Study of thermal denaturation of the plasminogen molecule under induced oxidation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The article is devoted to the study of thermal denaturation of the plasminogen molecule during induced oxidation by hypochlorite in a concentration range (30, 62.5, 125 and 250 µM). By differential scanning calorimetry, it was determined that in the presence of an oxidizing agent, the enthalpy of denaturation of the plasminogen molecule decreases. This is most noticeable for the peak showing the melting of the K4-K5 domains. These results are consistent with previously obtained data on the oxidative modification of amino acid residues of plasminogen treated with different concentrations of hypochlorite using the HPLC-MS/MS method. Taken together, these data and the results of previous studies indicate that the structure of Glu-plasminogen is adapted to moderate HOCl-induced oxidation.

Full Text

Restricted Access

About the authors

L. A. Wasserman

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: lyu.yurina@gmail.com
Russian Federation, Moscow

E. S. Gavrilina

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: lyu.yurina@gmail.com
Russian Federation, Moscow

L. V. Yurina

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Author for correspondence.
Email: lyu.yurina@gmail.com
Russian Federation, Moscow

A. D. Vasilyeva

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: lyu.yurina@gmail.com
Russian Federation, Moscow

M. A. Rosenfeld

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: lyu.yurina@gmail.com
Russian Federation, Moscow

References

  1. L. Miles, Trends in Cardiovascular Medicine. 13(1), 21–30 (2003). doi: 10.1016/S1050-1738(02)00190-1
  2. L.R. De Souza, P.M. Melo, T. Paschoalin, et al., Biochemical and Biophysical Research Communications. 433(3), 333–337 (2013). doi: 10.1016/j.bbrc.2013.03.001
  3. S.M. McKenna, K.J.A. Davies, Biochemical Journal. 254(3), 685–692(1988). doi: 10.1042/bj2540685
  4. A. Ulfig, L.I. Leichert, Cell. Mol. Life Sci. 78(2), 385–414 (2021). doi: 10.1007/s00018-020-03591-y
  5. A. Vasilyeva, L. Yurina, V. Ivanov, et al., International Journal of Biological Macromolecules. 206, 64–73 (2022). doi: 10.1016/j.ijbiomac.2022.02.128
  6. D.G. Deutsch, E.T. Mertz, Science. 170(3962), 1095–1096 (1970). doi: 10.1126/science.170.3962.1095
  7. U.K. Laemmli, Nature. 227(5259), 680–685 (1970). doi: 10.1038/227680a0
  8. N.J. White, Y. Wang, X. Fu, et al., Free Radical Biology and Medicine. 96, 181–189 (2016). doi: 10.1016/j.freeradbiomed.2016.04.023
  9. A.D. Vasilieva, L.V. Yurina, D.Y. Azarova, et al., Russ. J. Phys. Chem. B. 16, 118–122 (2022). doi: 10.1134/S1990793122010316
  10. L.V. Yurina, A.D. Vasilieva, E.G. Evtushenko, et al., Russ. J. Phys. Chem. B. 18(2), 521-526 (2024). doi: 10.1134/S1990793124020349
  11. W.H. Lau, N.J. White, T.W. Yeo, et al., Sci Rep. 11(1), 15691 (2021). doi: 10.1038/s41598-021-94401-3
  12. K.V. Shaitan, Russ. J. Phys. Chem. B. 17(3), 550-571 (2023). doi: 10.1134/S1990793123030259
  13. A.D. Vasilyeva, L.V. Yurina, A.N. Shchegolikhin, et al., Dokl Biochem Biophys. 488(1), 332-337 (2019). doi: 10.1134/S1607672919050144
  14. L.N. Shishkina, M.V. Kozlov, T.V. Konstantinova, et al., Russ. J. Phys. Chem. B. 17(1), 141–147 (2023). doi: 10.1134/S1990793123010104
  15. F.J. Castellino, V.A. Ploplis, J.R. Powell, D.K. Strickland, J Biol Chem. 256(10), 4778–4782 (1981).
  16. V.V. Novokhatny, S.A. Kudinov, P.L. Privalov, Journal of Molecular Biology. 179(2), 215–232 (1984). doi: 10.1016/0022-2836(84)90466-2
  17. E. Freire, R.L. Biltonen, Biopolymers. 17(2), 481–496 (1978). doi: 10.1002/bip.1978.360170213
  18. M.A. Rosenfeld, L.V. Yurina, A.D. Vasilyeva, Biology Bulletin Reviews. 11(7), 647–664 (2021). doi: 10.1134/S2079086421070070

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Electropherogram of fibrinogen degradation products ΦG, formed under the influence of plasmin (5% stacking gel, 8% separating gel). Lane 1 – marker proteins; 2 – non-hydrolyzed fibrinogen; 3 – fibrinogen hydrolysis by plasmin, formed from non-oxidized plasminogen; fibrinogen degradation products produced by plasmin, formed from: 4 – plasminogen treated with 30 μM HOCl/–OCl; 5 – plasminogen treated with 62.5 μM HOCl/–OCl; 6 – plasminogen treated with 125 μM HOCl/–OCl; 7 – plasminogen treated with 250 μM HOCl/–OCl.

Download (97KB)
3. Fig. 2. DSC thermograms of denaturation of the control plasminogen sample (1) and samples treated with sodium hypochlorite at different concentrations: 62.5 μM (2), 125 μM (3), 250 μM (4), 50 mM phosphate buffer, pH 7.4, 150 mM NaCl, plasminogen concentration – 3 mg/ml; T1, T2, T3 – temperatures of denaturation transitions.

Download (26KB)
4. Fig. 3. Deconvolution of DSC thermograms of denaturation of the control plasminogen sample (a) and samples treated with sodium hypochlorite at different concentrations: 62.5 μM (b), 125 μM (c); 250 μM (d) per 1 mg of protein; 50 mM phosphate buffer, pH 7.4, 150 mM NaCl, plasminogen concentration – 3 mg/ml. Solid lines – experimental DSC thermogram, dashed lines – the result of deconvolution of DSC thermograms, where T1, T2 and T3 correspond to temperature transitions.

Download (73KB)

Copyright (c) 2024 Russian Academy of Sciences