Monitoring Greenhouse Gases in the Open Atmosphere by the Fourier Spectroscopy Method

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The problem of global climate change has become one of the most important challenges to humanity in the 21st century. The main reason is the appearance in the atmosphere of an excessive concentration of greenhouse gases, which absorb the thermal radiation of the Earth and partially return it to the Earth’s surface. The accumulation of greenhouse gases in the atmosphere leads to a rapid increase in the global average air temperature and, as a result, climate change. It is well known that greenhouse gases have a high transparency in the visible spectral range and high absorption in the infrared range. In this paper, we propose a new technique for recording the CO2 and CH4 spectra. An experimental setup based on dynamic Fourier spectrometer is developed. It allows to record IR absorption spectra in the wavelength range of 1.0 to 1.7 μm with a 10 cm–1 spectral resolution. Long-term recording of the atmospheric transmittance in the conditions of urban development is carried out. Based on the obtained data, the CO2 and CH4 integral and volumetric concentrations are monitored. It is shown that the carbon dioxide and methane volumetric concentrations time dependences accurately reflects the traffic congestion degree on that day. Reduction of volume concentrations in the evening hours is explained by the increase of the optical path and the additional capture of air masses outside the heavy traffic area.

About the authors

Il. S. Golyak

Bauman Moscow State Technical University; Center for Applied Physics, Bauman Moscow State Technical University

Email: iliyagol@mail.ru
Moscow, Russia; Moscow, Russia

D. R. Anfimov

Bauman Moscow State Technical University; Center for Applied Physics, Bauman Moscow State Technical University

Email: iliyagol@mail.ru
Moscow, Russia; Moscow, Russia

I. B. Vintaykin

Bauman Moscow State Technical University; Center for Applied Physics, Bauman Moscow State Technical University

Email: iliyagol@mail.ru
Moscow, Russia; Moscow, Russia

Ig. S. Golyak

Bauman Moscow State Technical University; Center for Applied Physics, Bauman Moscow State Technical University

Email: iliyagol@mail.ru
Moscow, Russia; Moscow, Russia

M. S. Drozdov

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: iliyagol@mail.ru
Moscow, Russia

A. N. Morozov

Bauman Moscow State Technical University; Center for Applied Physics, Bauman Moscow State Technical University

Email: iliyagol@mail.ru
Moscow, Russia; Moscow, Russia

S. I. Svetlichnyi

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: iliyagol@mail.ru
Moscow, Russia

S. E. Tabalin

Bauman Moscow State Technical University; Center for Applied Physics, Bauman Moscow State Technical University

Email: iliyagol@mail.ru
Moscow, Russia; Moscow, Russia

L. N. Timashova

Bauman Moscow State Technical University

Email: iliyagol@mail.ru
Moscow, Russia

I. L. Fufurin

Bauman Moscow State Technical University; Center for Applied Physics, Bauman Moscow State Technical University

Author for correspondence.
Email: iliyagol@mail.ru
Moscow, Russia; Moscow, Russia

References

  1. Manisalidis I., Stavropoulou E., Stavropoulos A. et al. // Front. Public. Health. 2020. V. 8. P. 14; https://doi.org/10.3389/fpubh.2020.00014
  2. Ларин И.К. // Хим. физика. 2020. Т. 39. № 3. С. 85; https://doi.org/10.31857/S0207401X20030085
  3. Ларин И.К. // Хим. физика. 2020. Т. 39. № 4. С. 44; https://doi.org/10.31857/S0207401X20040111
  4. Solomon S., Qin D., Manning M. et al. Climate change 2007: The physical science basis. Cambridge: Cambridge University Press, 2007.
  5. Advances in carbon capture / Eds. Rahimpour M.R., Farsi M., Makarem M.A. Cambridge: Elsevier, 2020; https://doi.org/10.1016/c2018-0-05339-6
  6. Галашев А.Е., Рахманова О.Р. // Хим. физика. 2013. Т. 32. № 6. С. 88; https://doi.org/10.7868/S0207401X13060022
  7. URL: https://gml.noaa.gov/ccgg/mbl/data.php
  8. Ramphull M., Surroop D. // J. Environ. Chem. Eng. 2017. V. 5. № 6. P. 5994; https://doi.org/10.1016/j.jece.2017.11.027
  9. Bi J., Zhang R., Wang H. et al. // Energy Policy. 2011. V. 39. № 9. P. 4785; https://doi.org/10.1016/j.enpol.2011.06.045
  10. Da Silva M.G., Lisbôa A.C.L., Hoffmann R. et al. // J. Environ. Chem. Eng. 2021. V. 9. № 3. P. 105202; https://doi.org/10.1016/j.jece.2021.105202
  11. Ramos P.B., Ponce M.F., Jerez F. et al. // J. Environ. Chem. Eng. 2022. V. 10. № 3. P. 107521; https://doi.org/10.1016/j.jece.2022.107521
  12. Turner A.J., Shusterman A.A., McDonald B.C. et al. // Atmos. Chem. Phys. 2016. V. 16. № 21. P. 13465; https://doi.org/10.5194/acp-16-13465-2016
  13. Lee J.K., Christen A., Ketler R. et al. // Atmos. Meas. Tech. 2017. V. 10. № 2. P. 645; https://doi.org/10.5194/amt-10-645-2017
  14. Platt U., Stutz J. Differential optical absorption spectroscopy. Berlin, Heidelberg: Springer, 2008; https://doi.org/10.1007/978-3-540-75776-4
  15. Handbook of vibrational spectroscopy / Ed. Griffiths P.R. Chichester: John Wiley & Sons, 2006. P. 1750.
  16. Griffith D.W.T., Jamie I.M. // Encyclopedia of analytical chemistry. V. 3. Chichester: John Wiley & Sons, 2000. P. 1979.
  17. Smith T.E.L., Wooster M.J., Tattaris M. et al. // Atmos. Meas. Tech. 2011. V. 4. № 1. P. 97; https://doi.org/10.5194/amt-4-97-2011
  18. Laubach J., Bai M., Pinares-Patiño C.S. et al. // Agric. For. Meteorol. 2013. V. 176. P. 50; https://doi.org/10.1016/j.agrformet.2013.03.006
  19. Flesch T.K., Baron V.S., Wilson J.D. et al. // Agric. For. Meteorol. 2016. V. 221. P. 111; https://doi.org/10.1016/j.agrformet.2016.02.010
  20. Винтайкин И.Б., Голяк И.С., Королев П.А. и др. // Хим. физика. 2021. Т. 40. № 5. С. 9; https://doi.org/10.31857/S0207401X21050137
  21. Kirchengast G., Schweitzer S. // Geophys. Res. Lett. 2011. V. 38. № 13. L13701; https://doi.org/10.1029/2011GL047617
  22. Somekawa T., Manago N., Kuze H. et al. // Opt. Lett. 2011. V. 36. № 24. P. 4782; https://doi.org/10.1364/OL.36.004782
  23. Saito H., Manago N., Kuriyama K. et al. // Opt. Lett. 2015. V. 40. № 11. P. 2568; https://doi.org/10.1364/OL.40.002568
  24. Rieker G.B., Giorgetta F.R., Swann W.C. et al. // Optica. 2014. V. 1. № 5. P. 290; https://doi.org/10.1364/OPTICA.1.000290
  25. Waxman E.M., Cossel K.C., Truong G.W. et al. // Atmos. Meas. Tech. 2017. V. 10. № 9. P. 3295; https://doi.org/10.5194/amt-10-3295-2017
  26. Dobler J., Braun M., Blume N. et al. // Remote Sens. 2013. V. 5. № 12. P. 6284; https://doi.org/10.3390/rs5126284
  27. Queißer M., Granieri D., Burton M. // Sci. Rep. 2016. V. 6. № 1. Article 33834; https://doi.org/10.1038/srep33834
  28. Голяк И.С., Морозов А.Н., Светличный С.И. и др. // Хим. физика. 2019. Т. 38. № 7. С. 3; https://doi.org/10.1134/S0207401X19070057
  29. Wunch D., Toon G.C., Blavier J.F.L. et al. // Philos. Trans. R. Soc. London, Ser. A. 2011. V. 369. № 1943. P. 2087; https://doi.org/10.1098/rsta.2010.0240
  30. Schneising O., Buchwitz M., Reuter M. et al. // Atmos. Chem. Phys. 2011. V. 11. № 6. P. 2863; https://doi.org/10.5194/acp-11-2863-2011
  31. Yoshida Y., Ota Y., Eguchi N. et al. // Atmos. Meas. Tech. 2011. V. 4. № 4. P. 717; https://doi.org/10.5194/amt-4-717-2011
  32. Голубков Г.В., Григорьев Г.Ю., Набиев Ш.Ш. и др. // Хим. физика. 2018. Т. 37. № 10. С. 3; https://doi.org/10.1134/S0207401X18090054
  33. Родионов А.И., Родионов И.Д., Родионова И.П. и др. // Хим. физика. 2021. Т. 40. № 10. С. 61; https://doi.org/10.31857/S0207401X21100113
  34. Kaufmann P., Chrzanowski H.M., Vanselow A. et al. // Opt. Express. 2022. V. 30. № 4. P. 5926; https://doi.org/10.1364/OE.442411
  35. Winters D.G., Schlup P., Bartels R.A. // Opt. Express. 2007. V. 15. № 3. P. 1361; https://doi.org/10.1364/OE.15.001361
  36. Васильев Н.С., Винтайкин И.Б., Голяк И.С. и др. // Компьютерная оптика (Самара). 2017. Т. 41. № 5. С. 626; https://doi.org/10.18287/2412-6179-2017-41-5-626-635
  37. Köhler M.H., Naßl S.S., Kienle P. et al. // Appl. Opt. 2019. V. 58. № 13. P. 3393; https://doi.org/10.1364/ao.58.003393
  38. Морозов А.Н., Светличный С.И. Основы фурье-радиоспектрометрии. 2-е изд. Москва: Наука, 2014.
  39. Lin C.H., Grant R.H., Heber A.J. et al. // Atmos. Meas. Tech. 2019. V. 12. № 6. P. 3403; https://doi.org/10.5194/amt-12-3403-2019
  40. Балашов А.А., Вагин В.А., Голяк И.С. и др. // Журн. прикл. спектроскопии. 2017. Т. 84. № 4. С. 643.
  41. Griffiths P.R., de Haseth J.A. Fourier transform infrared spectrometry. 2nd ed. Hoboken, USA: John Wiley & Sons, 2007; https://doi.org/10.1002/047010631X
  42. Балашов А.А., Голяк Ил.С., Голяк Иг.С. и др. // Журн. прикл. спектроскопии (Минск). 2018. Т. 85. № 5. С. 822.
  43. Набиев Ш.Ш., Григорьев Г.Ю., Лагутин А.С. и др. // Хим. физика. 2019. Т. 38. № 7. С. 49; https://doi.org/10.1134/s0207401x19070124
  44. Patadia F., Levy R.C., Mattoo S. // Atmos. Meas. Tech. 2018. V. 11. № 6. P. 3205; https://doi.org/10.5194/amt-11-3205-2018
  45. Rothman L.S., Gordon I.E., Babikov Y. et al. // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 130. P. 4; https://doi.org/10.1016/j.jqsrt.2013.07.002

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (809KB)
3.

Download (272KB)
4.

Download (820KB)
5.

Download (1MB)
6.

Download (249KB)
7.

Download (309KB)
8.

Download (67KB)
9.

Download (92KB)
10.

Download (116KB)

Copyright (c) 2023 Ил.С. Голяк, Д.Р. Анфимов, И.Б. Винтайкин, Иг.С. Голяк, М.С. Дроздов, А.Н. Морозов, С.И. Светличный, С.Е. Табалин, Л.Н. Тимашова, И.Л. Фуфурин