Взаимосвязь коэффициентов активности и диэлектрической проницаемости водных растворов фторидов щелочных металлов

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Проведен расчет коэффициентов активности в водных растворах фторидов щелочных металлов при 298 К по обобщенной теории Дебая–Хюккеля с использованием экспериментальных значений статической диэлектрической проницаемости растворов. Показано, что расчет без оптимизации параметров модели воспроизводит немонотонную концентрационную зависимость коэффициентов активности. Зависимость коэффициентов активности от радиуса катиона объясняется ослаблением ионной ассоциации при увеличении радиуса катиона.

Texto integral

Acesso é fechado

Sobre autores

И. Шилов

Московский государственный университет им. М. В. Ломоносова

Autor responsável pela correspondência
Email: ignatshilov@mail.ru

Химический факультет

Rússia, 119991, Москва

А. Лященко

Институт общей и неорганической химии им. Н. С. Курнакова РАН

Email: ignatshilov@mail.ru
Rússia, 119991, Москва

Bibliografia

  1. Shilov I.Yu., Lyashchenko A.K. // J. Phys. Chem. B. 2015. V. 119. № 31. P. 10087. https://doi.org/10.1021/acs.jpcb.5b04555
  2. Shilov I. Yu., Lyashchenko A.K. // AIChE J. 2022. V. 68. № 2. e17515. https://doi.org/10.1002/aic.17515
  3. Buchner R., Hefter G. // Phys. Chem. Chem. Phys. 2009. V. 11. № 40. P. 8984. https://doi.org/10.1039/B906555P
  4. Lyashchenko A., Lileev A. // J. Chem. Eng. Data. 2010. V. 55. № 5. P. 2008. https://doi.org/10.1021/je900961m
  5. Шилов И.Ю., Лященко А.К. // Журн. неорган. химии. 2023. Т. 68. № 7. С. 961. https://doi.org/10.31857/S0044457X23600056
  6. Shilov I. Yu., Lyashchenko A.K. // J. Mol. Liq. 2017. V. 240. P. 172. https://doi.org/10.1016/j.molliq.2017.05.010
  7. Шилов И.Ю., Лященко А.К. // Журн. неорган. химии. 2021. Т. 66. № 7. С. 925. https://doi.org/10.31857/S0044457X21070126
  8. Шилов И.Ю., Лященко А.К. // Журн. физ. химии. 2022. Т. 96. № 11. С. 1598. https://doi.org/10.31857/S0044453722100296
  9. Hasted J.B., Ritson D.M., Collie C.H. // J. Chem. Phys. 1948. V. 16. № 1. P. 1. https://doi.org/10.1063/1.1746645
  10. Haggis G.H., Hasted J.B., Buchanan T.J. // J. Chem. Phys. 1952. V. 20. № 9. P. 1452. https://doi.org/10.1063/1.1700780
  11. Giese K., Kaatze U., Pottel R. // J. Phys. Chem. 1970. V. 74. № 21. P. 3718. https://doi.org/10.1021/j100715a005
  12. Barthel J., Krüger J., Schollmeyer E. // Z. Phys. Chem. N. F. 1977. B. 104. H. 1–3. S. 59.
  13. Buchner R., Hefter G.T., Barthel J. // J. Chem. Soc., Faraday Trans. 1994. V. 90. № 17. P. 2475. https://doi.org/10.1039/FT9949002475
  14. Barthel J., Buchner R., Münsterer M. Electrolyte data collection. Pt. 2: Dielectric properties of water and aqueous electrolyte solutions. Frankfurt am Main: Dechema, Chemistry Data Series. 1995. V. XII. Pt. 2. 365 p.
  15. Логинова Д.В., Лилеев А.С., Лященко А.К. // Журн. физ. химии. 2006. Т. 80. № 10. С. 1830.
  16. Fedotova M.V., Kruchinin S.E., Rahman H.M.A., Buchner R. // J. Mol. Liq. 2011. V. 159. № 1. P. 9. https://doi.org/10.1016/j.molliq.2010.04.009
  17. Buchner R., Wachter W., Hefter G. // J. Phys. Chem. B2019. V. 123. № 50. P. 10868. https://doi.org/10.1021/acs.jpcb.9b09694
  18. Kaatze U. // J. Chem. Eng. Data. 1989. V. 34. № 4. P. 371. https://doi.org/10.1021/je00058a001
  19. Pauling L. // J. Am. Chem. Soc. 1927. V. 49. № 3. P. 765. https://doi.org/10.1021/ja01402a019
  20. Зайцев И.Д., Асеев Г.Г. Физико-химические свойства бинарных и многокомпонентных растворов неорганических веществ. М.: Химия, 1988. 416 с.
  21. Hamer W.J., Wu Y.-C. // J. Phys. Chem. Ref. Data. 1972. V. 1. № 4. P. 1047. https://doi.org/10.1063/1.3253108
  22. Pethybridge A.D., Spiers D.J. // J. Chem. Soc., Faraday Trans. 1 1977. V. 73. P. 768. https://doi.org/10.1039/F19777300768
  23. Fuoss R.M. // Proc. Natl. Acad. Sci. U.S.A. 1980. V. 77. № 1. P. 34. https://doi.org/10.1073/pnas.77.1.34
  24. Chan C.B., Tioh N.H., Hefter G.T. // Polyhedron. 1984. V. 3. № 7. P. 845. https://doi.org/10.1016/S0277–5387(00)84633–1
  25. Manohar S., Atkinson G. // J. Solution Chem. 1993. V. 22. № 10. P. 859. https://doi.org/10.1007/BF00646598

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Static permittivity of aqueous solutions of alkali metal fluorides at 298 K. Points are experimental data [14, 16, 17], lines are their approximations, cs is the molar concentration of the salt.

Baixar (2KB)
3. Fig. 2. Calculated using the generalized Debye–Hückel theory (a) and experimental [21] (b) average ionic activity coefficients in aqueous solutions of alkali metal fluorides at 298 K. ms is the molality of the salt.

Baixar (6KB)
4. Fig. 3. Activity coefficient of water (a) and average ionic activity coefficient (b) in aqueous solutions of sodium fluoride at 298 K. Lines are calculations using the generalized Debye–Hückel theory, circles are experimental data [21], ms is the molality of the salt.

Baixar (3KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024