Biological activity of carnitine 2-ethyl-6-methyl-3-hydroxypyridine

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The antiradical properties and biological activity of carnitine 2-ethyl-6-methyl-3-hydroxypyridine (СP) were investigated. The drug had high antiradical activity. In the concentration range 10-6–10-9M, CP prevented the activation of lipid peroxidation in the membranes of mouse liver mitochondria incubated in a hypotonic medium. Such an incubation caused a change in the fatty acid (FA) composition of the lipid component of mitochondrial membranes: the total relative percentage of 18:2ω6, 18:1ω9 and 22:6ω3 – the main FAs that make up cardiolipin decreased by 8.1%. The introduction of CP into the incubation medium led not only to the restoration of the pool of these FAs, but also to an increase in their content by 15%, which, possibly, contributed to an increase in the efficiency of mitochondrial functioning and an increase in the body’s resistance to stress.

Texto integral

Acesso é fechado

Sobre autores

I. Zhigacheva

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Autor responsável pela correspondência
Email: zhigacheva@mail.ru
Rússia, Moscow

I. Rusina

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: zhigacheva@mail.ru
Rússia, Moscow

N. Krikunova

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: zhigacheva@mail.ru
Rússia, Moscow

T. Veprintsev

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: zhigacheva@mail.ru
Rússia, Moscow

Y. Kuznetsov

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: zhigacheva@mail.ru
Rússia, Moscow

M. Rasulov

State Research Institute of Chemistry and Technology of Organoelement Compounds

Email: zhigacheva@mail.ru
Rússia, Moscow

Bibliografia

  1. V.E. Pozhilova, E.V., Novikov, O.S Levchenkova. Bulletin of the Smolensk State Med. Academies. 14 (2). 13-21 (2015).
  2. C. Munoz-Pinedo, A. Guıo-Carrion, J.C. Goldstein et al. PNAS. 103 (31). 11573–11581 (2006).
  3. Maureen Redza-Dutordoir, Diana A. Averill-Bates. BBA. Molecular Cell Research. 1863 (12). 2977-2992 (2016).
  4. M. Schieber, N.S. Chandel. Curr. Biol. 24 (10). R453–R462 (2014). https://doi.org/10.1016/j.cub.2014.03.034
  5. V.E. Novikov and S.O. Losenkova. Reviews on clinical pharmacology and medicinal. therapy. 3 (I). 2-14 (2004).
  6. V.Ya. Shlyapintokh, O.N. Karpukhin, L.M.Postnikov et al. Chemi-luminescent methods for studying slow chemical processes.(M., Science, 1966).
  7. E.N. Mokhova, V.P. Skulachev, I.V. Zhigacheva. BBA. 501 (3). 415-423 (1978). https://doi.org/10.1016/0005-2728(78)90109-3
  8. B.I. Fletcher, C.D. Dillard, A.L. Tappel. Anal. Biochem. 52. 1–9 (1973).
  9. J.P. Carreau, J.P. Dubacq. J Chromatogr. 151 (3). 384-390 (1979). doi: 10.1016/S0021-9673(00)88356-9Get.
  10. J. Wang, H. Sunwoo, G. Cherian, I. S. Sim. Poult. Sci. 79 (8). 1168-1171 (2000). https://doi.org/10.1093/ps/79.8.1168
  11. R.V. Golovina, T.E. Kuzmenko. Сhromatogr. 10 (9). 545–546. (1977).
  12. I.F. Rusina, O.N. Karpukhin, O.T. Kasaikina. Russian Journal of Physical Chemistry B 7 (4). 53 (2013).
  13. I.F. Rusina, T.L. Veprintsev, and R.F. Vasil’ev. Russian Journal of Physical Chemistry B 16 (1), 50-57 (2022) https://doi.org/10.1134/S1990793122010274
  14. I.V. Zhigacheva, V.I. Binyukov, I.F. Rusina et al. Russian Journal of Physical Chemistry B 14 (4). 41–48 (2020).
  15. D.B. Zorov, N.K. Isaev, E.Yu. Plotnikov et al. Biochemistry (Moscow). 72. 1371 (2007)
  16. A. Aronis, R. Komarnitsky, Shani Shilo et al. Antioxidant and redox signaling. 4(4). 647.(2004).
  17. B.O’Rourke. Annual Review of Physiol. 69. 19. (2007).
  18. G.A. Shilovsky, T.S. Putyatina, V.V. Ashapkin et al. Biochemistry (Moscow). 84 (12). 1815–1831. (2019).
  19. K.M. Dyumaev, L.D. Smirnov. Advances in Chemistry. 44 (10). 1788.(1975)
  20. K. Nomura., H. Imai, T. Koumura et al. Biochem J. 351. 183–193. (2000).
  21. E.I. Astashkin, M.G. Glazer // Medical Council. 10. 104–110. (2016).
  22. G.Paradies, V.Paradies , F. M.Ruggiero, G.Petrosillo // Cells. 2019. 8 (7). 728. https://doi.org/10.3390/cells8070728
  23. E.B. Burlakova, N.M. Storozhok, N.G. Khrapova //Chemical kinetics. 14(11). 29 (1995)

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. 1. Kinetic curve of chemiluminescence quenching accompanying the initiated oxidation of ethylbenzene with 2-ethyl-6-methyl-3-hydroxypyridine carnitinate at [KP]0 = 5.2·10-6M; Wi =1.12.10-8 M·c-1; activator – [DBA] =5.10-3M; 50 C; t0.5 is the period of inhibition of oxidation.

Baixar (73KB)
3. 2. The effect of “aging” and various concentrations of CP on the fluorescence intensity of lipid peroxidation products in the membranes of mouse liver mitochondria. On the ordinate axis is the fluorescence intensity in units/mg of protein; on the abscissa axis is the concentration of KP; 1 is “aging” + KP; 2 – control + KP.

Baixar (42KB)
4. Fig. 3. C18 LC unsaturation index: 1 – control; 2 – incubation in a hypotonic environment; 3 – incubation in a hypotonic environment with an injection of 10-9 M KP; 4 – incubation in a hypotonic environment with an injection of 10-6 M KP.

Baixar (31KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024