Collisional Broadening of Spectral Lines in Slow Atomic Collisions

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A great deal of attention is being paid by researchers to the multilevel modeling of complex gas-phase physicochemical processes occurring in the atmosphere, during combustion, and in plasma-chemical installations. One of the most important microscopic processes determining the transfer of radiation in these systems is the broadening of spectral lines in collisions of radiating atoms with atoms in the ground state. In this paper, we propose a formulation of the unified Franck-Condon theory of the broadening of spectral lines in gases in terms of the theory of slow atomic collisions and nonadiabatic transitions. This makes it possible to select the most efficient channels leading to the broadening of collisions based on the form of the adiabatic potential curves of the colliding atoms and, on this basis, apply fairly simple models developed in the theory of nonadiabatic transitions. As an example of using this approach, the center and wings of the of the spectral line contour of the Ar(3P1) → Ar(1S0) emission of excited argon atoms in their own gas are calculated

About the authors

S. Ya. Umanskii

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: unan43@mail.ru
Moscow, Russia

S. O. Adamson

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: unan43@mail.ru
Moscow, Russia

A. S. Vetchinkin

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: unan43@mail.ru
Moscow, Russia

M. A. Deminskii

OOO Kintech Lab

Email: unan43@mail.ru
Moscow, Russia

O. A. Olkhov

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: unan43@mail.ru
Moscow, Russia

Yu. A. Chaikina

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: unan43@mail.ru
Moscow, Russia

A. I. Shushin

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: unan43@mail.ru
Moscow, Russia

M. G. Golubkov

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Author for correspondence.
Email: unan43@mail.ru
Moscow, Russia

References

  1. Родионов А.И., Родионов И.Д, Родионова И.П. и др. // Хим. физика. 2021. Т. 40. № 10. С. 61; https://doi.org/10.31857/S0207401X21100113
  2. Harde H. // Intern. J. Atmos. Sci. 2013. V. 2013. P. 1; https://doi.org/10.1155/2013/503727
  3. Chu H., Liu F., Zhou H. // Intern. J. Heat Mass Transf. 2011. V. 54. № 21–22. P. 4736; https://doi.org/10.1016/j.ijheatmasstransfer.2011.06.002
  4. Голубков Г.В., Шапочкин М.Б. // Хим. физика. 2019. Т. 38. № 7. С. 19; https://doi.org/10.1134/S0207401X19070033
  5. Yang S., Nagaraja S., Sun W. et al. // J. Phys. D. Appl. Phys. 2017. V. 50. № 43. 433001; https://doi.org/10.1088/1361-6463/aa87ee
  6. Левашов В.Ю., Козлов П.В., Быкова Н.Г. и др. // Хим. физика. 2021. Т. 40. № 1. С. 16; https://doi.org/10.31857/S0207401X2101009X
  7. Забелинский И.Е., Козлов П.В., Акимов Ю.В. и др. // Хим. физика. 2021. Т. 40. № 11. С. 22; https://doi.org/10.31857/S0207401X2111011X
  8. Козлов П.В., Забелинский И.Е., Быкова Н.Г. и др. // Хим. физика. 2021. Т. 40. № 12. С. 23; https://doi.org/10.31857/S0207401X21120104
  9. Deminsky M., Adamson S., Chernysheva I. et al. // J. Phys. D: Appl. Phys. 2015. V. 48. № 20. 205202; https://doi.org/10.1088/0022-3727/48/20/205202
  10. Собельман И.И. Введение в теорию атомных спектров. М.: Физматгиз, 1963.
  11. Schuller F., Behmenburg W. // Phys. Rep. 1974. V. 12. № 4. P. 273; https://doi.org/10.1016/0370-1573(74)90018-0
  12. Ben-Reuven A. // Adv. Chem. Phys. 1975. V. 33. P. 235; https://doi.org/10.1002/9780470142523.ch5
  13. Lewis E.L. // Phys. Rep. 1980. V. 58. № 1. P. 1; https://doi.org/10.1016/0370-1573(80)90056-3
  14. Peach G. // Adv. Phys. 1981. V. 30. № 3. P. 367; https://doi.org/10.1080/00018738100101467
  15. Allard N., Kielkopf J. // Rev. Mod. Phys. 1982. V. 54. № 4. P. 1103; https://doi.org/10.1103/RevModPhys.54.1103
  16. Sando K.M., Chu S.I. // Adv. At. Mol. Phys. 1989. V. 25. P. 133; https://doi.org/10.1016/S0065-2199(08)60085-8
  17. Szudy J., Baylis W.E. // Phys. Rep. 1996. V. 266. № 3–4. P. 127; https://doi.org/10.1016/0370-1573(95)00054-2
  18. Jabloński A. // Phys. Rev. 1945. V. 68. № 3–4. P. 78; https://doi.org/10.1103/PhysRev.68.78
  19. Jabloński A. // Phys. Rev. 1946. V. 69. № 1–2. P. 31; https://doi.org/10.1103/PhysRev.69.31
  20. Baranger M. // Phys. Rev. 1958. V. 111. № 2. P. 481; https://doi.org/10.1103/PhysRev.111.481
  21. Baranger M. // Phys. Rev. 1958. V. 112. № 3. P. 855; https://doi.org/10.1103/PhysRev.112.855
  22. Royer A. // Can. J. Phys. 1974. V. 52. № 18. P. 1816; https://doi.org/10.1139/p74-238
  23. Szudy J., Baylis W.E. // J. Quant. Spectr. Radiat. Transf. 1975. V. 15. № 7–8. P. 641; https://doi.org/10.1016/0022-4073(75)90032-1
  24. Szudy J. // Acta Phys. Pol. A. 1978. V. 54. № 6. P. 841.
  25. Herman P.S., Sando K.M. // J. Chem. Phys. 1978. V. 68. № 3. P. 1153; https://doi.org/10.1063/1.435804
  26. Fano U. // Phys. Rev. 1963. V. 131. № 1. P. 259; https://doi.org/10.1103/PhysRev.131.259
  27. Ben-Reuven A., Mukamel S. // J. Phys. A: Math. Gen. 1975. V. 8. № 8. P. 1313; https://doi.org/10.1088/0305-4470/8/8/016
  28. Rabin Y., Mukamel S. // J. Phys. B: At. Mol. Phys. 1980. V. 13. № 11. P. L331; https://doi.org/10.1088/0022-3700/13/11/002
  29. Demura A.V., Umanskii S.Y., Scherbinin A.V. et al. // Intern. Rev. At. Mol. Phys. 2011. V. 2. № 2. P. 109.
  30. Demura A.V., Umanskii S.Y., Scherbinin A.V. et al. // J. Phys.: Conf. Ser. 2012. V. 397. № 1. 012033; https://doi.org/10.1088/1742-6596/397/1/012033
  31. Никитин Е.Е., Уманский С.Я. Неадиабатические переходы при медленных атомных столкновениях. М.: Атомиздат, 1979.
  32. Nikitin E.E., Umanskii S.Y. Theory of slow atomic collisions / Eds. Goldanskii V.I., Gomer R., Schäfer F.P., Toennies J.P. Berlin, Heidelberg: Springer, 1984; https://doi.org/10.1007/978-3-642-82045-8
  33. Lewis E.L., Harris M., Alford W.J. et al. // J. Phys. B: At. Mol. Phys. 1983. V. 16. № 4. P. 553; https://doi.org/10.1088/0022-3700/16/4/009
  34. Julienne P.S. // Spectral line shapes. V. 2. Berlin, New York: Walter de Gruyter & Co., 1983. P. 770.
  35. Julienne P.S., Mies F.H. // Phys. Rev. A. 1984. V. 30. № 2. P. 831; https://doi.org/10.1103/PhysRevA.30.831
  36. Julienne P.S., Mies F.H. // Phys. Rev. A. 1986. V. 34. № 5. P. 3792; https://doi.org/10.1103/PhysRevA.34.3792
  37. Mies F.H., Smith A.L. // J. Chem. Phys. 1966. V. 45. № 3. P. 994; https://doi.org/10.1063/1.1727717
  38. Sansonetti J.E., Martin W.C. // J. Phys. Chem. Ref. Data. 2005. V. 34. № 4. P. 1559; https://doi.org/10.1063/1.1800011
  39. Granovsky A.A. // J. Chem. Phys. 2011. V. 134. № 21. 214 113; https://doi.org/10.1063/1.3596699
  40. Schmidt M.W., Baldridge K.K., Boatz J.A. et al. // J. Comput. Chem. 1993. V. 14. № 11. P. 1347; https://doi.org/10.1002/jcc.540141112
  41. Tang K.T., Toennies J.P. // J. Chem. Phys. 2003. V. 118. № 11. P. 4976; https://doi.org/10.1063/1.1543944
  42. Lewis E.L. // Proc. Phys. Soc. 1967. V. 92. № 3. P. 817; https://doi.org/10.1088/0370-1328/92/3/334
  43. Laporte P., Damany N., Damany H. // Opt. Lett. 1987. V. 12. № 12. P. 987; https://doi.org/10.1364/OL.12.000987
  44. Hu Y., Wang X., Zuo D. // Vacuum. 2022. V. 203. 111 229; https://doi.org/10.1016/j.vacuum.2022.111229
  45. Takayanagi K. // Prog. Theor. Phys. 1952. V. 8. № 1. P. 111; https://doi.org/10.1143/ptp/8.1.111
  46. Никитин Е.Е. Теория элементарных атомно-молекулярных процессов в газах. М.: Химия, 1970.
  47. Ландау Л.Д., Лифшиц Е.М. Курс теоретической физики: Т. 3. Квантовая механика (нерелятивистская теория). М.: Физматлит, 2004.
  48. Langer R.E. // Phys. Rev. 1937. V. 51. № 8. P. 669; https://doi.org/10.1103/PhysRev.51.669
  49. Найфэ А.Х. Методы возмущений. М.: Мир, 1976.

Supplementary files


Copyright (c) 2023 С.Я. Уманский, С.О. Адамсон, А.С. Ветчинкин, М.А. Деминский, О.А. Ольхов, Ю.А. Чайкина, А.И. Шушин, М.Г. Голубков