Development of a comprehensive theoretical and experimental methodology for evaluating the parameters of recycling by pyrolysis of plastic based on polycarbonate and polyethylene
- Authors: Trushlyakov V.I.1, Fedyuhin A.V.1,2, Davydovich D.Y.1
-
Affiliations:
- Omsk State Technical University
- National Research University “MPEI”
- Issue: Vol 43, No 4 (2024)
- Pages: 97-109
- Section: Chemical physics of polymeric materials
- URL: https://vestnikugrasu.org/0207-401X/article/view/674966
- DOI: https://doi.org/10.31857/S0207401X24040126
- EDN: https://elibrary.ru/VDMDIL
- ID: 674966
Cite item
Abstract
The results of thermogravimetric and Fourier transform infrared (FTIR) analysis of polymer composite materials (PCM) based on polyethylene and polycarbonate are presented and compared to the polymers polyethylene and polycarbonate. Empirical data were obtained for mathematical modeling, including the amount of solid residue upon pyrolysis, volatile yield, and ash content of the studied PCMs and polymers. Results of the mathematical modeling of the pyrolysis process at a temperature of 600 °C are presented to quantitatively assess the composition of the pyrolysis gas.
Full Text

About the authors
V. I. Trushlyakov
Omsk State Technical University
Email: dyudavydovich@omgtu.ru
Russian Federation, Omsk
A. V. Fedyuhin
Omsk State Technical University; National Research University “MPEI”
Email: dyudavydovich@omgtu.ru
Russian Federation, Omsk; Moscow
D. Yu. Davydovich
Omsk State Technical University
Author for correspondence.
Email: dyudavydovich@omgtu.ru
Russian Federation, Omsk
References
- S. Kim, J. Chem. 8, 54–57 (2010).
- M. S. Potapov, V. A. Novozhenov, Tech. Equip. Chem. Biotech. Food Ind., 55–57 (2014).
- N. V. Buchilin, E. E. Stroganova, Adv. Chem. Tech. 6, 20, 62–66 (2006).
- A. P. Korzhavy, B. M. Loginov, M. B. Loginova, Sci. Intens. Tech. 15 (2), 47 (2014).
- A. N. Perova, P. N. Brevnov, S. V. Usachev et al., Russ. J. Phys. Chem. B. 15 (4), 716–723 (2021). https://doi.org/10.1134/S1990793121040072
- N. N. Kolesnikova, A. V. Koroleva, A. N. Lihachev et al., Bull. Kazan Univ. Tech. 16 (21), 164–167 (2013).
- V. I. Trushlyakov, G. S. Russkikh, D. YU. Davydovich, et al., Method for the development of polymer composite material with regard to its subsequent utilization and device for its implementation: Patent № 2776312. RF // FIPS, № 20, P. 9 (2022).
- V. I. Trushlyakov, G. S. Russkikh, YU. N. Rybakov, et al., Method of disposal of used plastic containers for petroleum products located in remote areas and a device for its implementation: Patent № 2779757. RF // FIPS, № 26, P. 7 (2022).
- O. S. Gorfin, B. F. Zyuzin, A. L. Yablonev, et al., Works Instorf. 68 (15), 68, 22–27 (2017).
- D. G. Kulas, A. Zolghadr, U. S. Chaudhari, et al., J. Cleaner Prod. 384, 135542 (2023). https://doi.org/10.1016/j.jclepro.2022.135542
- S. O. Dorofeenko, E. V. Polianczyk, Russ. J. Phys. Chem. B 16 (2), 16, 242–252 (2022). https://doi.org/10.1134/S199079312202004X
- V. M. Kislov, M. V. Tsvetkov, A. Y. Zaichenko, et al., Russ. J. Phys. Chem. B 15 (5), 819–826 (2021). https://doi.org/10.1134/S1990793121050055
- D. Liu, L. Zhang, B. Zhang, et al. Chem. Eng. Sci. 117718 (2022). https://doi.org/10.1016/j.ces.2022.117718
- E. Atallah, F. Defoort, A. Pisch, et al., Fuel Process. Technol. 235, 107369 (2022). https://doi.org/10.1016/j.fuproc.2022.107369
- S. K. Popov, V. A. Ippolitov, Tutorial. Moscow: MPEI Publishing House, P. 48 (2016).
- Т. Balcerzak, J. Magn. Magn. Mater. 19, 320, 2359–2363 (2008). https://doi.org/10.1016/j.jmmm.2008.05.015
- Y. Koga, Elsevier (2017).
- Z. Hu, Y. Peng, F. Sun, et al., Fuel. 293, 120462 (2021). https://doi.org/10.1016/j.fuel.2021.120462
- S. Safarian, R. Unnþórsson, C. Richter, Renew. Sustain. Energy Rev. 110, 378–391 (2019). https://doi.org/10.1016/j.rser.2019.05.003
- K.V. Chalov, Yu. V. Lugovoj, M. G. Sul’man, et al., Bull. Tver. St. Univ. Ser. Chem. 4, 120–131 (2020).
- A. M. Teresa, G. L. Agafonov, E. K. Anderzhanov, et al., Russ. J. Phys. Chem. B 15 (4), 678 (2021). https://doi.org/10.1134/S1990793121040266
- A. Serras-Malillos, E. Acha, A. Lopez-Urionabarrenechea, et al., Chemosphere 300, 134499 (2022). https://doi.org/10.1016/j.chemosphere.2022.134499
- Y. Sun, B. Dong, L. Wang, et al., Energy Convers. Manage. 266, 115835 (2022). https://doi.org/10.1016/j.enconman.2022.115835
- Y. Wen, I. N. Zaini, S. Wang, et al., Energy 229, 120693 (2021). https://doi.org/10.1016/j.energy.2021.120693
- E. Monteiro, A. Rouboa, W. T. Ouazzani, et al., Energy Rep. 8, 1577–1586 (2022). https://doi.org/10.1016/j.egyr.2023.01.077
- M. S. A. Khan, N. Grioui, K. Halouani, et al., Energy Convers. Manag.: X 13, 100170 (2022). https://doi.org/10.1016/j.ecmx.2021.100170
- R. Pan, J. V. F. Duque, M. F. Martins, et al., Heliyon 6 (11), e05598 (2020). https://doi.org/10.1016/j.heliyon.2020.e05598
- R. Pan, J. V. F. Duque, G. Debenest, Waste Bio. Valor. 12 (5), 2623–2637 (2021). https://doi.org/10.1007/s12649-020-01181-4
- A. Zaker, Z. Chen, M. Zaheer-Uddin, J. Environ. Chem. Eng. 9 (1), 104554 (2021). https://doi.org/10.1016/j.jece.2020.104554
- D. Zhao, X. Wang, J. B. Miller, et al., Chem. Sus. Chem. 13 (7), 1764–1774 (2020). https://doi.org/10.1002/cssc.201903434
- E. Apaydin-Varol, S. Polat, A. Pütün, J. Therm. Sci. 18, 833–842 (2014). https://doi.org/10.2298/TSCI1403833A
- Y. Feng, B. Wang, F. Wang, et al., Polym. Degrad. Stab. 107, 129–138 (2014). https://doi.org/10.1016/j.polymdegradstab.2014.05.012
- S. J. Charde, S. S. Sonawane, S. H. Sonawane, et al., Chem. Biochem. Eng. Q 32 (2), 151–165 (20218). https://doi.org/10.15255/CABEQ.2017.1173
- J. Feng, J. Hao, J. Du, et al., Polym. Degrad. Stab. 97 (4), 605–614 (2012). https://doi.org/10.1016/j.polymdegradstab.2012.01.011
- K. Rabea, S. Michailos, M. Akram, et al., Energy Convers. Manage. 258, 115495 (2022). https://doi.org/10.1016/j.enconman.2022.115495
- A. V. Fedyukhin, I. A. Sultanguzin, I. G. Akhmetova, et al., Kazan: Kazan State Power Eng Univ. (2020). https://doi.org/10.3390/en15207792
- Z. Fu, F. Hua, S. Yang, et al., J. Anal. Appl. Pyrolysis 105877 (2023). https://doi.org/ 10.1016/j.jaap.2023.105877
- Russian standard. № R 55837-2013. Resources saving. Best available techniques. Flue-gas treatment in the waste incineration. M.: Standartinform (2016).
Supplementary files
