Monitoring Greenhouse Gases in the Open Atmosphere by the Fourier Spectroscopy Method
- Authors: Golyak I.S.1,2, Anfimov D.R.1,2, Vintaykin I.B.1,2, Golyak I.S.1,2, Drozdov M.S.3, Morozov A.N.1,2, Svetlichnyi S.I.3, Tabalin S.E.1,2, Timashova L.N.1, Fufurin I.L.1,2
-
Affiliations:
- Bauman Moscow State Technical University
- Center for Applied Physics, Bauman Moscow State Technical University
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
- Issue: Vol 42, No 4 (2023)
- Pages: 3-11
- Section: СТРОЕНИЕ ХИМИЧЕСКИХ СОЕДИНЕНИЙ, КВАНТОВАЯ ХИМИЯ, СПЕКТРОСКОПИЯ
- URL: https://vestnikugrasu.org/0207-401X/article/view/674874
- DOI: https://doi.org/10.31857/S0207401X23040088
- EDN: https://elibrary.ru/MWUOKF
- ID: 674874
Cite item
Abstract
The problem of global climate change has become one of the most important challenges to humanity in the 21st century. The main reason is the appearance in the atmosphere of an excessive concentration of greenhouse gases, which absorb the thermal radiation of the Earth and partially return it to the Earth’s surface. The accumulation of greenhouse gases in the atmosphere leads to a rapid increase in the global average air temperature and, as a result, climate change. It is well known that greenhouse gases have a high transparency in the visible spectral range and high absorption in the infrared range. In this paper, we propose a new technique for recording the CO2 and CH4 spectra. An experimental setup based on dynamic Fourier spectrometer is developed. It allows to record IR absorption spectra in the wavelength range of 1.0 to 1.7 μm with a 10 cm–1 spectral resolution. Long-term recording of the atmospheric transmittance in the conditions of urban development is carried out. Based on the obtained data, the CO2 and CH4 integral and volumetric concentrations are monitored. It is shown that the carbon dioxide and methane volumetric concentrations time dependences accurately reflects the traffic congestion degree on that day. Reduction of volume concentrations in the evening hours is explained by the increase of the optical path and the additional capture of air masses outside the heavy traffic area.
About the authors
Il. S. Golyak
Bauman Moscow State Technical University; Center for Applied Physics, Bauman Moscow State Technical University
Email: iliyagol@mail.ru
Moscow, Russia; Moscow, Russia
D. R. Anfimov
Bauman Moscow State Technical University; Center for Applied Physics, Bauman Moscow State Technical University
Email: iliyagol@mail.ru
Moscow, Russia; Moscow, Russia
I. B. Vintaykin
Bauman Moscow State Technical University; Center for Applied Physics, Bauman Moscow State Technical University
Email: iliyagol@mail.ru
Moscow, Russia; Moscow, Russia
Ig. S. Golyak
Bauman Moscow State Technical University; Center for Applied Physics, Bauman Moscow State Technical University
Email: iliyagol@mail.ru
Moscow, Russia; Moscow, Russia
M. S. Drozdov
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
Email: iliyagol@mail.ru
Moscow, Russia
A. N. Morozov
Bauman Moscow State Technical University; Center for Applied Physics, Bauman Moscow State Technical University
Email: iliyagol@mail.ru
Moscow, Russia; Moscow, Russia
S. I. Svetlichnyi
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
Email: iliyagol@mail.ru
Moscow, Russia
S. E. Tabalin
Bauman Moscow State Technical University; Center for Applied Physics, Bauman Moscow State Technical University
Email: iliyagol@mail.ru
Moscow, Russia; Moscow, Russia
L. N. Timashova
Bauman Moscow State Technical University
Email: iliyagol@mail.ru
Moscow, Russia
I. L. Fufurin
Bauman Moscow State Technical University; Center for Applied Physics, Bauman Moscow State Technical University
Author for correspondence.
Email: iliyagol@mail.ru
Moscow, Russia; Moscow, Russia
References
- Manisalidis I., Stavropoulou E., Stavropoulos A. et al. // Front. Public. Health. 2020. V. 8. P. 14; https://doi.org/10.3389/fpubh.2020.00014
- Ларин И.К. // Хим. физика. 2020. Т. 39. № 3. С. 85; https://doi.org/10.31857/S0207401X20030085
- Ларин И.К. // Хим. физика. 2020. Т. 39. № 4. С. 44; https://doi.org/10.31857/S0207401X20040111
- Solomon S., Qin D., Manning M. et al. Climate change 2007: The physical science basis. Cambridge: Cambridge University Press, 2007.
- Advances in carbon capture / Eds. Rahimpour M.R., Farsi M., Makarem M.A. Cambridge: Elsevier, 2020; https://doi.org/10.1016/c2018-0-05339-6
- Галашев А.Е., Рахманова О.Р. // Хим. физика. 2013. Т. 32. № 6. С. 88; https://doi.org/10.7868/S0207401X13060022
- URL: https://gml.noaa.gov/ccgg/mbl/data.php
- Ramphull M., Surroop D. // J. Environ. Chem. Eng. 2017. V. 5. № 6. P. 5994; https://doi.org/10.1016/j.jece.2017.11.027
- Bi J., Zhang R., Wang H. et al. // Energy Policy. 2011. V. 39. № 9. P. 4785; https://doi.org/10.1016/j.enpol.2011.06.045
- Da Silva M.G., Lisbôa A.C.L., Hoffmann R. et al. // J. Environ. Chem. Eng. 2021. V. 9. № 3. P. 105202; https://doi.org/10.1016/j.jece.2021.105202
- Ramos P.B., Ponce M.F., Jerez F. et al. // J. Environ. Chem. Eng. 2022. V. 10. № 3. P. 107521; https://doi.org/10.1016/j.jece.2022.107521
- Turner A.J., Shusterman A.A., McDonald B.C. et al. // Atmos. Chem. Phys. 2016. V. 16. № 21. P. 13465; https://doi.org/10.5194/acp-16-13465-2016
- Lee J.K., Christen A., Ketler R. et al. // Atmos. Meas. Tech. 2017. V. 10. № 2. P. 645; https://doi.org/10.5194/amt-10-645-2017
- Platt U., Stutz J. Differential optical absorption spectroscopy. Berlin, Heidelberg: Springer, 2008; https://doi.org/10.1007/978-3-540-75776-4
- Handbook of vibrational spectroscopy / Ed. Griffiths P.R. Chichester: John Wiley & Sons, 2006. P. 1750.
- Griffith D.W.T., Jamie I.M. // Encyclopedia of analytical chemistry. V. 3. Chichester: John Wiley & Sons, 2000. P. 1979.
- Smith T.E.L., Wooster M.J., Tattaris M. et al. // Atmos. Meas. Tech. 2011. V. 4. № 1. P. 97; https://doi.org/10.5194/amt-4-97-2011
- Laubach J., Bai M., Pinares-Patiño C.S. et al. // Agric. For. Meteorol. 2013. V. 176. P. 50; https://doi.org/10.1016/j.agrformet.2013.03.006
- Flesch T.K., Baron V.S., Wilson J.D. et al. // Agric. For. Meteorol. 2016. V. 221. P. 111; https://doi.org/10.1016/j.agrformet.2016.02.010
- Винтайкин И.Б., Голяк И.С., Королев П.А. и др. // Хим. физика. 2021. Т. 40. № 5. С. 9; https://doi.org/10.31857/S0207401X21050137
- Kirchengast G., Schweitzer S. // Geophys. Res. Lett. 2011. V. 38. № 13. L13701; https://doi.org/10.1029/2011GL047617
- Somekawa T., Manago N., Kuze H. et al. // Opt. Lett. 2011. V. 36. № 24. P. 4782; https://doi.org/10.1364/OL.36.004782
- Saito H., Manago N., Kuriyama K. et al. // Opt. Lett. 2015. V. 40. № 11. P. 2568; https://doi.org/10.1364/OL.40.002568
- Rieker G.B., Giorgetta F.R., Swann W.C. et al. // Optica. 2014. V. 1. № 5. P. 290; https://doi.org/10.1364/OPTICA.1.000290
- Waxman E.M., Cossel K.C., Truong G.W. et al. // Atmos. Meas. Tech. 2017. V. 10. № 9. P. 3295; https://doi.org/10.5194/amt-10-3295-2017
- Dobler J., Braun M., Blume N. et al. // Remote Sens. 2013. V. 5. № 12. P. 6284; https://doi.org/10.3390/rs5126284
- Queißer M., Granieri D., Burton M. // Sci. Rep. 2016. V. 6. № 1. Article 33834; https://doi.org/10.1038/srep33834
- Голяк И.С., Морозов А.Н., Светличный С.И. и др. // Хим. физика. 2019. Т. 38. № 7. С. 3; https://doi.org/10.1134/S0207401X19070057
- Wunch D., Toon G.C., Blavier J.F.L. et al. // Philos. Trans. R. Soc. London, Ser. A. 2011. V. 369. № 1943. P. 2087; https://doi.org/10.1098/rsta.2010.0240
- Schneising O., Buchwitz M., Reuter M. et al. // Atmos. Chem. Phys. 2011. V. 11. № 6. P. 2863; https://doi.org/10.5194/acp-11-2863-2011
- Yoshida Y., Ota Y., Eguchi N. et al. // Atmos. Meas. Tech. 2011. V. 4. № 4. P. 717; https://doi.org/10.5194/amt-4-717-2011
- Голубков Г.В., Григорьев Г.Ю., Набиев Ш.Ш. и др. // Хим. физика. 2018. Т. 37. № 10. С. 3; https://doi.org/10.1134/S0207401X18090054
- Родионов А.И., Родионов И.Д., Родионова И.П. и др. // Хим. физика. 2021. Т. 40. № 10. С. 61; https://doi.org/10.31857/S0207401X21100113
- Kaufmann P., Chrzanowski H.M., Vanselow A. et al. // Opt. Express. 2022. V. 30. № 4. P. 5926; https://doi.org/10.1364/OE.442411
- Winters D.G., Schlup P., Bartels R.A. // Opt. Express. 2007. V. 15. № 3. P. 1361; https://doi.org/10.1364/OE.15.001361
- Васильев Н.С., Винтайкин И.Б., Голяк И.С. и др. // Компьютерная оптика (Самара). 2017. Т. 41. № 5. С. 626; https://doi.org/10.18287/2412-6179-2017-41-5-626-635
- Köhler M.H., Naßl S.S., Kienle P. et al. // Appl. Opt. 2019. V. 58. № 13. P. 3393; https://doi.org/10.1364/ao.58.003393
- Морозов А.Н., Светличный С.И. Основы фурье-радиоспектрометрии. 2-е изд. Москва: Наука, 2014.
- Lin C.H., Grant R.H., Heber A.J. et al. // Atmos. Meas. Tech. 2019. V. 12. № 6. P. 3403; https://doi.org/10.5194/amt-12-3403-2019
- Балашов А.А., Вагин В.А., Голяк И.С. и др. // Журн. прикл. спектроскопии. 2017. Т. 84. № 4. С. 643.
- Griffiths P.R., de Haseth J.A. Fourier transform infrared spectrometry. 2nd ed. Hoboken, USA: John Wiley & Sons, 2007; https://doi.org/10.1002/047010631X
- Балашов А.А., Голяк Ил.С., Голяк Иг.С. и др. // Журн. прикл. спектроскопии (Минск). 2018. Т. 85. № 5. С. 822.
- Набиев Ш.Ш., Григорьев Г.Ю., Лагутин А.С. и др. // Хим. физика. 2019. Т. 38. № 7. С. 49; https://doi.org/10.1134/s0207401x19070124
- Patadia F., Levy R.C., Mattoo S. // Atmos. Meas. Tech. 2018. V. 11. № 6. P. 3205; https://doi.org/10.5194/amt-11-3205-2018
- Rothman L.S., Gordon I.E., Babikov Y. et al. // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 130. P. 4; https://doi.org/10.1016/j.jqsrt.2013.07.002
Supplementary files
