Низкотемпературная теплоемкость монокристалла вольфрамата цинка

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Получена теплоемкость вольфрамата цинка методом релаксационной калориметрии в интервале ~2.6–40 K. Выполнена экстраполяция теплоемкости к нулю температур и определена характеристическая температура Дебая при нуле. Сделана оценка представленных в литературе экспериментальных данных по теплоемкости. Получены уточненные значения термодинамических функций в интервале 0–301 K.

Full Text

Restricted Access

About the authors

А. Е. Мусихин

Институт неорганической химии им. А. В. Николаева СО РАН

Author for correspondence.
Email: musikhin@niic.nsc.ru
Russian Federation, Новосибирск, 630090

Е. Ф. Миллер

Институт неорганической химии им. А. В. Николаева СО РАН

Email: musikhin@niic.nsc.ru
Russian Federation, Новосибирск, 630090

Н. В. Гельфонд

Институт неорганической химии им. А. В. Николаева СО РАН

Email: musikhin@niic.nsc.ru
Russian Federation, Новосибирск, 630090

В. Н. Шлегель

Институт неорганической химии им. А. В. Николаева СО РАН

Email: musikhin@niic.nsc.ru
Russian Federation, Новосибирск, 630090

References

  1. Xin Wang, Ze Fan, Haohai Yu et al. Characterization of ZnWO4 Raman crystal // Optical Materials Express. 2017. V. 7. P. 1732. https://doi.org/10.1364/OME.7.001732
  2. Danevich F.A., Kobychev V.V., Nagornyet S.S. et al. ZnWO4 crystals as detectors for 2β decay and dark matter experiments // Nucl. Instr. Meth. A. 2005. V. 544. P. 553. https://doi.org/10.1016/j.nima.2005.01.303
  3. Kowalski Z., Kaczmarek S.M., Berkowski M. et al. Growth and optical properties of ZnWO4 single crystals pure and doped with Ca and Eu // Journal of Crystal Growth. 2016. V. 457. P. 117. http://doi.org/10.1016/j.jcrysgro.2016.06.043
  4. Belli P., Bernabei R., Borovlev Yu.A. et al. New development of radiopure ZnWO4 crystal scintillators // Nucl. Instr. Meth. A. 2019. V. 935. P. 89. https://doi.org/10.1016/j.nima.2019.05.014
  5. Belli P., Bernabei R., Borovlev Yu.A. et al. Optical, luminescence, and scintillation properties of advanced ZnWO4 crystal scintillators // Nucl. Instr. Meth. A. 2022. V. 1029. 166400. https://doi.org/10.1016/j.nima.2022.166400
  6. Филипенко O.C., Победимская E.A., Белов H.B. и др. Кристаллическая структура цинкового вольфрамата ZnWO4 // Кристаллография. 1968. Т. 13. С. 163. (Filipenko O.S., Pobedimskaya E.A., Belov N.V. et al. Crystal structure of ZnWO4 // Soviet Physics – Crystallography. 1968. V. 13. P. 127–129.)
  7. Schofield P.F., Knight K.S., Cressey G. Neutron powder diffraction study of the scintillator material ZnWO4 // J. of Materials Science. 1996. V. 31. P. 2873. http://doi.org/10.1007/BF00355995
  8. Trots D.M., Senyshyn A., Vasylechko L. Et al. Crystal structure of ZnWO4 scintillator material in the range of 3–1423 K // J. of Physics: Condensed Matter. 2009. V. 21. Р.325402. http://doi.org/10.1088/0953-8984/21/32/325402
  9. O’Hara S., McManus G.M. Czochralski Growth of Low-Dislocation-Density Zinc Tungstate Crystals // J. of Applied Physics. 1965. V. 36. P. 1741. https://doi.org/10.1063/1.1703120
  10. Lyon W.G, Westrum E.F. Heat capacities of zinc tungstate and ferrous tungstate from 5 to 550 K // The J. of Chemical Thermodynamics. 1974. V. 6. P. 763. https://doi.org/10.1016/0021-9614(74)90141-4
  11. Landee C.P, Westrum E.F. Thermophysical measurements on transition-metal tungstates I. Heat capacity of zinc tungstate from 5 to 550 K // The J. of Chemical Thermodynamics. 1975. V. 7. P. 973. https://doi.org/10.1016/0021-9614(75)90161-5
  12. Попов П.А., Скробов С.А., Матовников А.В. и др. Теплопроводность и теплоемкость кристалла ZnWO4 // Физика твердого тела, 2016, Т. 58. С. 827. (Popov P.A., Skrobov S.A., Matovnikov A.V. et al. Thermal conductivity and heat capacity of a ZnWO4 crystal // Physics of the Solid State. 2016. V. 58. P. 853.) https://doi.org/10.1134/S1063783416040193)
  13. Lyon W.G, Westrum E.F. High-temperature thermal functions and the thermochemistry of zinc tungstate // The J. of Chemical Thermodynamics. 1974. V. 6. P. 781. https://doi.org/10.1016/0021–9614(74)90142–6
  14. Lashley J.C., Hundley M.F., Migliori A. et al. Critical examination of heat capacity measurements made on a Quantum Design physical property measurement system // Cryogenics. 2003. V. 43. P. 369. https://doi.org/10.1016/S0011-2275(03)00092-4
  15. Musikhin A.E., Naumov V.N., Bespyatov M.A. et al. Low-temperature properties of BaWO4 based on experimental heat capacity in the range 5.7–304 K // J. of Alloys and Compounds. 2015. V. 639. P. 145. http://doi.org/10.1016/j.jallcom.2015.03.159
  16. Musikhin A.E., Bespyatov M.A., Shlegel V.N. et al. Low-temperature properties of BaWO4 based on experimental heat capacity in the range 5.7–304 K // J. of Alloys and Compounds. 2019. V. 802. P. 235. https://doi.org/10.1016/j.jallcom.2019.06.197
  17. Lawless W.N., Gupta T.K. Thermal properties of pure and varistor ZnO at low temperatures // J. of Applied Physics. 1986. V. 60. P. 607. https://doi.org/10.1063/1.337455

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Experimental data on the heat capacity of ZnWO4: circles are the data of this work; asterisks are the data [11]; a solid curve is a smoothed description of the experimental data.

Download (25KB)
3. Fig. 2. Heat capacity of ZnWO4 in Y(X) coordinates: triangles are experimental values; a straight line is a description of experimental points by the equation Y(X) = 0.0136·X, the area of validity of which lies in the range 0-14 K.

Download (18KB)
4. Fig. 3. Relative deviation of experimental values from the smoothed heat capacity (zero ordinate) for ZnWO4: triangles are described by equation (1) in the range 2.6–14 K; circles and diamonds are described by equation (3) of the data of this work in the range 2.6–40 K and data [12] at 81-301 K, respectively, The advantages are a smoothed description of the experimental heat capacity by a polynomial based on the data [12]. Experimental point #3 at 3.21 K is statistically significantly deviated (triangle and circle, 4.2%), it was excluded from consideration when finding a smoothed description.

Download (34KB)
5. 4. Thermodynamic functions of ZnWO4 in the range 0-301 K: heat capacity Cp(T) (1), entropy Sp(T)(2) and enthalpy ∆H(T) (3).

Download (33KB)
6. 5. Gibbs free energy ∆G(T) for ZnWO4 in the range 0-301 K.

Download (16KB)

Copyright (c) 2024 Russian Academy of Sciences