Effects of Surfactants on the Aggregation of 6,6'-Disubstituted Thiacarbocyanine Dyes in Aqueous Solutions

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The aggregation properties of a number of 6,6'-substituted thiacarbocyanine dyes were studied by spectral-fluorescent methods: T-304, T-306, T-307, T-336 and, for comparison, thiacarbocyanine Cyan 2, which has no substituents in the 6,6'-positions, in aqueous buffer solutions and in the presence of various types of surfactants. The method of moments was used to characterize the absorption spectra (band positions, width, shape). Substituents in the 6,6'-positions significantly increase the ability of dyes T-304, T-306, T-307, T-336 to aggregation (dimerization, as well as to the formation of disordered aggregates with broad low-intensity absorption spectra). The introduction of surfactants leads to rearrangement of the spectra associated with the complex nature of the equilibria between monomers and aggregates of various structures (including surfactant molecules, if present), in particular, with a decrease in the contribution of disordered aggregates. However, the decomposition of dimeric aggregates of 6,6'-substituted cyanines is observed only at very high surfactant concentrations (~20 CMC and higher, where CMC is the critical micelle concentration). At the same time, the passing of surfactant concentrations through CMC does not significantly affect the spectral-fluorescent properties of the dyes, which is probably due to rather strong interactions of the dyes with individual surfactant molecules and premicellar associates of surfactants.

Full Text

Restricted Access

About the authors

P. G. Pronkin

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Author for correspondence.
Email: pronkinp@gmail.com
Russian Federation, Moscow

L. A. Shvedova

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: pronkinp@gmail.com
Russian Federation, Moscow

A. S. Tatikolov

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: pronkinp@gmail.com
Russian Federation, Moscow

References

  1. Tatikolov A.S. // J. Photochem. Photobiol. C. 2012. V. 13. P. 55; https://doi.org/10.1016/j.jphotochemrev.2011.11.001
  2. Pronkin P.G., Tatikolov A.S. // Molecules. 2022. V. 27. P. 6367; https://doi.org/10.3390/molecules27196367
  3. Pronkin P.G., Tatikolov A.S. // Spectrochim. Acta, Part A. 2021. V. 263. P. 120171; https://doi.org/10.1016/j.saa.2021.120171
  4. Pronkin P.G., Tatikolov A.S. // Spectrochim. Acta, Part A. 2022. V. 269. P. 120744; https://doi.org/10.1016/j.saa.2021.120744
  5. Tatikolov A.S. // Russ. J. Phys. Chem. B. 2021. V. 15. P. 33; https://doi.org/10.1134/S1990793121010280
  6. Pronkin P.G., Tatikolov A.S. // Russ. J. Phys. Chem. B. 2021. V. 15. P. 25; https://doi.org/10.1134/S1990793121010267
  7. Tatikolov A.S., Pronkin P.G., Shvedova L.A., Panova I.G. // Russ. J. Phys. Chem. B. 2019. V. 13. P. 900; https://doi.org/10.1134/S1990793119060290
  8. Pronkin P.G., Tatikolov A.S. // Russ. J. Phys. Chem. B. 2022. V. 16. P. 1; https://doi.org/10.1134/S1990793122010262
  9. Kovalska V.B., Volkova K.D., Losytskyy M.Yu. et al. // Spectrochim. Acta. Part A. 2006. V. 65. P. 271; https://doi.org/10.1016/j.saa.2005.10.042
  10. Herz A.H. // Adv. Coll. Interf. Sci. 1977. V. 8. P. 237; https://doi.org/10.1016/0001-8686(77)80011-0
  11. Chibisov A.K., Prokhorenko V.I., Gorner H. // Chem. Phys. 1999. V. 250. P. 47; https://doi.org/10.1016/S0301-0104(99)00245-1
  12. Sharma R., Shaheen A., Mahajan R.K. // Colloid Polym. Sci. 2011. V. 289. P. 43; https://doi.org/10.1007/s00396-010-2323-6
  13. Goronja J.M., Janošević Ležaić A.M., Dimitrij ević B.M., Malenović A.M., Stanisavljev D.R., Pejić N.D. // Hem. Ind. 2016. V. 70 (4). P. 485; https://doi.org/10.2298/HEMIND150622055G
  14. Akimkin T.M., Tatikolov A.S., Yarmoluk S.M. // High Energy Chem. 2011. V. 45. P. 222; https://doi.org/10.1007/BF00615763
  15. T.M. Akimkin, A.S. Tatikolov, and S.M. Yarmoluk, High Energy Chem. 45 (3), 222 (2011). https://doi.org/10.1134/S0018143911030027
  16. Khimenko V., Chibisov A.K., Gorner H. // J. Phys. Chem. A. 1997. V. 101. P. 7304; https://doi.org/10.1021/jp971472b
  17. Noukakis D., Van der Auweraer M., Toppet S., De Schryver F. // J. Phys. Chem. 1995. V. 99. P. 11860; https://doi.org/10.1021/j100031a012
  18. Kolesnikov A.M., Mikhailenko F.A. // Russ. Chem. Rev. 1987. V. 56. P. 275; https://doi.org/10.1070/RC1987v056n03ABEH003270
  19. Shapiro B.I. // Russ. Chem. Rev. 2006. V. 75. P. 433; https://doi.org/10.1070/RC2006v075n05ABEH001208
  20. Chibisov A.K. // High Energy Chem. 2007. V. 41. P. 200; https://doi.org/10.1134/S0018143907030071
  21. Akimkin T.M.,. Tatikolov A.S, Panova I.G., Yarmoluk S.M. // High Energy Chem. 2011. V. 45. P. 515; https://doi.org/10.1134/S0018143911060026
  22. Molinspiration, 2015, Calculation of Molecular Properties and Bioactivity Score. http://www.molinspiration.com (accessed June 25, 2021).
  23. Pronkin P.G., Tatikolov A.C. // Spectrochimica Acta, Part A. 2023. V. 292. P. 122416; https://doi.org/10.1016/j.saa.2023.122416
  24. Gromov S.P., Chibisov A.K., Alfimov M.V. // J. Phys. D. 2021. V. 15. P. 219; https://doi.org/10.1134/S1990793121020202

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Structures of the investigated cyanine dyes.

Download (84KB)
3. Fig. 2. a - Absorption spectra of dyes T-304 (curve 1; cT-304 = 1 ‧ 10-6 mol ‧ l-1) and T-336 obtained at different dye concentrations: cT-336 = = = 1.92 ‧ 10-6 (curve 2), 1.2 ‧ 10-6 (3), 9.72 ‧ 10-7 (4), 6.47 ‧ 10-7 (5) and 4. 18 ‧ 10-7 mol ‧ l-1 (6) in HEPES buffer solution; b - dependences of M-1 (1) and abs on the concentration of T-336 in buffer solution; c - spectra of fluorescence (1 - T-304, λex = 490 nm and 4 - T-336, λex = 550 nm) and fluorescence excitation (2 - T-304, λreg = 550 nm; 3 - T-304, λreg = 700 nm; 5 - T-336, λreg = 640 nm).

Download (199KB)
4. Fig. 3. a - Absorption spectra of Cyan 2 dye (cCyan 2 = 1 ‧ 10-5 mol ‧l-1) at different concentrations of CTAB: cCTAB = 0 (curve 1), 0.10 KCM (2), 0. 20 KCM (3), 1.01 KCM (4), 2.01 KCM (5), 4.0 KCM (6), 6.0 KCM (7), 8.01 KCM (8), and 10.0 KCM (9) in HEPES buffer solution; in the inset, absorption spectra of T-307 (cT-307 ~ 1. 5 ‧ 10-6 mol ‧ l-1) in the absence of surfactant (curve 1), in the presence of ≥ 20 KCM CTAB (2), Triton X-100 (3), Brij 35 (4), Tween-20 (5), and SDS (6); b - dependences of М-1 (1) and abs, obtained from the absorption spectra of Cyan 2, on the concentration of CTAB; c - fluorescence (1, 3, 5) and fluorescence excitation (2, 4, 6) spectra of Cyan 2 at ≥ 20 KCM CTAB (1, λex = 520 nm; 2, λreg = 600 nm) and T-307 at ≥20 KCM CTAB (3, λex = 550 nm; 4, λreg = 630 nm) and at ≥20 KCM SDS (5, λex = 550 nm; 6, λreg = 620 nm). The inset shows the dependence of the fluorescence intensity of the T-307 dye (cT-307 ~ 1.5 ‧ 10-6 mol ‧ l-1) on the SDS concentration ((2.2÷20) KCM; λex = 550 nm, λreg = 596 nm).

Download (141KB)
5. Fig. 3. End.

Download (111KB)
6. Fig. 4. Absorption (1-5), fluorescence (6, λex = 570 nm), and fluorescence excitation (7, λreg = 620 nm) spectra of T-306 dye in HEPES buffer solution in the presence of high concentration of Tween-20 (≥ 20 KCM). Absorption spectra of 1-5 were recorded at 0 (curve 1), 2 (2), 4 (3), 6 (4), 16 min (5) after sample preparation.

Download (124KB)

Copyright (c) 2024 Russian Academy of Sciences