Study of thermal denaturation of the plasminogen molecule under induced oxidation
- 作者: Wasserman L.A.1, Gavrilina E.S.1, Yurina L.V.1, Vasilyeva A.D.1, Rosenfeld M.A.1
-
隶属关系:
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences
- 期: 卷 43, 编号 11 (2024)
- 页面: 39-46
- 栏目: Chemical physics of biological processes
- URL: https://vestnikugrasu.org/0207-401X/article/view/680976
- DOI: https://doi.org/10.31857/S0207401X24110058
- ID: 680976
如何引用文章
详细
The article is devoted to the study of thermal denaturation of the plasminogen molecule during induced oxidation by hypochlorite in a concentration range (30, 62.5, 125 and 250 µM). By differential scanning calorimetry, it was determined that in the presence of an oxidizing agent, the enthalpy of denaturation of the plasminogen molecule decreases. This is most noticeable for the peak showing the melting of the K4-K5 domains. These results are consistent with previously obtained data on the oxidative modification of amino acid residues of plasminogen treated with different concentrations of hypochlorite using the HPLC-MS/MS method. Taken together, these data and the results of previous studies indicate that the structure of Glu-plasminogen is adapted to moderate HOCl-induced oxidation.
全文:

作者简介
L. Wasserman
Emanuel Institute of Biochemical Physics, Russian Academy of Sciences
Email: lyu.yurina@gmail.com
俄罗斯联邦, Moscow
E. Gavrilina
Emanuel Institute of Biochemical Physics, Russian Academy of Sciences
Email: lyu.yurina@gmail.com
俄罗斯联邦, Moscow
L. Yurina
Emanuel Institute of Biochemical Physics, Russian Academy of Sciences
编辑信件的主要联系方式.
Email: lyu.yurina@gmail.com
俄罗斯联邦, Moscow
A. Vasilyeva
Emanuel Institute of Biochemical Physics, Russian Academy of Sciences
Email: lyu.yurina@gmail.com
俄罗斯联邦, Moscow
M. Rosenfeld
Emanuel Institute of Biochemical Physics, Russian Academy of Sciences
Email: lyu.yurina@gmail.com
俄罗斯联邦, Moscow
参考
- L. Miles, Trends in Cardiovascular Medicine. 13(1), 21–30 (2003). doi: 10.1016/S1050-1738(02)00190-1
- L.R. De Souza, P.M. Melo, T. Paschoalin, et al., Biochemical and Biophysical Research Communications. 433(3), 333–337 (2013). doi: 10.1016/j.bbrc.2013.03.001
- S.M. McKenna, K.J.A. Davies, Biochemical Journal. 254(3), 685–692(1988). doi: 10.1042/bj2540685
- A. Ulfig, L.I. Leichert, Cell. Mol. Life Sci. 78(2), 385–414 (2021). doi: 10.1007/s00018-020-03591-y
- A. Vasilyeva, L. Yurina, V. Ivanov, et al., International Journal of Biological Macromolecules. 206, 64–73 (2022). doi: 10.1016/j.ijbiomac.2022.02.128
- D.G. Deutsch, E.T. Mertz, Science. 170(3962), 1095–1096 (1970). doi: 10.1126/science.170.3962.1095
- U.K. Laemmli, Nature. 227(5259), 680–685 (1970). doi: 10.1038/227680a0
- N.J. White, Y. Wang, X. Fu, et al., Free Radical Biology and Medicine. 96, 181–189 (2016). doi: 10.1016/j.freeradbiomed.2016.04.023
- A.D. Vasilieva, L.V. Yurina, D.Y. Azarova, et al., Russ. J. Phys. Chem. B. 16, 118–122 (2022). doi: 10.1134/S1990793122010316
- L.V. Yurina, A.D. Vasilieva, E.G. Evtushenko, et al., Russ. J. Phys. Chem. B. 18(2), 521-526 (2024). doi: 10.1134/S1990793124020349
- W.H. Lau, N.J. White, T.W. Yeo, et al., Sci Rep. 11(1), 15691 (2021). doi: 10.1038/s41598-021-94401-3
- K.V. Shaitan, Russ. J. Phys. Chem. B. 17(3), 550-571 (2023). doi: 10.1134/S1990793123030259
- A.D. Vasilyeva, L.V. Yurina, A.N. Shchegolikhin, et al., Dokl Biochem Biophys. 488(1), 332-337 (2019). doi: 10.1134/S1607672919050144
- L.N. Shishkina, M.V. Kozlov, T.V. Konstantinova, et al., Russ. J. Phys. Chem. B. 17(1), 141–147 (2023). doi: 10.1134/S1990793123010104
- F.J. Castellino, V.A. Ploplis, J.R. Powell, D.K. Strickland, J Biol Chem. 256(10), 4778–4782 (1981).
- V.V. Novokhatny, S.A. Kudinov, P.L. Privalov, Journal of Molecular Biology. 179(2), 215–232 (1984). doi: 10.1016/0022-2836(84)90466-2
- E. Freire, R.L. Biltonen, Biopolymers. 17(2), 481–496 (1978). doi: 10.1002/bip.1978.360170213
- M.A. Rosenfeld, L.V. Yurina, A.D. Vasilyeva, Biology Bulletin Reviews. 11(7), 647–664 (2021). doi: 10.1134/S2079086421070070
补充文件
