Development of a comprehensive theoretical and experimental methodology for evaluating the parameters of recycling by pyrolysis of plastic based on polycarbonate and polyethylene

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The results of thermogravimetric and Fourier transform infrared (FTIR) analysis of polymer composite materials (PCM) based on polyethylene and polycarbonate are presented and compared to the polymers polyethylene and polycarbonate. Empirical data were obtained for mathematical modeling, including the amount of solid residue upon pyrolysis, volatile yield, and ash content of the studied PCMs and polymers. Results of the mathematical modeling of the pyrolysis process at a temperature of 600 °C are presented to quantitatively assess the composition of the pyrolysis gas.

Толық мәтін

Рұқсат жабық

Авторлар туралы

V. Trushlyakov

Omsk State Technical University

Email: dyudavydovich@omgtu.ru
Ресей, Omsk

A. Fedyuhin

Omsk State Technical University; National Research University “MPEI”

Email: dyudavydovich@omgtu.ru
Ресей, Omsk; Moscow

D. Davydovich

Omsk State Technical University

Хат алмасуға жауапты Автор.
Email: dyudavydovich@omgtu.ru
Ресей, Omsk

Әдебиет тізімі

  1. S. Kim, J. Chem. 8, 54–57 (2010).
  2. M. S. Potapov, V. A. Novozhenov, Tech. Equip. Chem. Biotech. Food Ind., 55–57 (2014).
  3. N. V. Buchilin, E. E. Stroganova, Adv. Chem. Tech. 6, 20, 62–66 (2006).
  4. A. P. Korzhavy, B. M. Loginov, M. B. Loginova, Sci. Intens. Tech. 15 (2), 47 (2014).
  5. A. N. Perova, P. N. Brevnov, S. V. Usachev et al., Russ. J. Phys. Chem. B. 15 (4), 716–723 (2021). https://doi.org/10.1134/S1990793121040072
  6. N. N. Kolesnikova, A. V. Koroleva, A. N. Lihachev et al., Bull. Kazan Univ. Tech. 16 (21), 164–167 (2013).
  7. V. I. Trushlyakov, G. S. Russkikh, D. YU. Davydovich, et al., Method for the development of polymer composite material with regard to its subsequent utilization and device for its implementation: Patent № 2776312. RF // FIPS, № 20, P. 9 (2022).
  8. V. I. Trushlyakov, G. S. Russkikh, YU. N. Rybakov, et al., Method of disposal of used plastic containers for petroleum products located in remote areas and a device for its implementation: Patent № 2779757. RF // FIPS, № 26, P. 7 (2022).
  9. O. S. Gorfin, B. F. Zyuzin, A. L. Yablonev, et al., Works Instorf. 68 (15), 68, 22–27 (2017).
  10. D. G. Kulas, A. Zolghadr, U. S. Chaudhari, et al., J. Cleaner Prod. 384, 135542 (2023). https://doi.org/10.1016/j.jclepro.2022.135542
  11. S. O. Dorofeenko, E. V. Polianczyk, Russ. J. Phys. Chem. B 16 (2), 16, 242–252 (2022). https://doi.org/10.1134/S199079312202004X
  12. V. M. Kislov, M. V. Tsvetkov, A. Y. Zaichenko, et al., Russ. J. Phys. Chem. B 15 (5), 819–826 (2021). https://doi.org/10.1134/S1990793121050055
  13. D. Liu, L. Zhang, B. Zhang, et al. Chem. Eng. Sci. 117718 (2022). https://doi.org/10.1016/j.ces.2022.117718
  14. E. Atallah, F. Defoort, A. Pisch, et al., Fuel Process. Technol. 235, 107369 (2022). https://doi.org/10.1016/j.fuproc.2022.107369
  15. S. K. Popov, V. A. Ippolitov, Tutorial. Moscow: MPEI Publishing House, P. 48 (2016).
  16. Т. Balcerzak, J. Magn. Magn. Mater. 19, 320, 2359–2363 (2008). https://doi.org/10.1016/j.jmmm.2008.05.015
  17. Y. Koga, Elsevier (2017).
  18. Z. Hu, Y. Peng, F. Sun, et al., Fuel. 293, 120462 (2021). https://doi.org/10.1016/j.fuel.2021.120462
  19. S. Safarian, R. Unnþórsson, C. Richter, Renew. Sustain. Energy Rev. 110, 378–391 (2019). https://doi.org/10.1016/j.rser.2019.05.003
  20. K.V. Chalov, Yu. V. Lugovoj, M. G. Sul’man, et al., Bull. Tver. St. Univ. Ser. Chem. 4, 120–131 (2020).
  21. A. M. Teresa, G. L. Agafonov, E. K. Anderzhanov, et al., Russ. J. Phys. Chem. B 15 (4), 678 (2021). https://doi.org/10.1134/S1990793121040266
  22. A. Serras-Malillos, E. Acha, A. Lopez-Urionabarrenechea, et al., Chemosphere 300, 134499 (2022). https://doi.org/10.1016/j.chemosphere.2022.134499
  23. Y. Sun, B. Dong, L. Wang, et al., Energy Convers. Manage. 266, 115835 (2022). https://doi.org/10.1016/j.enconman.2022.115835
  24. Y. Wen, I. N. Zaini, S. Wang, et al., Energy 229, 120693 (2021). https://doi.org/10.1016/j.energy.2021.120693
  25. E. Monteiro, A. Rouboa, W. T. Ouazzani, et al., Energy Rep. 8, 1577–1586 (2022). https://doi.org/10.1016/j.egyr.2023.01.077
  26. M. S. A. Khan, N. Grioui, K. Halouani, et al., Energy Convers. Manag.: X 13, 100170 (2022). https://doi.org/10.1016/j.ecmx.2021.100170
  27. R. Pan, J. V. F. Duque, M. F. Martins, et al., Heliyon 6 (11), e05598 (2020). https://doi.org/10.1016/j.heliyon.2020.e05598
  28. R. Pan, J. V. F. Duque, G. Debenest, Waste Bio. Valor. 12 (5), 2623–2637 (2021). https://doi.org/10.1007/s12649-020-01181-4
  29. A. Zaker, Z. Chen, M. Zaheer-Uddin, J. Environ. Chem. Eng. 9 (1), 104554 (2021). https://doi.org/10.1016/j.jece.2020.104554
  30. D. Zhao, X. Wang, J. B. Miller, et al., Chem. Sus. Chem. 13 (7), 1764–1774 (2020). https://doi.org/10.1002/cssc.201903434
  31. E. Apaydin-Varol, S. Polat, A. Pütün, J. Therm. Sci. 18, 833–842 (2014). https://doi.org/10.2298/TSCI1403833A
  32. Y. Feng, B. Wang, F. Wang, et al., Polym. Degrad. Stab. 107, 129–138 (2014). https://doi.org/10.1016/j.polymdegradstab.2014.05.012
  33. S. J. Charde, S. S. Sonawane, S. H. Sonawane, et al., Chem. Biochem. Eng. Q 32 (2), 151–165 (20218). https://doi.org/10.15255/CABEQ.2017.1173
  34. J. Feng, J. Hao, J. Du, et al., Polym. Degrad. Stab. 97 (4), 605–614 (2012). https://doi.org/10.1016/j.polymdegradstab.2012.01.011
  35. K. Rabea, S. Michailos, M. Akram, et al., Energy Convers. Manage. 258, 115495 (2022). https://doi.org/10.1016/j.enconman.2022.115495
  36. A. V. Fedyukhin, I. A. Sultanguzin, I. G. Akhmetova, et al., Kazan: Kazan State Power Eng Univ. (2020). https://doi.org/10.3390/en15207792
  37. Z. Fu, F. Hua, S. Yang, et al., J. Anal. Appl. Pyrolysis 105877 (2023). https://doi.org/ 10.1016/j.jaap.2023.105877
  38. Russian standard. № R 55837-2013. Resources saving. Best available techniques. Flue-gas treatment in the waste incineration. M.: Standartinform (2016).

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Results of TGA (solid curves) and DTG (dashed curves) in air and nitrogen for PE (a) and PCM PE (b) samples.

Жүктеу (193KB)
3. Fig. 2. Results of TGA (solid curves) and DTG (dashed curves) in air and nitrogen for PC (a) and PC-PCM (b) samples.

Жүктеу (280KB)
4. Fig. 3. Results of IR Fourier spectrometry during thermal decomposition in an inert environment (nitrogen) for samples: PC (a) and PCM PC (b). Designations: 1 – CH4, 2 – CO, 3 – CO2, 4 – phenols.

Жүктеу (187KB)
5. Fig. 4. Calculation model of polyethylene pyrolysis in the Aspen Plus program.

Жүктеу (79KB)
6. Fig. 5. Volume fractions of pyrolysis gas components during the decomposition of polyethylene depending on the temperature in the pyrolysis reactor at atmospheric pressure.

Жүктеу (274KB)

© Russian Academy of Sciences, 2024