Effects of Surfactants on the Aggregation of 6,6'-Disubstituted Thiacarbocyanine Dyes in Aqueous Solutions
- 作者: Pronkin P.G.1, Shvedova L.A.1, Tatikolov A.S.1
-
隶属关系:
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences
- 期: 卷 43, 编号 3 (2024)
- 页面: 3-13
- 栏目: СТРОЕНИЕ ХИМИЧЕСКИХ СОЕДИНЕНИЙ, КВАНТОВАЯ ХИМИЯ, СПЕКТРОСКОПИЯ
- URL: https://vestnikugrasu.org/0207-401X/article/view/674968
- DOI: https://doi.org/10.31857/S0207401X24030016
- EDN: https://elibrary.ru/VGWISY
- ID: 674968
如何引用文章
详细
The aggregation properties of a number of 6,6'-substituted thiacarbocyanine dyes were studied by spectral-fluorescent methods: T-304, T-306, T-307, T-336 and, for comparison, thiacarbocyanine Cyan 2, which has no substituents in the 6,6'-positions, in aqueous buffer solutions and in the presence of various types of surfactants. The method of moments was used to characterize the absorption spectra (band positions, width, shape). Substituents in the 6,6'-positions significantly increase the ability of dyes T-304, T-306, T-307, T-336 to aggregation (dimerization, as well as to the formation of disordered aggregates with broad low-intensity absorption spectra). The introduction of surfactants leads to rearrangement of the spectra associated with the complex nature of the equilibria between monomers and aggregates of various structures (including surfactant molecules, if present), in particular, with a decrease in the contribution of disordered aggregates. However, the decomposition of dimeric aggregates of 6,6'-substituted cyanines is observed only at very high surfactant concentrations (~20 CMC and higher, where CMC is the critical micelle concentration). At the same time, the passing of surfactant concentrations through CMC does not significantly affect the spectral-fluorescent properties of the dyes, which is probably due to rather strong interactions of the dyes with individual surfactant molecules and premicellar associates of surfactants.
全文:

作者简介
P. Pronkin
Emanuel Institute of Biochemical Physics, Russian Academy of Sciences
编辑信件的主要联系方式.
Email: pronkinp@gmail.com
俄罗斯联邦, Moscow
L. Shvedova
Emanuel Institute of Biochemical Physics, Russian Academy of Sciences
Email: pronkinp@gmail.com
俄罗斯联邦, Moscow
A. Tatikolov
Emanuel Institute of Biochemical Physics, Russian Academy of Sciences
Email: pronkinp@gmail.com
俄罗斯联邦, Moscow
参考
- Tatikolov A.S. // J. Photochem. Photobiol. C. 2012. V. 13. P. 55; https://doi.org/10.1016/j.jphotochemrev.2011.11.001
- Pronkin P.G., Tatikolov A.S. // Molecules. 2022. V. 27. P. 6367; https://doi.org/10.3390/molecules27196367
- Pronkin P.G., Tatikolov A.S. // Spectrochim. Acta, Part A. 2021. V. 263. P. 120171; https://doi.org/10.1016/j.saa.2021.120171
- Pronkin P.G., Tatikolov A.S. // Spectrochim. Acta, Part A. 2022. V. 269. P. 120744; https://doi.org/10.1016/j.saa.2021.120744
- Tatikolov A.S. // Russ. J. Phys. Chem. B. 2021. V. 15. P. 33; https://doi.org/10.1134/S1990793121010280
- Pronkin P.G., Tatikolov A.S. // Russ. J. Phys. Chem. B. 2021. V. 15. P. 25; https://doi.org/10.1134/S1990793121010267
- Tatikolov A.S., Pronkin P.G., Shvedova L.A., Panova I.G. // Russ. J. Phys. Chem. B. 2019. V. 13. P. 900; https://doi.org/10.1134/S1990793119060290
- Pronkin P.G., Tatikolov A.S. // Russ. J. Phys. Chem. B. 2022. V. 16. P. 1; https://doi.org/10.1134/S1990793122010262
- Kovalska V.B., Volkova K.D., Losytskyy M.Yu. et al. // Spectrochim. Acta. Part A. 2006. V. 65. P. 271; https://doi.org/10.1016/j.saa.2005.10.042
- Herz A.H. // Adv. Coll. Interf. Sci. 1977. V. 8. P. 237; https://doi.org/10.1016/0001-8686(77)80011-0
- Chibisov A.K., Prokhorenko V.I., Gorner H. // Chem. Phys. 1999. V. 250. P. 47; https://doi.org/10.1016/S0301-0104(99)00245-1
- Sharma R., Shaheen A., Mahajan R.K. // Colloid Polym. Sci. 2011. V. 289. P. 43; https://doi.org/10.1007/s00396-010-2323-6
- Goronja J.M., Janošević Ležaić A.M., Dimitrij ević B.M., Malenović A.M., Stanisavljev D.R., Pejić N.D. // Hem. Ind. 2016. V. 70 (4). P. 485; https://doi.org/10.2298/HEMIND150622055G
- Akimkin T.M., Tatikolov A.S., Yarmoluk S.M. // High Energy Chem. 2011. V. 45. P. 222; https://doi.org/10.1007/BF00615763
- T.M. Akimkin, A.S. Tatikolov, and S.M. Yarmoluk, High Energy Chem. 45 (3), 222 (2011). https://doi.org/10.1134/S0018143911030027
- Khimenko V., Chibisov A.K., Gorner H. // J. Phys. Chem. A. 1997. V. 101. P. 7304; https://doi.org/10.1021/jp971472b
- Noukakis D., Van der Auweraer M., Toppet S., De Schryver F. // J. Phys. Chem. 1995. V. 99. P. 11860; https://doi.org/10.1021/j100031a012
- Kolesnikov A.M., Mikhailenko F.A. // Russ. Chem. Rev. 1987. V. 56. P. 275; https://doi.org/10.1070/RC1987v056n03ABEH003270
- Shapiro B.I. // Russ. Chem. Rev. 2006. V. 75. P. 433; https://doi.org/10.1070/RC2006v075n05ABEH001208
- Chibisov A.K. // High Energy Chem. 2007. V. 41. P. 200; https://doi.org/10.1134/S0018143907030071
- Akimkin T.M.,. Tatikolov A.S, Panova I.G., Yarmoluk S.M. // High Energy Chem. 2011. V. 45. P. 515; https://doi.org/10.1134/S0018143911060026
- Molinspiration, 2015, Calculation of Molecular Properties and Bioactivity Score. http://www.molinspiration.com (accessed June 25, 2021).
- Pronkin P.G., Tatikolov A.C. // Spectrochimica Acta, Part A. 2023. V. 292. P. 122416; https://doi.org/10.1016/j.saa.2023.122416
- Gromov S.P., Chibisov A.K., Alfimov M.V. // J. Phys. D. 2021. V. 15. P. 219; https://doi.org/10.1134/S1990793121020202
补充文件
