 (2018). https://doi.org/10.1021/acssuschemeng.8b02359
  3. J. Yang, J. Liu, Y. Ge et al. Angew. Chem., Int. Ed. 60, 9527 (2021). https://doi.org/10.1002/anie.202015329
  4. U. Biermann, U. Bornscheuer, I. Feussner, M.A.R. Meier, J.O. Metzger, Ibid. 60, 2 (2021). https://doi.org/10.1002/anie.202100778
  5. N.T. Sevostyanova, S.A. Batashev. Catalysis in Industry. 15 (4), 333 (2023). https://doi.org/10.1134/S2070050423040104
  6. N.T. Sevostyanova, S.A. Batashev, A.S. Rodionova, D.K. Kozlenko. Tetrahedron. 146, 133653 (2023). https://doi.org/10.1016/j.tet.2023.133653
  7. N.T. Sevostyanova, S.A. Batashev. Russ. J. Appl. Chem. 95 (8), 1087 (2022). https://doi.org/10.1134/S107042722208002
  8. S.O. Dorofeenko, E.V. Pollanezyk. Russ. J. Phys. Chem. B. 16 (2), 242 (2022). https://doi.org/10.1134/S199079312202004X
  9. N.T. Sevostyanova, S.A. Batashev, A.S. Rodionova. Russ. Chem. Bull. 72 (8), 1936 (2023). https://doi.org/10.1007/s11172-023-3980-1
  10. N.T. Sevostyanova, S.A. Batashev, A.S. Rodionova. Fine Chem. Technol. 18 (1), 29 (2023). https://doi.org/10.32362/2410-6593-2023-18-1-29-37
  11. V.A. Averyanov, N.T. Sevostyanova, S.A. Batashev, A.M. Demerliy. Ucheniye zapiski: electronniy nauchniy zhurnal Kurskogo gosudarstvennogo universiteta. 2 (3), 60 (2013). http://scientific-notes.ru/magazine/archive/number/32
  12. V.A. Aver’yanov, N.T. Sevost’yanova, S.A. Batashev, A.A. Vorob’ev, A.S. Rodionova. Russ. J. Phys. Chem. B. 8 (2), 140 (2014). https://doi.org/10.1134/S1990793114020031
  13. N.T. Sevostyanova, V.A. Averyanov, S.A. Batashev, A.S. Rodionova, A. A. Vorob’ev. Rus. Chem. Bul, 63 (4), 837 (2014). https://doi.org/10.1007/s11172-014-0518-6
  14. N.T. Sevostyanova, S.A. Batashev, A.S. Rodionova. Rus. J. Phys. Chem. B. 10, 231 (2016). https://doi.org/10.1134/S199079311602007X
  15. N.T. Sevostyanova, S.A. Batashev. Rus. J. Phys. Chem. B. 13, 245 (2019). https://doi.org/10.1134/S1990793119020076
  16. L. Pu, Y.M. Sun, Z.B. Zhang. Sci China Ser B-Chem. 52 (12), 2219 (2009). https://doi.org/10.1007/s11426-009-0288-4
  17. E.G. Tarakanova, G.V. Yukhnevich // J. Struct. Chem. 58, 1357 (2017). https://doi.org/10.1134/S0022476617070125
  18. G.M. Nazin, V.V. Dubikhin, A.I. Kazakov, A.V. Nabatova, A.V. Shastin. Russ. J. Phys. Chem. B. 16 (1), 72 (2022). https://doi.org/10.1134/S1990793122010122
  19. G.M. Nazin, V.V. Dubikhin, A.I. Kazakov et al. Russ. J. Phys. Chem. B. 16 (2), 308 (2022). https://doi.org/10.1134/S1990793122020208
  20. G.E. Zaikov, M.I. Artsis, V.A. Babkin et al. Russ. J. Phys. Chem. B. 18 (2), 425 (2024). https://doi.org/10.1134/S1990793124020180

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Scheme (1)

Download (8KB)
3. Fig. 1. Effect of TsOH H2O concentration on the initial rate of cyclohexene methoxycarbonylation catalyzed by the Pd(OAc)2 – PPh3 – TsOH H2O system at T = 378 K, PCO = 2.10 106 Pa; concentrations, mol/l: C0(C6H10) = 0.100, C0(CH3OH) = 0.450, C0(Pd(OAc)2) = 1.00 ∙ 10-3, C0(PPh3) = 8.00 ∙ 10-3. Points are experimental data; lines are data calculated using equation (19): 1 is the result of calculation using equation (19) for n = 1; 2 is the result of calculation using equation (19) for n = 6.

Download (25KB)
4. Scheme 1

Download (92KB)
5. Fig. 2. Effect of free H2O concentration on the initial rate of cyclohexene methoxycarbonylation catalyzed by the Pd(OAc)2 – PPh3 – TsOH H2O system at T = 378 K, PCO = 2.10 106 Pa; concentrations, mol/l: C0(C6H10) = 0.100, C0(CH3OH) = 0.450, C0(Pd(OAc)2) = 1.00 10-3, C0(PPh3) = 8.00 ∙ 10-3, C0(TsOH H2O) = 2.40 10-2.

Download (21KB)

Copyright (c) 2025 Russian Academy of Sciences