Study of thermal denaturation of the plasminogen molecule under induced oxidation

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The article is devoted to the study of thermal denaturation of the plasminogen molecule during induced oxidation by hypochlorite in a concentration range (30, 62.5, 125 and 250 µM). By differential scanning calorimetry, it was determined that in the presence of an oxidizing agent, the enthalpy of denaturation of the plasminogen molecule decreases. This is most noticeable for the peak showing the melting of the K4-K5 domains. These results are consistent with previously obtained data on the oxidative modification of amino acid residues of plasminogen treated with different concentrations of hypochlorite using the HPLC-MS/MS method. Taken together, these data and the results of previous studies indicate that the structure of Glu-plasminogen is adapted to moderate HOCl-induced oxidation.

全文:

受限制的访问

作者简介

L. Wasserman

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: lyu.yurina@gmail.com
俄罗斯联邦, Moscow

E. Gavrilina

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: lyu.yurina@gmail.com
俄罗斯联邦, Moscow

L. Yurina

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: lyu.yurina@gmail.com
俄罗斯联邦, Moscow

A. Vasilyeva

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: lyu.yurina@gmail.com
俄罗斯联邦, Moscow

M. Rosenfeld

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: lyu.yurina@gmail.com
俄罗斯联邦, Moscow

参考

  1. L. Miles, Trends in Cardiovascular Medicine. 13(1), 21–30 (2003). doi: 10.1016/S1050-1738(02)00190-1
  2. L.R. De Souza, P.M. Melo, T. Paschoalin, et al., Biochemical and Biophysical Research Communications. 433(3), 333–337 (2013). doi: 10.1016/j.bbrc.2013.03.001
  3. S.M. McKenna, K.J.A. Davies, Biochemical Journal. 254(3), 685–692(1988). doi: 10.1042/bj2540685
  4. A. Ulfig, L.I. Leichert, Cell. Mol. Life Sci. 78(2), 385–414 (2021). doi: 10.1007/s00018-020-03591-y
  5. A. Vasilyeva, L. Yurina, V. Ivanov, et al., International Journal of Biological Macromolecules. 206, 64–73 (2022). doi: 10.1016/j.ijbiomac.2022.02.128
  6. D.G. Deutsch, E.T. Mertz, Science. 170(3962), 1095–1096 (1970). doi: 10.1126/science.170.3962.1095
  7. U.K. Laemmli, Nature. 227(5259), 680–685 (1970). doi: 10.1038/227680a0
  8. N.J. White, Y. Wang, X. Fu, et al., Free Radical Biology and Medicine. 96, 181–189 (2016). doi: 10.1016/j.freeradbiomed.2016.04.023
  9. A.D. Vasilieva, L.V. Yurina, D.Y. Azarova, et al., Russ. J. Phys. Chem. B. 16, 118–122 (2022). doi: 10.1134/S1990793122010316
  10. L.V. Yurina, A.D. Vasilieva, E.G. Evtushenko, et al., Russ. J. Phys. Chem. B. 18(2), 521-526 (2024). doi: 10.1134/S1990793124020349
  11. W.H. Lau, N.J. White, T.W. Yeo, et al., Sci Rep. 11(1), 15691 (2021). doi: 10.1038/s41598-021-94401-3
  12. K.V. Shaitan, Russ. J. Phys. Chem. B. 17(3), 550-571 (2023). doi: 10.1134/S1990793123030259
  13. A.D. Vasilyeva, L.V. Yurina, A.N. Shchegolikhin, et al., Dokl Biochem Biophys. 488(1), 332-337 (2019). doi: 10.1134/S1607672919050144
  14. L.N. Shishkina, M.V. Kozlov, T.V. Konstantinova, et al., Russ. J. Phys. Chem. B. 17(1), 141–147 (2023). doi: 10.1134/S1990793123010104
  15. F.J. Castellino, V.A. Ploplis, J.R. Powell, D.K. Strickland, J Biol Chem. 256(10), 4778–4782 (1981).
  16. V.V. Novokhatny, S.A. Kudinov, P.L. Privalov, Journal of Molecular Biology. 179(2), 215–232 (1984). doi: 10.1016/0022-2836(84)90466-2
  17. E. Freire, R.L. Biltonen, Biopolymers. 17(2), 481–496 (1978). doi: 10.1002/bip.1978.360170213
  18. M.A. Rosenfeld, L.V. Yurina, A.D. Vasilyeva, Biology Bulletin Reviews. 11(7), 647–664 (2021). doi: 10.1134/S2079086421070070

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Electropherogram of fibrinogen degradation products ΦG, formed under the influence of plasmin (5% stacking gel, 8% separating gel). Lane 1 – marker proteins; 2 – non-hydrolyzed fibrinogen; 3 – fibrinogen hydrolysis by plasmin, formed from non-oxidized plasminogen; fibrinogen degradation products produced by plasmin, formed from: 4 – plasminogen treated with 30 μM HOCl/–OCl; 5 – plasminogen treated with 62.5 μM HOCl/–OCl; 6 – plasminogen treated with 125 μM HOCl/–OCl; 7 – plasminogen treated with 250 μM HOCl/–OCl.

下载 (97KB)
3. Fig. 2. DSC thermograms of denaturation of the control plasminogen sample (1) and samples treated with sodium hypochlorite at different concentrations: 62.5 μM (2), 125 μM (3), 250 μM (4), 50 mM phosphate buffer, pH 7.4, 150 mM NaCl, plasminogen concentration – 3 mg/ml; T1, T2, T3 – temperatures of denaturation transitions.

下载 (26KB)
4. Fig. 3. Deconvolution of DSC thermograms of denaturation of the control plasminogen sample (a) and samples treated with sodium hypochlorite at different concentrations: 62.5 μM (b), 125 μM (c); 250 μM (d) per 1 mg of protein; 50 mM phosphate buffer, pH 7.4, 150 mM NaCl, plasminogen concentration – 3 mg/ml. Solid lines – experimental DSC thermogram, dashed lines – the result of deconvolution of DSC thermograms, where T1, T2 and T3 correspond to temperature transitions.

下载 (73KB)

版权所有 © Russian Academy of Sciences, 2024