Численное определение коэффициента теплопередачи на границе двух сред

Обложка

Цитировать

Полный текст

Аннотация

Предмет исследования: математическая модель теплопередачи.

Цель исследования: разработать алгоритм численного решения обратной задачи об определении коэффициента теплопередачи на границе двух сред.

Методы исследования: в работе применяется метод конечных элементов, алгоритм базируется на специальной итерационной схеме.

Объект исследования: процесс теплопередачи на границе раздела двух сред при неидеальном контакте.

Основные результаты исследования: в работе описан алгоритм, позволяющий производить расчет коэффициента теплопередачи на границе двух сред, когда контакт не является идеальным. Алгоритм основывается на методе конечных элементов и специальной итерационной схеме, в которой решение ищется в виде конечного отрезка ряда. Представлен ряд экспериментов, полученные результаты проанализированы, и сделаны выводы по использованию алгоритма.

Полный текст

ВВЕДЕНИЕ

Рассматривается уравнение

Mu= u t Lu= u t div c x,t u +b x,t u+a x,t u=f, b x,t = b 1 x,t ,, b n x,t T ,u= u x 1 ,, x x n T ,n=2,3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabeqaceaaae aaqaaaaaaaaaWdbiaad2eacaWG1bGaeyypa0JaamyDa8aadaWgaaWc baWdbiaadshaa8aabeaak8qacqGHsislcaWGmbGaamyDaiabg2da9i aadwhapaWaaSbaaSqaa8qacaWG0baapaqabaGcpeGaeyOeI0Iaamiz aiaadMgacaWG2bWaaeWaa8aabaWdbiaadogadaqadaWdaeaapeGaam iEaiaacYcacaWG0baacaGLOaGaayzkaaGaey4bIeTaamyDaaGaayjk aiaawMcaaiabgUcaRiaadkgadaqadaWdaeaapeGaamiEaiaacYcaca WG0baacaGLOaGaayzkaaGaey4bIeTaamyDaiabgUcaRiaadggadaqa daWdaeaapeGaamiEaiaacYcacaWG0baacaGLOaGaayzkaaGaamyDai abg2da9iaadAgacaGGSaaapaqaa8qacaWGIbWaaeWaa8aabaWdbiaa dIhacaGGSaGaamiDaaGaayjkaiaawMcaaiabg2da9maabmaapaqaa8 qacaWGIbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbmaabmaapaqa a8qacaWG4bGaaiilaiaadshaaiaawIcacaGLPaaacaGGSaGaeyOjGW RaaiilaiaadkgapaWaaSbaaSqaa8qacaWGUbaapaqabaGcpeWaaeWa a8aabaWdbiaadIhacaGGSaGaamiDaaGaayjkaiaawMcaaaGaayjkai aawMcaa8aadaahaaWcbeqaa8qacaWGubaaaOGaaiilaiabgEGirlaa dwhacqGH9aqpdaqadaWdaeaapeWaaSaaa8aabaWdbiabgkGi2kaadw haa8aabaWdbiabgkGi2kaadIhapaWaaSbaaSqaa8qacaaIXaaapaqa baaaaOWdbiaacYcacqGHMacVcaGGSaWaaSaaa8aabaWdbiabgkGi2k aadIhaa8aabaWdbiabgkGi2kaadIhapaWaaSbaaSqaa8qacaWGUbaa paqabaaaaaGcpeGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaWGub aaaOGaaiilaiaad6gacqGH9aqpcaaIYaGaaiilaiaaiodaaaaaaa@9584@  (1)

в области Q= 0,T ×G MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaaeyuaiabg2da9maabmaapaqaa8qacaaIWaGaaiilaiaabsfaaiaa wIcacaGLPaaacqGHxdaTcaqGhbaaaa@3EB1@ . Считаем, что пространственная область имеет вид G=Ω× 0,Z MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaae4raiabg2da9iaabM6acqGHxdaTdaqadaWdaeaapeGaaGimaiaa cYcacaqGAbaacaGLOaGaayzkaaaaaa@3F12@  в случае n=3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBaiabg2da9iaaiodaaaa@38C3@  и G MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4raaaa@36D9@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSn0BKvguHDwzZbqef00uGuvsGC0B0H wAJbWexLMBbXgBcf2CPn2qVrwzqf2zLnharyavP1wzZbItLDhis9wB H5garmWu51MyVXgaryWqVvNCPvMCG4uz3bqee0evGueE0jxyaibaie Ydh9qrpeeu0dXdh9vqqj=hEeeu0xXdbba9arpi0=irpK0dbba91qpK 0=vr0RYxir=dbbc9q8aq0=yqpe0xbba9suk9fr=xfr=xfrpiWZqaai aaciWacmaadaGabiaaeaGaauaaaOqaaGGaaKqzafaeaaaaaaaaa8qa caWFtacaaa@42F3@  прямоугольник в случае n=2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBaiabg2da9iaaikdaaaa@38C2@ , т. е. Ω= 0,X MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeyQdiabg2da9maabmaapaqaa8qacaaIWaGaaiilaiaadIfaaiaa wIcacaGLPaaaaaa@3C31@ . Считаем, что область G MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4raaaa@36D9@  разделена на две части G ± MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ra8aadaahaaWcbeqaa8qacqGHXcqSaaaaaa@3913@ , G + =Ω× l,Z , G =Ω× 0,l ,0<l<Z MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ra8aadaahaaWcbeqaa8qacqGHRaWkaaGccqGH9aqpcaqGPoGa ey41aq7aaeWaa8aabaWdbiaadYgacaGGSaGaamOwaaGaayjkaiaawM caaiaacYcacaWGhbWdamaaCaaaleqabaWdbiabgkHiTaaakiabg2da 9iaabM6acqGHxdaTdaqadaWdaeaapeGaaGimaiaacYcacaWGSbaaca GLOaGaayzkaaGaaiilaiaaicdacqGH8aapcaWGSbGaeyipaWJaamOw aaaa@50D5@ . На плоскости x 3 = l 0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEa8aadaWgaaWcbaWdbiaaiodaa8aabeaak8qacqGH9aqpcaWG SbWdamaaBaaaleaapeGaaGimaaWdaeqaaaaa@3B46@  (прямой x 2 =l MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEa8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacqGH9aqpcaWG Sbaaaa@3A31@  в двумерном случае), т. е. на множестве Γ 0 = x , l 0 , x Ω MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4KdC0damaaBaaaleaapeGaaGimaaWdaeqaaOWdbiabg2da9maa cmaapaqaa8qadaqadaWdaeaapeGabmiEa8aagaqba8qacaGGSaGaam iBa8aadaWgaaWcbaWdbiaaicdaa8aabeaaaOWdbiaawIcacaGLPaaa caGGSaGabmiEa8aagaqba8qacqGHiiIZcqqHPoWvaiaawUhacaGL9b aaaaa@4682@  заданы условия сопряжения типа неидеального контакта

c n + u x n + =β u + u +g, c n + u x n + = c n u x n , x n = l 0   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ya8aadaqhaaWcbaWdbiaad6gaa8aabaWdbiabgUcaRaaakiaa dwhapaWaa0baaSqaa8qacaWG4bWdamaaBaaameaapeGaamOBaaWdae qaaaWcbaWdbiabgUcaRaaakiabg2da9iabek7aInaabmaapaqaa8qa caWG1bWdamaaCaaaleqabaWdbiabgUcaRaaakiabgkHiTiaadwhapa WaaWbaaSqabeaapeGaeyOeI0caaaGccaGLOaGaayzkaaGaey4kaSIa am4zaiaacYcacaWGJbWdamaaDaaaleaapeGaamOBaaWdaeaapeGaey 4kaScaaOGaamyDa8aadaqhaaWcbaWdbiaadIhapaWaaSbaaWqaa8qa caWGUbaapaqabaaaleaapeGaey4kaScaaOGaeyypa0Jaam4ya8aada qhaaWcbaWdbiaad6gaa8aabaWdbiabgkHiTaaakiaadwhapaWaa0ba aSqaa8qacaWG4bWdamaaBaaameaapeGaamOBaaWdaeqaaaWcbaWdbi abgkHiTaaakiaacYcacaWG4bWdamaaBaaaleaapeGaamOBaaWdaeqa aOWdbiabg2da9iaadYgapaWaaSbaaSqaa8qacaaIWaaapaqabaGcpe GaaeiOaaaa@620C@ , (2)

где cnuxn±t,x0=limxG±,xx0Γ0u±=limxG±,xx0Γ0ut,x. Далее иногда используем обозначение u ± = u G± MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyDa8aadaahaaWcbeqaa8qacqGHXcqSaaGccqGH9aqpdaabcaWd aeaapeGaamyDaaGaayjcSdWdamaaBaaaleaapeGaam4raiabgglaXc Wdaeqaaaaa@4014@  и записываем функцию u MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyDaaaa@3707@  в виде вектора u= u + , u MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyDaiabg2da9maabmaapaqaa8qacaWG1bWdamaaCaaaleqabaWd biabgUcaRaaakiaacYcacaWG1bWdamaaCaaaleqabaWdbiabgkHiTa aaaOGaayjkaiaawMcaaaaa@3ED4@ . К условиям сопряжения мы добавляем условия переопределения вида

u + t, y i = ψ i t i=1,2,, r 1 ,  u t, y i = ψ i t i= r 1 +1,,r , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyDa8aadaahaaWcbeqaa8qacqGHRaWkaaGcdaqadaWdaeaapeGa amiDaiaacYcacaWG5bWdamaaBaaaleaapeGaamyAaaWdaeqaaaGcpe GaayjkaiaawMcaaiabg2da9iabeI8a59aadaWgaaWcbaWdbiaadMga a8aabeaak8qadaqadaWdaeaapeGaamiDaaGaayjkaiaawMcaamaabm aapaqaa8qacaWGPbGaeyypa0JaaGymaiaacYcacaaIYaGaaiilaiab gAci8kaacYcacaWGYbWdamaaBaaaleaapeGaaGymaaWdaeqaaaGcpe GaayjkaiaawMcaaiaacYcacaqGGcGaamyDa8aadaahaaWcbeqaa8qa cqGHsislaaGcdaqadaWdaeaapeGaamiDaiaacYcacaWG5bWdamaaBa aaleaapeGaamyAaaWdaeqaaaGcpeGaayjkaiaawMcaaiabg2da9iab eI8a59aadaWgaaWcbaWdbiaadMgaa8aabeaak8qadaqadaWdaeaape GaamiDaaGaayjkaiaawMcaamaabmaapaqaa8qacaWGPbGaeyypa0Ja amOCa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGHRaWkcaaIXa GaaiilaiabgAci8kaacYcacaWGYbaacaGLOaGaayzkaaGaaiilaaaa @6C2A@  (3)

где y i G ± ¯ i=1,2,,r MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyEa8aadaWgaaWcbaWdbiaadMgaa8aabeaak8qacqGHiiIZpaWa a0aaaeaapeGaam4ra8aadaahaaWcbeqaa8qacqGHXcqSaaaaaOWaae Waa8aabaWdbiaadMgacqGH9aqpcaaIXaGaaiilaiaaikdacaGGSaGa eyOjGWRaaiilaiaadkhaaiaawIcacaGLPaaaaaa@46D9@ , т. е. возможен случай y i Γ 0 .Ha S= 0,T ×G MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyEa8aadaWgaaWcbaWdbiaadMgaa8aabeaak8qacqGHiiIZcqqH toWrpaWaaSbaaSqaa8qacaaIWaaapaqabaGcpeGaaiOlaiaabIeaca qGHbGaaeiOaiaadofacqGH9aqpdaqadaWdaeaapeGaaGimaiaacYca caWGubaacaGLOaGaayzkaaGaey41aqRaeyOaIyRaam4raaaa@4A1D@  задаем какие-либо краевые условия: Дирихле, Робина или смешанные условия. Например, варианты:

c 3 u x 1 t, x ,Z = g 1 t, x , c 3 u x 3 t, x ,0 = g 0 t, x ,  MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ya8aadaWgaaWcbaWdbiaaiodaa8aabeaak8qacaWG1bWdamaa BaaaleaapeGaamiEa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqaba GcpeWaaeWaa8aabaWdbiaadshacaGGSaGabmiEa8aagaqba8qacaGG SaGaamOwaaGaayjkaiaawMcaaiabg2da9iaadEgapaWaaSbaaSqaa8 qacaaIXaaapaqabaGcpeWaaeWaa8aabaWdbiaadshacaGGSaGabmiE a8aagaqbaaWdbiaawIcacaGLPaaacaGGSaGaam4ya8aadaWgaaWcba Wdbiaaiodaa8aabeaak8qacaWG1bWdamaaBaaaleaapeGaamiEa8aa daWgaaadbaWdbiaaiodaa8aabeaaaSqabaGcpeWaaeWaa8aabaWdbi aadshacaGGSaGabmiEa8aagaqba8qacaGGSaGaaGimaaGaayjkaiaa wMcaaiabg2da9iaadEgapaWaaSbaaSqaa8qacaaIWaaapaqabaGcpe WaaeWaa8aabaWdbiaadshacaGGSaGabmiEa8aagaqbaaWdbiaawIca caGLPaaacaGGSaGaaiiOaaaa@5EDD@

u 0,T ×Ω =0, u t=0 = u 0 x , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaqGaa8aabaWdbiaadwhaaiaawIa7a8aadaWgaaWcbaWdbmaabmaa paqaa8qacaaIWaGaaiilaiaadsfaaiaawIcacaGLPaaacqGHxdaTcq GHciITcaqGPoaapaqabaGcpeGaeyypa0JaaGimaiaacYcadaabcaWd aeaapeGaamyDaaGaayjcSdWdamaaBaaaleaapeGaamiDaiabg2da9i aaicdaa8aabeaak8qacqGH9aqpcaWG1bWdamaaBaaaleaapeGaaGim aaWdaeqaaOWdbmaabmaapaqaa8qacaWG4baacaGLOaGaayzkaaGaai ilaaaa@5096@  (4)

u t, x ,Z =0,u t, x ,0 = 0 u 0,T ×Ω =0, u t=0 = u 0 x . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyDamaabmaapaqaa8qacaWG0bGaaiilaiqadIhapaGbauaapeGa aiilaiaadQfaaiaawIcacaGLPaaacqGH9aqpcaaIWaGaaiilaiaadw hadaqadaWdaeaapeGaamiDaiaacYcaceWG4bWdayaafaWdbiaacYca caaIWaaacaGLOaGaayzkaaGaeyypa0ZaaqGaa8aabaWdbiaaicdaca GGGcGaamyDaaGaayjcSdWdamaaBaaaleaapeWaaeWaa8aabaWdbiaa icdacaGGSaGaamivaaGaayjkaiaawMcaaiabgEna0kabgkGi2kaabM 6aa8aabeaak8qacqGH9aqpcaaIWaGaaiilamaaeiaapaqaa8qacaWG 1baacaGLiWoapaWaaSbaaSqaa8qacaWG0bGaeyypa0JaaGimaaWdae qaaOWdbiabg2da9iaadwhapaWaaSbaaSqaa8qacaaIWaaapaqabaGc peWaaeWaa8aabaWdbiaadIhaaiaawIcacaGLPaaacaGGUaaaaa@63CB@  (5)

Условия могут быть как однородными, так и неоднородными. Задача состоит в нахождении решения уравнения (1), удовлетворяющего условиям (2) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSn0BKvguHDwzZbqef00uGuvsGC0B0H wAJbWexLMBbXgBcf2CPn2qVrwzqf2zLnharyavP1wzZbItLDhis9wB H5garmWu51MyVXgaryWqVvNCPvMCG4uz3bqee0evGueE0jxyaibaie Ydh9qrpeeu0dXdh9vqqj=hEeeu0xXdbba9arpi0=irpK0dbba91qpK 0=vr0RYxir=dbbc9q8aq0=yqpe0xbba9suk9fr=xfr=xfrpiWZqaai aaciWacmaadaGabiaaeaGaauaaaOqaaGGaaKqzafaeaaaaaaaaa8qa caWFtacaaa@42F3@ (4) и неизвестной функции β MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeOSdaaa@3745@ вида β=j=1rβjtΦit,x', где функции Φ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeOPdaaa@3739@  заданы, а функции β j MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeOSd8aadaWgaaWcbaWdbiaabQgaa8aabeaaaaa@388C@  считаются неизвестными. Условия сопряжения (2) совпадают с известными в теории тепломассопереноса условиями на границе двух сред, когда контакт не является идеальным. В этом случае   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSn0BKvguHDwzZbqef00uGuvsGC0B0H wAJbWexLMBbXgBcf2CPn2qVrwzqf2zLnharyavP1wzZbItLDhis9wB H5garmWu51MyVXgaryWqVvNCPvMCG4uz3bqee0evGueE0jxyaibaie Ydh9qrpeeu0dXdh9vqqj=hEeeu0xXdbba9arpi0=irpK0dbba91qpK 0=vr0RYxir=dbbc9q8aq0=yqpe0xbba9suk9fr=xfr=xfrpiWZqaai aaciWacmaadaGabiaaeaGaauaaaOqaaGGaaKqzafaeaaaaaaaaa8qa caWFtacaaa@42F3@  коэффициент теплообмена.

Обратные задачи нахождения неизвестных граничных режимов, в частности задачи конвективного теплообмена, являются классическими. Они возникают в самых различных задачах математической физики: управление процессами теплообмена и проектирование тепловой защиты, диагностика и идентификация теплопередачи в сверхзвуковых гетерогенных потоках, идентификация и моделирование теплопереноса в теплозащитных материалах и покрытиях, моделирование свойств и тепловых режимов многоразовой тепловой защиты аэрокосмических аппаратов, исследование композитных материалов и т. п. (см. [1], [5]).

В настоящее время имеется большое количество работ, посвященных численному решению задач типа (1) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSn0BKvguHDwzZbqef00uGuvsGC0B0H wAJbWexLMBbXgBcf2CPn2qVrwzqf2zLnharyavP1wzZbItLDhis9wB H5garmWu51MyVXgaryWqVvNCPvMCG4uz3bqee0evGueE0jxyaibaie Ydh9qrpeeu0dXdh9vqqj=hEeeu0xXdbba9arpi0=irpK0dbba91qpK 0=vr0RYxir=dbbc9q8aq0=yqpe0xbba9suk9fr=xfr=xfrpiWZqaai aaciWacmaadaGabiaaeaGaauaaaOqaaGGaaKqzafaeaaaaaaaaa8qa caWFtacaaa@42F3@ (5) в различных постановках, возникающих в приложениях; как правило, ищутся коэффициенты β MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeOSdaaa@3745@ , зависящие от времени или, наоборот, от пространственных переменных, точки β j MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeOSd8aadaWgaaWcbaWdbiaabQgaa8aabeaaaaa@388C@  в (4) чаще всего являются внутренними точками областей G + MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ra8aadaahaaWcbeqaa8qacqGHRaWkaaaaaa@3807@ , G MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ra8aadaahaaWcbeqaa8qacqGHsislaaaaaa@3812@ . Отметим, например, работы [4], [7], [8], [10] MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSn0BKvguHDwzZbqef00uGuvsGC0B0H wAJbWexLMBbXgBcf2CPn2qVrwzqf2zLnharyavP1wzZbItLDhis9wB H5garmWu51MyVXgaryWqVvNCPvMCG4uz3bqee0evGueE0jxyaibaie Ydh9qrpeeu0dXdh9vqqj=hEeeu0xXdbba9arpi0=irpK0dbba91qpK 0=vr0RYxir=dbbc9q8aq0=yqpe0xbba9suk9fr=xfr=xfrpiWZqaai aaciWacmaadaGabiaaeaGaauaaaOqaaGGaaKqzafaeaaaaaaaaa8qa caWFtacaaa@42F3@ [14]. В качестве метода почти во всех работах используется сведение обратной задачи к некоторой задаче управления и минимизация соответствующего квадратичного функционала ([4], [8], [10], [11], [13], [14]). Опишем некоторые рассмотренные задачи. В работе [3] рассматриваются задачи определения коэффициента теплообмена на границе раздела сред. Полученные результаты и методы позволяют подойти к построению численных методов, но в работе получены теоретические результаты. В случае одной пространственной переменной зависящий от температуры коэффициент теплообмена по точечным условиям переопределения численно определяется в статье [8]. Двумерная обратная задача определения коэффициентов теплообмена (зависящих специальным образом от дополнительных параметров, которые и подлежат определению) по набору значений решений в заданных точках численно решается в работе [10]. В работах [7], [12] рассматриваются и численно решаются обратные задачи определения коэффициента теплообмена, зависящего от двух пространственных переменных с помощью метода Монте-Карло. В качестве условий переопределения берется значение решения на части границы области. Одновременное определение коэффициента, входящего в параболическое уравнение, и коэффициента теплообмена осуществляется в работе [13]. В качестве условий переопределения используются значения замеров температур в точках на границе раздела слоев (как и в условии (4). Точечные условия переопределения также используются в [4] и [11], в последней была рассмотрена одномерная обратная задача одновременного определения теплового потока на одной из боковых поверхностей цилиндра и термического контактного сопротивления на границе раздела сред. Численное определение коэффициента теплообмена по данным замеров на доступной части внешней границы рассматриваемой области осуществляется в работе [14]. Задачи численного определения точечных источников в обратных задачах тепломассопереноса рассмотрены в работе [6], где источники задаются в виде суммы дельта-функций Дирака с коэффициентами, зависящими от времени и характеризующими мощность соответствующего источника.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

В ходе работы будем основываться на результатах, полученных в работах [2] и [9], в которых получены и доказаны теоремы о существовании и единственности решения.

Рассмотрим случай n=2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBaiabg2da9iaaikdaaaa@38C2@ , G= 0,X × 0,Z MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4raiabg2da9maabmaapaqaa8qacaaIWaGaaiilaiaadIfaaiaa wIcacaGLPaaacqGHxdaTdaqadaWdaeaapeGaaGimaiaacYcacaWGAb aacaGLOaGaayzkaaaaaa@41D6@ . Положим Γ=G MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4KdCKaeyypa0JaeyOaIyRaam4raaaa@3AAD@ , Γ 0 = x 1 , l 0 :  x 1 0,X MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4KdC0damaaBaaaleaapeGaaGimaaWdaeqaaOWdbiabg2da9maa cmaapaqaa8qadaqadaWdaeaapeGaamiEa8aadaWgaaWcbaWdbiaaig daa8aabeaak8qacaGGSaGaamiBa8aadaWgaaWcbaWdbiaaicdaa8aa beaaaOWdbiaawIcacaGLPaaacaGG6aGaaeiOaiaadIhapaWaaSbaaS qaa8qacaaIXaaapaqabaGcpeGaeyicI48aaeWaa8aabaWdbiaaicda caGGSaGaamiwaaGaayjkaiaawMcaaaGaay5Eaiaaw2haaaaa@4C1C@   S= 0,T ×Γ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4uaiabg2da9maabmaapaqaa8qacaaIWaGaaiilaiaadsfaaiaa wIcacaGLPaaacqGHxdaTcqqHtoWraaa@3F55@ , S 0 = 0,T × Γ 0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ua8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacqGH9aqpdaqa daWdaeaapeGaaGimaiaacYcacaWGubaacaGLOaGaayzkaaGaey41aq Raeu4KdC0damaaBaaaleaapeGaaGimaaWdaeqaaaaa@4197@ .

Условия согласования данных имеют вид:

u 0 x 1 ,0 = u 0 x 1 ,Z =0,  u 0 y k = ψ k 0 . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeyDa8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qadaqadaWdaeaa peGaaeiEa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaGGSaGaaG imaaGaayjkaiaawMcaaiabg2da9iaabwhapaWaaSbaaSqaa8qacaaI WaaapaqabaGcpeWaaeWaa8aabaWdbiaabIhapaWaaSbaaSqaa8qaca aIXaaapaqabaGcpeGaaiilaiaabQfaaiaawIcacaGLPaaacqGH9aqp caaIWaGaaiilaiaabckacaqG1bWdamaaBaaaleaapeGaaGimaaWdae qaaOWdbmaabmaapaqaa8qacaqG5bWdamaaBaaaleaapeGaae4AaaWd aeqaaaGcpeGaayjkaiaawMcaaiabg2da9iaabI8apaWaaSbaaSqaa8 qacaqGRbaapaqabaGcpeWaaeWaa8aabaWdbiaaicdaaiaawIcacaGL PaaacaGGUaaaaa@5683@  (6)

Опишем метод в случае n=2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBaiabg2da9iaaikdaaaa@38C2@ . Для численного решения используем метод конечных элементов. Далее для простоты рассматриваем условия (3) с условиями согласования (6).

Ищем функцию β MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdigaaa@37AE@  в виде β=j=1rβjtΦix1, где функции βj подлежат определению, а функции Φj,g0 известны. Считаем, что точки y i MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyEa8aadaWgaaWcbaWdbiaadMgaa8aabeaaaaa@3853@  с i r 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyAaiabgsMiJkaadkhapaWaaSbaaSqaa8qacaaIXaaapaqabaaa aa@3ABC@  лежат во множестве G + Γ 0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ra8aadaahaaWcbeqaa8qacqGHRaWkaaGccqGHQicYcqqHtoWr paWaaSbaaSqaa8qacaaIWaaapaqabaaaaa@3C2D@ , соответственно точки y i MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyEa8aadaWgaaWcbaWdbiaadMgaa8aabeaaaaa@3853@  с i r 1 +1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyAaiabgwMiZkaadkhapaWaaSbaaSqaa8qacaaIXaaapaqabaGc peGaey4kaSIaaGymaaaa@3C84@  во множестве G Γ 0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ra8aadaahaaWcbeqaa8qacqGHsislaaGccqGHQicYcqqHtoWr paWaaSbaaSqaa8qacaaIWaaapaqabaaaaa@3C38@ .

Опишем метод решения прямой задачи. Задана триангуляция областей G ± MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ra8aadaahaaWcbeqaa8qacqGHXcqSaaaaaa@3913@  и соответствующие базисы метода конечных элементов { φ i } i=1 s MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaai4EaiabeA8aQ9aadaWgaaWcbaWdbiaadMgaa8aabeaak8qacaGG 9bWdamaaDaaaleaapeGaamyAaiabg2da9iaaigdaa8aabaWdbiaado haaaaaaa@3F3E@ , { φ i } i=s+1 N MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaai4EaiabeA8aQ9aadaWgaaWcbaWdbiaadMgaa8aabeaak8qacaGG 9bWdamaaDaaaleaapeGaamyAaiabg2da9iaadohacqGHRaWkcaaIXa aapaqaa8qacaWGobaaaaaa@40F3@ . Узлы сетки обозначим через b i MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaiWaa8aabaWdbiaadkgapaWaaSbaaSqaa8qacaWGPbaapaqabaaa k8qacaGL7bGaayzFaaaaaa@3AA6@ .

Ищем приближенное решение в виде

v=i=1NCitφi.

Для удобства далее считаем, что точки y i MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyEa8aadaWgaaWcbaWdbiaadMgaa8aabeaaaaa@3853@  ( i r 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyAaiabgsMiJkaadkhapaWaaSbaaSqaa8qacaaIXaaapaqabaaa aa@3ABC@  ) совпадают с узлами сетки b 1 ,, b r 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOya8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaGGSaGaeyOj GWRaaiilaiaadkgapaWaaSbaaSqaa8qacaWGYbWdamaaBaaameaape GaaGymaaWdaeqaaaWcbeaaaaa@3E5B@ , а точки y i MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyEa8aadaWgaaWcbaWdbiaadMgaa8aabeaaaaa@3853@  ( r 1 +1<ir MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOCa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGHRaWkcaaI XaGaeyipaWJaamyAaiabgsMiJkaadkhaaaa@3E6E@  ) совпадают с узлами сетки b s+1 ,, b s+r r 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOya8aadaWgaaWcbaWdbiaadohacqGHRaWkcaaIXaaapaqabaGc peGaaiilaiabgAci8kaacYcacaWGIbWdamaaBaaaleaapeGaam4Cai abgUcaRiaadkhacqGHsislcaWGYbWdamaaBaaameaapeGaaGymaaWd aeqaaaWcbeaaaaa@43F3@ . Функции C i MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qa8aadaWgaaWcbaWdbiaadMgaa8aabeaaaaa@381D@  определяем из системы

R 0 C t + R 1 t C = F + f ,  C = ( C 1 , C 2 ,, C N ) T MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOua8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qaceWGdbWdayaa laWaaSbaaSqaa8qacaWG0baapaqabaGcpeGaey4kaSIaamOua8aada WgaaWcbaWdbiaaigdaa8aabeaak8qadaqadaWdaeaapeGaamiDaaGa ayjkaiaawMcaaiqadoeapaGbaSaapeGaeyypa0JabmOra8aagaWca8 qacqGHRaWkceWGMbWdayaalaWdbiaacYcacaqGGcGabm4qa8aagaWc a8qacqGH9aqpcaGGOaGaam4qa8aadaWgaaWcbaWdbiaaigdaa8aabe aak8qacaGGSaGaam4qa8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qa caGGSaGaeyOjGWRaaiilaiaadoeapaWaaSbaaSqaa8qacaWGobaapa qabaGcpeGaaiyka8aadaahaaWcbeqaa8qacaWGubaaaaaa@54C7@ , (7)

где координаты f имеют вид

fi=G+ft,xφix dx+0Xg1t,x1φix1,Z dx10Xgt,x1φix1,l0 dx1, 

при is MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyAaiabgsMiJkaadohaaaa@39A8@  и при   i>s MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaiiOaiaacckacaWGPbGaeyOpa4Jaam4Caaaa@3B43@

f i = G f t,x φ i x  dx 0 X g 0 t, x 1 φ i x 1 ,0  d x 1 + 0 X g t, x 1 φ i x 1 , l 0  d x 1 , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabeqabeaaae aaqaaaaaaaaaWdbiaadAgapaWaaSbaaSqaa8qacaWGPbaapaqabaGc peGaeyypa0Zaaubeaeqal8aabaWdbiaadEeapaWaaWbaaWqabeaape GaeyOeI0caaaWcbeqdpaqaa8qacqGHRiI8aaGccaaMk8UaaGPcVlaa dAgadaqadaWdaeaapeGaamiDaiaacYcacaWG4baacaGLOaGaayzkaa GaeqOXdO2damaaBaaaleaapeGaamyAaaWdaeqaaOWdbmaabmaapaqa a8qacaWG4baacaGLOaGaayzkaaGaaiiOaiaadsgacaWG4bGaeyOeI0 Yaaubmaeqal8aabaWdbiaaicdaa8aabaWdbiaadIfaa0WdaeaapeGa ey4kIipaaOGaaGPcVlaayQW7caWGNbWdamaaBaaaleaapeGaaGimaa WdaeqaaOWdbmaabmaapaqaa8qacaWG0bGaaiilaiaadIhapaWaaSba aSqaa8qacaaIXaaapaqabaaak8qacaGLOaGaayzkaaGaeqOXdO2dam aaBaaaleaapeGaamyAaaWdaeqaaOWdbmaabmaapaqaa8qacaWG4bWd amaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaacYcacaaIWaaacaGLOa GaayzkaaGaaiiOaiaadsgacaWG4bWdamaaBaaaleaapeGaaGymaaWd aeqaaOWdbiabgUcaRmaavadabeWcpaqaa8qacaaIWaaapaqaa8qaca WGybaan8aabaWdbiabgUIiYdaakiaayQW7caaMk8Uaam4zamaabmaa paqaa8qacaWG0bGaaiilaiaadIhapaWaaSbaaSqaa8qacaaIXaaapa qabaaak8qacaGLOaGaayzkaaGaeqOXdO2damaaBaaaleaapeGaamyA aaWdaeqaaOWdbmaabmaapaqaa8qacaWG4bWdamaaBaaaleaapeGaaG ymaaWdaeqaaOWdbiaacYcacaWGSbWdamaaBaaaleaapeGaaGimaaWd aeqaaaGcpeGaayjkaiaawMcaaiaacckacaWGKbGaamiEa8aadaWgaa WcbaWdbiaaigdaa8aabeaak8qacaGGSaaaaaaa@88BA@   R 0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOua8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@37F8@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSn0BKvguHDwzZbqef00uGuvsGC0B0H wAJbWexLMBbXgBcf2CPn2qVrwzqf2zLnharyavP1wzZbItLDhis9wB H5garmWu51MyVXgaryWqVvNCPvMCG4uz3bqee0evGueE0jxyaibaie Ydh9qrpeeu0dXdh9vqqj=hEeeu0xXdbba9arpi0=irpK0dbba91qpK 0=vr0RYxir=dbbc9q8aq0=yqpe0xbba9suk9fr=xfr=xfrpiWZqaai aaciWacmaadaGabiaaeaGaauaaaOqaaGGaaKqzafaeaaaaaaaaa8qa caWFtacaaa@42F3@  матрица с элементами r ij = φ i , φ j = G + φ i x φ j x  dx MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOCa8aadaWgaaWcbaWdbiaadMgacaWGQbaapaqabaGcpeGaeyyp a0ZaaeWaa8aabaWdbiabeA8aQ9aadaWgaaWcbaWdbiaadMgaa8aabe aak8qacaGGSaGaeqOXdO2damaaBaaaleaapeGaamOAaaWdaeqaaaGc peGaayjkaiaawMcaaiabg2da9maavababeWcpaqaa8qacaWGhbWdam aaCaaameqabaWdbiabgUcaRaaaaSqab0WdaeaapeGaey4kIipaaOGa aGPcVlabeA8aQ9aadaWgaaWcbaWdbiaadMgaa8aabeaak8qadaqada WdaeaapeGaamiEaaGaayjkaiaawMcaaiabeA8aQ9aadaWgaaWcbaWd biaadQgaa8aabeaak8qadaqadaWdaeaapeGaamiEaaGaayjkaiaawM caaiaacckacaWGKbGaamiEaaaa@587D@  при i,js MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyAaiaacYcacaWGQbGaeyizImQaam4Caaaa@3B47@ , r ij = φ i , φ j = G φ i x φ j x  dx MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOCa8aadaWgaaWcbaWdbiaadMgacaWGQbaapaqabaGcpeGaeyyp a0ZaaeWaa8aabaWdbiabeA8aQ9aadaWgaaWcbaWdbiaadMgaa8aabe aak8qacaGGSaGaeqOXdO2damaaBaaaleaapeGaamOAaaWdaeqaaaGc peGaayjkaiaawMcaaiabg2da9maavababeWcpaqaa8qacaWGhbWdam aaCaaameqabaWdbiabgkHiTaaaaSqab0WdaeaapeGaey4kIipaaOGa aGPcVlabeA8aQ9aadaWgaaWcbaWdbiaadMgaa8aabeaak8qadaqada WdaeaapeGaamiEaaGaayjkaiaawMcaaiabeA8aQ9aadaWgaaWcbaWd biaadQgaa8aabeaak8qadaqadaWdaeaapeGaamiEaaGaayjkaiaawM caaiaacckacaWGKbGaamiEaaaa@5888@ при i,j>s MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyAaiaacYcacaWGQbGaeyOpa4Jaam4Caaaa@3A9A@ , r ij =0, MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOCa8aadaWgaaWcbaWdbiaadMgacaWGQbaapaqabaGcpeGaeyyp a0JaaGimaiaacYcaaaa@3BC5@  если is MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeyAaiabgsMiJkaabohaaaa@39A4@  и j>s MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOAaiabg6da+iaadohaaaa@38FC@  или i>s MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyAaiabg6da+iaadohaaaa@38FB@  и js MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOAaiabgsMiJkaadohaaaa@39A9@ .

R 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOua8aadaWgaaWcbaWdbiaaigdaa8aabeaaaaa@37F9@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSn0BKvguHDwzZbqef00uGuvsGC0B0H wAJbWexLMBbXgBcf2CPn2qVrwzqf2zLnharyavP1wzZbItLDhis9wB H5garmWu51MyVXgaryWqVvNCPvMCG4uz3bqee0evGueE0jxyaibaie Ydh9qrpeeu0dXdh9vqqj=hEeeu0xXdbba9arpi0=irpK0dbba91qpK 0=vr0RYxir=dbbc9q8aq0=yqpe0xbba9suk9fr=xfr=xfrpiWZqaai aaciWacmaadaGabiaaeaGaauaaaOqaaGGaaKqzafaeaaaaaaaaa8qa caWFtacaaa@42F3@  матрица с элементами:

Rjk=(c1t,xφkx1,φjx1)±+(c2t,xφkx2,φjx2)±+(bt,xφk,φj)±+(at,xφk,φj)±,

  (u,v)±=G±uv dx , (8)

при j,ks MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOAaiaacYcacaWGRbGaeyizImQaam4Caaaa@3B49@  (в этом случае интегралы берутся по G + MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ra8aadaahaaWcbeqaa8qacqGHRaWkaaaaaa@3807@  ) или k,j>s MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4AaiaacYcacaWGQbGaeyOpa4Jaam4Caaaa@3A9C@  (в этом случае интегралы берутся по G MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ra8aadaahaaWcbeqaa8qacqGHsislaaaaaa@3812@  ), считаем, что R kj =0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOua8aadaWgaaWcbaWdbiaadUgacaWGQbaapaqabaGcpeGaeyyp a0JaaGimaaaa@3AF7@ , если ks MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4AaiabgsMiJkaadohaaaa@39AA@  и j>s MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOAaiabg6da+iaadohaaaa@38FC@  или k>s MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Aaiabg6da+iaadohaaaa@38FD@  и js MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOAaiabgsMiJkaadohaaaa@39A9@ . Имеем, чтo C 0 = C 0 = u 0 b 1 ,, u 0 b N MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gabm4qa8aagaWca8qadaqadaWdaeaapeGaaGimaaGaayjkaiaawMca aiabg2da9iqadoeapaGbaSaadaWgaaWcbaWdbiaaicdaa8aabeaak8 qacqGH9aqpdaqadaWdaeaapeGaamyDa8aadaWgaaWcbaWdbiaaicda a8aabeaak8qadaqadaWdaeaapeGaamOya8aadaWgaaWcbaWdbiaaig daa8aabeaaaOWdbiaawIcacaGLPaaacaGGSaGaeyOjGWRaaiilaiaa dwhapaWaaSbaaSqaa8qacaaIWaaapaqabaGcpeWaaeWaa8aabaWdbi aadkgapaWaaSbaaSqaa8qacaWGobaapaqabaaak8qacaGLOaGaayzk aaaacaGLOaGaayzkaaaaaa@4DF6@ . Координаты вектора F MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmOra8aagaWcaaaa@36F9@  имеют вид

F i = 0 X β t, x 1 v + t, x 1 , l 0 v t, x 1 , l 0 φ i x 1 , l 0  d x 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOra8aadaWgaaWcbaWdbiaadMgaa8aabeaak8qacqGH9aqpcqGH sisldaqfWaqabSWdaeaapeGaaGimaaWdaeaapeGaamiwaaqdpaqaa8 qacqGHRiI8aaGccaaMk8UaeqOSdi2aaeWaa8aabaWdbiaadshacaGG SaGaamiEa8aadaWgaaWcbaWdbiaaigdaa8aabeaaaOWdbiaawIcaca GLPaaadaqadaWdaeaapeGaamODa8aadaahaaWcbeqaa8qacqGHRaWk aaGcdaqadaWdaeaapeGaamiDaiaacYcacaWG4bWdamaaBaaaleaape GaaGymaaWdaeqaaOWdbiaacYcacaWGSbWdamaaBaaaleaapeGaaGim aaWdaeqaaaGcpeGaayjkaiaawMcaaiabgkHiTiaadAhapaWaaWbaaS qabeaapeGaeyOeI0caaOWaaeWaa8aabaWdbiaadshacaGGSaGaamiE a8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaGGSaGaamiBa8aada WgaaWcbaWdbiaaicdaa8aabeaaaOWdbiaawIcacaGLPaaaaiaawIca caGLPaaacqaHgpGApaWaaSbaaSqaa8qacaWGPbaapaqabaGcpeWaae Waa8aabaWdbiaadIhapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGa aiilaiaadYgapaWaaSbaaSqaa8qacaaIWaaapaqabaaak8qacaGLOa GaayzkaaGaaiiOaiaadsgacaWG4bWdamaaBaaaleaapeGaaGymaaWd aeqaaaaa@6C8B@ при is MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyAaiabgsMiJkaadohaaaa@39A8@

F i = 0 X β t, x 1 v + t, x 1 , l 0 v t, x 1 , l 0 φ i x 1 , l 0  d x 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOra8aadaWgaaWcbaWdbiaadMgaa8aabeaak8qacqGH9aqpdaqf WaqabSWdaeaapeGaaGimaaWdaeaapeGaamiwaaqdpaqaa8qacqGHRi I8aaGccaaMk8UaeqOSdi2aaeWaa8aabaWdbiaadshacaGGSaGaamiE a8aadaWgaaWcbaWdbiaaigdaa8aabeaaaOWdbiaawIcacaGLPaaada qadaWdaeaapeGaamODa8aadaahaaWcbeqaa8qacqGHRaWkaaGcdaqa daWdaeaapeGaamiDaiaacYcacaWG4bWdamaaBaaaleaapeGaaGymaa WdaeqaaOWdbiaacYcacaWGSbWdamaaBaaaleaapeGaaGimaaWdaeqa aaGcpeGaayjkaiaawMcaaiabgkHiTiaadAhapaWaaWbaaSqabeaape GaeyOeI0caaOWaaeWaa8aabaWdbiaadshacaGGSaGaamiEa8aadaWg aaWcbaWdbiaaigdaa8aabeaak8qacaGGSaGaamiBa8aadaWgaaWcba Wdbiaaicdaa8aabeaaaOWdbiaawIcacaGLPaaaaiaawIcacaGLPaaa cqaHgpGApaWaaSbaaSqaa8qacaWGPbaapaqabaGcpeWaaeWaa8aaba WdbiaadIhapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaaiilaiaa dYgapaWaaSbaaSqaa8qacaaIWaaapaqabaaak8qacaGLOaGaayzkaa GaaiiOaiaadsgacaWG4bWdamaaBaaaleaapeGaaGymaaWdaeqaaaaa @6B9E@  при i>s MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyAaiabg6da+iaadohaaaa@38FB@ .

Здесь v ± t,x, l 0 = lim ε0 v t, x 1 , l 0 ±ε MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamODa8aadaahaaWcbeqaa8qacqGHXcqSaaGcdaqadaWdaeaapeGa amiDaiaacYcacaWG4bGaaiilaiaadYgapaWaaSbaaSqaa8qacaaIWa aapaqabaaak8qacaGLOaGaayzkaaGaeyypa0ZdamaaxababaWdbiaa dYgacaWGPbGaamyBaaWcpaqaa8qacqaH1oqzcqGHsgIRcaaIWaaapa qabaGcpeGaaGPcVlaadAhadaqadaWdaeaapeGaamiDaiaacYcacaWG 4bWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaacYcacaWGSbWdam aaBaaaleaapeGaaGimaaWdaeqaaOWdbiabgglaXkabew7aLbGaayjk aiaawMcaaaaa@579D@ . Решение системы ищем методом конечных разностей. Пусть τ=T/M MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiXdqNaeyypa0Jaamivaiaac+cacaWGnbaaaa@3B36@ . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSn0BKvguHDwzZbqef00uGuvsGC0B0H wAJbWexLMBbXgBcf2CPn2qVrwzqf2zLnharyavP1wzZbItLDhis9wB H5garmWu51MyVXgaryWqVvNCPvMCG4uz3bqee0evGueE0jxyaibaie Ydh9qrpeeu0dXdh9vqqj=hEeeu0xXdbba9arpi0=irpK0dbba91qpK 0=vr0RYxir=dbbc9q8aq0=yqpe0xbba9suk9fr=xfr=xfrpiWZqaai aaciWacmaadaGabiaaeaGaauaaaOqaaGGaaKqzafaeaaaaaaaaa8qa caWFtacaaa@42F3@  шаг по времени. Заменим уравнение (7) системой (9)

где C i k C k τi , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qa8aadaqhaaWcbaWdbiaadMgaa8aabaWdbiaadUgaaaGccqGH ijYUcaWGdbWdamaaBaaaleaapeGaam4AaaWdaeqaaOWdbmaabmaapa qaa8qacqaHepaDcaWGPbaacaGLOaGaayzkaaGaaiilaaaa@4210@   F i F τi MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadAeagaWcam aaBaaaleaacaWGPbaabeaakabaaaaaaaaapeGaeyisIS7daiqadAea gaWca8qadaqadaWdaeaapeGaaeiXdiaabMgaaiaawIcacaGLPaaaaa a@3E99@ , f i = f τi ,  A i = R 1 τi . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmOza8aagaWcamaaBaaaleaapeGaamyAaaWdaeqaaOWdbiabg2da 9iqadAgapaGbaSaapeWaaeWaa8aabaWdbiabes8a0jaadMgaaiaawI cacaGLPaaacaGGSaGaaeiOaiaadgeapaWaaSbaaSqaa8qacaWGPbaa paqabaGcpeGaeyypa0JaamOua8aadaWgaaWcbaWdbiaaigdaa8aabe aak8qadaqadaWdaeaapeGaeqiXdqNaamyAaaGaayjkaiaawMcaaiaa c6caaaa@4AFD@  Пусть Ψ=(ψ1,ψ2,,ψr)T, Ψi=Ψτi.

Положим ψ i k = ψ k τi MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiYdK3damaaDaaaleaapeGaamyAaaWdaeaapeGaam4Aaaaakiab g2da9iabeI8a59aadaWgaaWcbaWdbiaadUgaa8aabeaak8qadaqada WdaeaapeGaeqiXdqNaamyAaaGaayjkaiaawMcaaaaa@42C1@ . β i = ( β i 1 ,, β i r ) T MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GafqOSdi2dayaalaWaaSbaaSqaa8qacaWGPbaapaqabaGcpeGaeyyp a0Jaaiikaiabek7aI9aadaqhaaWcbaWdbiaadMgaa8aabaWdbiaaig daaaGccaGGSaGaeyOjGWRaaiilaiabek7aI9aadaqhaaWcbaWdbiaa dMgaa8aabaWdbiaadkhaaaGccaGGPaWdamaaCaaaleqabaWdbiaads faaaaaaa@474E@ , β i β τi MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GafqOSdi2dayaalaWaaSbaaSqaa8qacaWGPbaapaqabaGcpeGaeyis ISRafqOSdi2dayaalaWdbmaabmaapaqaa8qacqaHepaDcaWGPbaaca GLOaGaayzkaaaaaa@4100@ , β i k β k iτ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdi2damaaDaaaleaapeGaamyAaaWdaeaapeGaam4Aaaaakiab gIKi7kabek7aI9aadaWgaaWcbaWdbiaadUgaa8aabeaak8qadaqada WdaeaapeGaamyAaiabes8a0bGaayjkaiaawMcaaaaa@4312@ .

Запишем координаты вектора Fi+1. Возьмем

F i+1 k = j=1 r β i+1 j ( l=1 r 1 ψ i l 0 X Φ j x 1 φ l x 1 , l 0 φ k x 1 , l 0  dx 1 + MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeOra8aadaqhaaWcbaWdbiaabMgacqGHRaWkcaaIXaaapaqaa8qa caqGRbaaaOGaeyypa0JaeyOeI0YaaybCaeqal8aabaWdbiaabQgacq GH9aqpcaaIXaaapaqaa8qacaqGYbaan8aabaWdbiabggHiLdaakiaa yQW7caaMk8UaaeOSd8aadaqhaaWcbaWdbiaabMgacqGHRaWkcaaIXa aapaqaa8qacaqGQbaaaOGaaiikamaawahabeWcpaqaa8qacaqGSbGa eyypa0JaaGymaaWdaeaapeGaaeOCa8aadaWgaaadbaWdbiaaigdaa8 aabeaaa0qaa8qacqGHris5aaGccaaMk8UaaGPcVlaabI8apaWaa0ba aSqaa8qacaqGPbaapaqaa8qacaqGSbaaaOWaaubmaeqal8aabaWdbi aaicdaa8aabaWdbiaabIfaa0WdaeaapeGaey4kIipaaOGaaGPcVlaa yQW7caqGMoWdamaaBaaaleaapeGaaeOAaaWdaeqaaOWdbmaabmaapa qaa8qacaqG4bWdamaaBaaaleaapeGaaGymaaWdaeqaaaGcpeGaayjk aiaawMcaaiaabA8apaWaaSbaaSqaa8qacaqGSbaapaqabaGcpeWaae Waa8aabaWdbiaabIhapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGa aiilaiaabYgapaWaaSbaaSqaa8qacaaIWaaapaqabaaak8qacaGLOa GaayzkaaGaaeOXd8aadaWgaaWcbaWdbiaabUgaa8aabeaak8qadaqa daWdaeaapeGaaeiEa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qaca GGSaGaaeiBa8aadaWgaaWcbaWdbiaaicdaa8aabeaaaOWdbiaawIca caGLPaaacaqGGcGaaeizaiaabIhapaWaaSbaaSqaa8qacaaIXaaapa qabaGcpeGaey4kaScaaa@7F81@

l=r1+1sCil0XΦjx1φlx1,l0φkx1,l0dx1
-l=s+1s+rr1ψils+r10XΦjx1φlx1,l0φkx1,l0dx1-l=s+rr1+1NCil0XΦjx1φlx1,l0φkx1,l0 dx1), k=1,2,,s,

F i+1 k = j=1 r β i+1 j ( l=1 r 1 ψ i l 0 X Φ j x 1 φ l x 1 , l 0 φ k x 1 , l 0  dx 1 + MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeOra8aadaqhaaWcbaWdbiaabMgacqGHRaWkcaaIXaaapaqaa8qa caqGRbaaaOGaeyypa0ZaaybCaeqal8aabaWdbiaabQgacqGH9aqpca aIXaaapaqaa8qacaqGYbaan8aabaWdbiabggHiLdaakiaayQW7caaM k8UaaeOSd8aadaqhaaWcbaWdbiaabMgacqGHRaWkcaaIXaaapaqaa8 qacaqGQbaaaOGaaiikamaawahabeWcpaqaa8qacaqGSbGaeyypa0Ja aGymaaWdaeaapeGaaeOCa8aadaWgaaadbaWdbiaaigdaa8aabeaaa0 qaa8qacqGHris5aaGccaaMk8UaaGPcVlaabI8apaWaa0baaSqaa8qa caqGPbaapaqaa8qacaqGSbaaaOWaaubmaeqal8aabaWdbiaaicdaa8 aabaWdbiaabIfaa0WdaeaapeGaey4kIipaaOGaaGPcVlaayQW7caqG MoWdamaaBaaaleaapeGaaeOAaaWdaeqaaOWdbmaabmaapaqaa8qaca qG4bWdamaaBaaaleaapeGaaGymaaWdaeqaaaGcpeGaayjkaiaawMca aiaabA8apaWaaSbaaSqaa8qacaqGSbaapaqabaGcpeWaaeWaa8aaba WdbiaabIhapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaaiilaiaa bYgapaWaaSbaaSqaa8qacaaIWaaapaqabaaak8qacaGLOaGaayzkaa GaaeOXd8aadaWgaaWcbaWdbiaabUgaa8aabeaak8qadaqadaWdaeaa peGaaeiEa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaGGSaGaae iBa8aadaWgaaWcbaWdbiaaicdaa8aabeaaaOWdbiaawIcacaGLPaaa caqGGcGaaeizaiaabIhapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpe Gaey4kaScaaa@7E94@
+l=r1+1sCil0XΦjx1φlx1,l0φkx1,l0 dx1l=s+1s+rr1ψils+r10XΦjx1φlx1,l0φkx1,l0dx1l=s+rr1+1NCil0XΦjx1φlx1,l0φkx1,l0 dx1), k=s+1,s+2,,N.

Опишем ситуацию более подробно. Положим

a kj i+1 = l=1 s C i l 0 X Φ j x 1 φ l x 1 , l 0 φ k x 1 , l 0  dx 1 + l=s+1 N C i l 0 X Φ j x 1 φ l x 1 , l 0 φ k x 1 , l 0  dx 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaaeyya8aadaqhaaWcbaWdbiaabUgacaqGQbaapaqaa8qacaqGPbGa ey4kaSIaaGymaaaakiabg2da9iabgkHiTmaawahabeWcpaqaa8qaca qGSbGaeyypa0JaaGymaaWdaeaapeGaae4Caaqdpaqaa8qacqGHris5 aaGccaaMk8Uaae4qa8aadaqhaaWcbaWdbiaabMgaa8aabaWdbiaabY gaaaGcdaqfWaqabSWdaeaapeGaaGimaaWdaeaapeGaaeiwaaqdpaqa a8qacqGHRiI8aaGccaaMk8UaaeOPd8aadaWgaaWcbaWdbiaabQgaa8 aabeaak8qadaqadaWdaeaapeGaaeiEa8aadaWgaaWcbaWdbiaaigda a8aabeaaaOWdbiaawIcacaGLPaaacaqGgpWdamaaBaaaleaapeGaae iBaaWdaeqaaOWdbmaabmaapaqaa8qacaqG4bWdamaaBaaaleaapeGa aGymaaWdaeqaaOWdbiaacYcacaqGSbWdamaaBaaaleaapeGaaGimaa WdaeqaaaGcpeGaayjkaiaawMcaaiaabA8apaWaaSbaaSqaa8qacaqG RbaapaqabaGcpeWaaeWaa8aabaWdbiaabIhapaWaaSbaaSqaa8qaca aIXaaapaqabaGcpeGaaiilaiaabYgapaWaaSbaaSqaa8qacaaIWaaa paqabaaak8qacaGLOaGaayzkaaGaaeiOaiaabsgacaqG4bWdamaaBa aaleaapeGaaGymaaWdaeqaaOWdbiabgUcaRmaawahabeWcpaqaa8qa caqGSbGaeyypa0Jaae4CaiabgUcaRiaaigdaa8aabaWdbiaab6eaa0 WdaeaapeGaeyyeIuoaaOGaaGPcVlaaboeapaWaa0baaSqaa8qacaqG Pbaapaqaa8qacaqGSbaaaOWaaubmaeqal8aabaWdbiaaicdaa8aaba WdbiaabIfaa0WdaeaapeGaey4kIipaaOGaaGPcVlaabA6apaWaaSba aSqaa8qacaqGQbaapaqabaGcpeWaaeWaa8aabaWdbiaabIhapaWaaS baaSqaa8qacaaIXaaapaqabaaak8qacaGLOaGaayzkaaGaaeOXd8aa daWgaaWcbaWdbiaabYgaa8aabeaak8qadaqadaWdaeaapeGaaeiEa8 aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaGGSaGaaeiBa8aadaWg aaWcbaWdbiaaicdaa8aabeaaaOWdbiaawIcacaGLPaaacaqGgpWdam aaBaaaleaapeGaae4AaaWdaeqaaOWdbmaabmaapaqaa8qacaqG4bWd amaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaacYcacaqGSbWdamaaBa aaleaapeGaaGimaaWdaeqaaaGcpeGaayjkaiaawMcaaiaabckacaqG KbGaaeiEa8aadaWgaaWcbaWdbiaaigdaa8aabeaaaaa@9C12@

при ks MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaae4AaiabgsMiJkaabohaaaa@39A6@  и

a kj i+1 = l=1 s C i l 0 X Φ j x 1 φ l x 1 , l 0 φ k x 1 , l 0  dx 1 l=s+1 N C i l 0 X Φ j x 1 φ l x 1 , l 0 φ k x 1 , l 0  dx 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaaeyya8aadaqhaaWcbaWdbiaabUgacaqGQbaapaqaa8qacaqGPbGa ey4kaSIaaGymaaaakiabg2da9maawahabeWcpaqaa8qacaqGSbGaey ypa0JaaGymaaWdaeaapeGaae4Caaqdpaqaa8qacqGHris5aaGccaaM k8Uaae4qa8aadaqhaaWcbaWdbiaabMgaa8aabaWdbiaabYgaaaGcda qfWaqabSWdaeaapeGaaGimaaWdaeaapeGaaeiwaaqdpaqaa8qacqGH RiI8aaGccaaMk8UaaeOPd8aadaWgaaWcbaWdbiaabQgaa8aabeaak8 qadaqadaWdaeaapeGaaeiEa8aadaWgaaWcbaWdbiaaigdaa8aabeaa aOWdbiaawIcacaGLPaaacaqGgpWdamaaBaaaleaapeGaaeiBaaWdae qaaOWdbmaabmaapaqaa8qacaqG4bWdamaaBaaaleaapeGaaGymaaWd aeqaaOWdbiaacYcacaqGSbWdamaaBaaaleaapeGaaGimaaWdaeqaaa GcpeGaayjkaiaawMcaaiaabA8apaWaaSbaaSqaa8qacaqGRbaapaqa baGcpeWaaeWaa8aabaWdbiaabIhapaWaaSbaaSqaa8qacaaIXaaapa qabaGcpeGaaiilaiaabYgapaWaaSbaaSqaa8qacaaIWaaapaqabaaa k8qacaGLOaGaayzkaaGaaeiOaiaabsgacaqG4bWdamaaBaaaleaape GaaGymaaWdaeqaaOWdbiabgkHiTmaawahabeWcpaqaa8qacaqGSbGa eyypa0Jaae4CaiabgUcaRiaaigdaa8aabaWdbiaab6eaa0Wdaeaape GaeyyeIuoaaOGaaGPcVlaaboeapaWaa0baaSqaa8qacaqGPbaapaqa a8qacaqGSbaaaOWaaubmaeqal8aabaWdbiaaicdaa8aabaWdbiaabI faa0WdaeaapeGaey4kIipaaOGaaGPcVlaabA6apaWaaSbaaSqaa8qa caqGQbaapaqabaGcpeWaaeWaa8aabaWdbiaabIhapaWaaSbaaSqaa8 qacaaIXaaapaqabaaak8qacaGLOaGaayzkaaGaaeOXd8aadaWgaaWc baWdbiaabYgaa8aabeaak8qadaqadaWdaeaapeGaaeiEa8aadaWgaa WcbaWdbiaaigdaa8aabeaak8qacaGGSaGaaeiBa8aadaWgaaWcbaWd biaaicdaa8aabeaaaOWdbiaawIcacaGLPaaacaqGgpWdamaaBaaale aapeGaae4AaaWdaeqaaOWdbmaabmaapaqaa8qacaqG4bWdamaaBaaa leaapeGaaGymaaWdaeqaaOWdbiaacYcacaqGSbWdamaaBaaaleaape GaaGimaaWdaeqaaaGcpeGaayjkaiaawMcaaiaabckacaqGKbGaaeiE a8aadaWgaaWcbaWdbiaaigdaa8aabeaaaaa@9B30@

при k>s MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaae4Aaiabg6da+iaabohaaaa@38F9@ .

Здесь Cil=ψillr1, Cil=ψils+r1l=s+1,,s+rr1. Тогда

Fi+1k=j=1rβi+1jakji+1 k=1,,r1, s+1,,s+rr1, Fi+1=Ai+1βi+1,

где матрица A i+1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyqa8aadaahaaWcbeqaa8qacaWGPbGaey4kaSIaaGymaaaaaaa@39AA@  имеет размерность N×r MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeOtaiabgEna0kaabkhaaaa@39EA@ . Перепишем равенство (9) в виде

R i+1 C i+1 =τ A i+1 β i+1 +τ f i+1 + R 0 C i ,  R i+1 = R 0 +τ A i+1  i=0,1,,M1. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOua8aadaWgaaWcbaWdbiaadMgacqGHRaWkcaaIXaaapaqabaGc peGabm4qa8aagaWcamaaBaaaleaapeGaamyAaiabgUcaRiaaigdaa8 aabeaak8qacqGH9aqpcqaHepaDcaWGbbWdamaaCaaaleqabaWdbiaa dMgacqGHRaWkcaaIXaaaaOGafqOSdi2dayaalaWaaSbaaSqaa8qaca WGPbGaey4kaSIaaGymaaWdaeqaaOWdbiabgUcaRiabes8a0jqadAga paGbaSaadaWgaaWcbaWdbiaadMgacqGHRaWkcaaIXaaapaqabaGcpe Gaey4kaSIaamOua8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qaceWG dbWdayaalaWaaSbaaSqaa8qacaWGPbaapaqabaGcpeGaaiilaiaabc kacaWGsbWdamaaBaaaleaapeGaamyAaiabgUcaRiaaigdaa8aabeaa k8qacqGH9aqpcaWGsbWdamaaBaaaleaapeGaaGimaaWdaeqaaOWdbi abgUcaRiabes8a0jaadgeapaWaaSbaaSqaa8qacaWGPbGaey4kaSIa aGymaaWdaeqaaOWdbiaabckacaWGPbGaeyypa0JaaGimaiaacYcaca aIXaGaaiilaiabgAci8kaacYcacaWGnbGaeyOeI0IaaGymaiaac6ca aaa@6F1C@  (10)

Построим r×N MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeOCaiabgEna0kaab6eaaaa@39EA@  матрицу D 0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaaeira8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@37E8@  такую, что d ii =1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaaeiza8aadaWgaaWcbaWdbiaabMgacaqGPbaapaqabaGcpeGaeyyp a0JaaGymaaaa@3B01@  при i=1,, r 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeyAaiabg2da9iaaigdacaGGSaGaeyOjGWRaaiilaiaabkhapaWa aSbaaSqaa8qacaaIXaaapaqabaaaaa@3DB2@ , d ii+s r 1 =1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaaeiza8aadaWgaaWcbaWdbiaabMgacaqGPbGaey4kaSIaae4Caiab gkHiTiaabkhapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbi abg2da9iaaigdaaaa@3FCD@  при i= r 1 +1,,r MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeyAaiabg2da9iaabkhapaWaaSbaaSqaa8qacaaIXaaapaqabaGc peGaey4kaSIaaGymaiaacYcacqGHMacVcaGGSaGaaeOCaaaa@3FA3@ , а остальные элементы матрицы D 0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaaeira8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@37E8@  равны нулю. Обращая матрицу R i+1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeOua8aadaWgaaWcbaWdbiaabMgacqGHRaWkcaaIXaaapaqabaaa aa@39C5@  из (10), получим

Ci+1=τRi+1-1Ai+1βi+1+τRi+1-1fi+1+Ri+1-1R0Ci,     i=0,1,2,…, M-1, (11)

Применив матрицу D 0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaaeira8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@37E8@  и используя условия переопределения, получим

Ci+1=τD0Ri+11Ai+1βi+1+τD0Ri+11fi+1+D0Ri+11R0Ci,     i= 0,1,2,,M1. (12)

Обозначим B i+1 = D 0 R i+1 1 A i+1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOqa8aadaWgaaWcbaWdbiaadMgacqGHRaWkcaaIXaaapaqabaGc peGaeyypa0Jaamira8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qaca WGsbWdamaaDaaaleaapeGaamyAaiabgUcaRiaaigdaa8aabaWdbiab gkHiTiaaigdaaaGccaWGbbWdamaaCaaaleqabaWdbiaadMgacqGHRa WkcaaIXaaaaaaa@45EC@  (матрица имеет размерность r×r MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeOCaiabgEna0kaabkhaaaa@3A0E@  ).
Отсюда, из равенства (12), находим вектор β i+1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeOSd8aadaWgaaWcbaWdbiaabMgacqGHRaWkcaaIXaaapaqabaaa aa@3A28@ :

Ci+1=Bi+11βi+1τBi+11D0Ri+11fi+1Bi+11D0Ri+11R0Ci, i=0,1,,M1. (13)

Определим начальные данные. Имеем C 0 k = u 0 b k MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaae4qa8aadaqhaaWcbaWdbiaaicdaa8aabaWdbiaabUgaaaGccqGH 9aqpcaqG1bWdamaaBaaaleaapeGaaGimaaWdaeqaaOWdbmaabmaapa qaa8qacaqGIbWdamaaBaaaleaapeGaae4AaaWdaeqaaaGcpeGaayjk aiaawMcaaaaa@400B@ . При i=0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeyAaiabg2da9iaaicdaaaa@38B9@  правая часть системы (13) известна, тем самым найдем β1, используя равенство (11), найдем вектор C . Далее повторяем рассуждения: на i MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeyAaaaa@36F9@  -м шаге известны βi, Ci. Используя равенство (13), найдем βi+1, затем из (11) найдем вектор Ci+1. Матрица B i+1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeOqa8aadaWgaaWcbaWdbiaabMgacqGHRaWkcaaIXaaapaqabaaa aa@39B5@  может быть сингулярной, поэтому для улучшения сходимости используем регуляризацию и заменяем в формуле (13) матрицу B i+1 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeOqa8aadaqhaaWcbaWdbiaabMgacqGHRaWkcaaIXaaapaqaa8qa cqGHsislcaaIXaaaaaaa@3B6E@  матрицей ( B i+1 B i+1 * +ε) 1 B i+1 * MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaiikaiaabkeapaWaaSbaaSqaa8qacaqGPbGaey4kaSIaaGymaaWd aeqaaOWdbiaabkeapaWaa0baaSqaa8qacaqGPbGaey4kaSIaaGymaa WdaeaapeGaaeOkaaaakiabgUcaRiaabw7acaGGPaWdamaaCaaaleqa baWdbiabgkHiTiaaigdaaaGccaqGcbWdamaaDaaaleaapeGaaeyAai abgUcaRiaaigdaa8aabaWdbiaabQcaaaaaaa@4819@ .

Сходимость алгоритма. Исходя из построения, легко увидеть, что система (8) эквивалентна системе:

G+k=1sCikCi1kτφkxφlxdx+G+m=12cmk=1sCikφkxm+φlxmxdx++G+k=1sCikbφk+aφkφlxdx==G+fφl dx+0Xg1t,x1φlx1,Zdx10Xgt,x1φlx1,l0dx1-0Xβ~iNk=1sCi1kφkx1,l0k=1+sNCi1kφkx1,l0φlx1,l0 dx1 (14)

GK=1+sN(CjkCj1k)τφk(x)φl(x)dx+Gm=12Cmk=1+sNCjkφkxm(x)φlxm(x)dx==Gk=1+sNCjk(bφk+aφk)φl(x)dxoXg0(t,x1)φl(x1,0)dx1++0Xg(t,x1)φl(x1,l0)dx1+Gfφdx+0Xβ~iNk=1sCi1kφkx1,l0k=1+sNCi1kφkx1,l0φlx1,l0dx1,  (15)

где β~iN=k=1rβNikΦkx1(мы добавили индекс N MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOtaaaa@36E0@  в определении функции βi=k=1rβikΦkx1 ). Кроме того, здесь C i1 l = ψ i1 l l r 1   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaae4qa8aadaqhaaWcbaWdbiaabMgacqGHsislcaaIXaaapaqaa8qa caqGSbaaaOGaeyypa0JaaeiYd8aadaqhaaWcbaWdbiaabMgacqGHsi slcaaIXaaapaqaa8qacaqGSbaaaOWaaeWaa8aabaWdbiaabYgacqGH KjYOcaqGYbWdamaaBaaaleaapeGaaGymaaWdaeqaaaGcpeGaayjkai aawMcaaiaabckaaaa@48AA@   C i1 l = ψ i1 ls+ r 1 l=s+1,,s+r r 1 .  MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qa8aadaqhaaWcbaWdbiaadMgacqGHsislcaaIXaaapaqaa8qa caWGSbaaaOGaeyypa0JaeqiYdK3damaaDaaaleaapeGaamyAaiabgk HiTiaaigdaa8aabaWdbiaadYgacqGHsislcaWGZbGaey4kaSIaamOC a8aadaWgaaadbaWdbiaaigdaa8aabeaaaaGcpeWaaeWaa8aabaWdbi aadYgacqGH9aqpcaWGZbGaey4kaSIaaGymaiaacYcacqGHMacVcaGG SaGaam4CaiabgUcaRiaadkhacqGHsislcaWGYbWdamaaBaaaleaape GaaGymaaWdaeqaaaGcpeGaayjkaiaawMcaaiaac6cacaGGGcaaaa@5761@  Положим также, что β ˜ N t,x = β ˜ i N MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacqaHYoGyaSWdaeqabaWdbiaacYTaaaGcpaWaaSbaaSqa a8qacaWGobaapaqabaGcpeWaaeWaa8aabaWdbiaadshacaGGSaGaam iEaaGaayjkaiaawMcaaiabg2da98aadaWfGaqaa8qacqaHYoGyaSWd aeqabaWdbiaacYTaaaGcpaWaa0baaSqaa8qacaWGPbaapaqaa8qaca WGobaaaaaa@45DD@  при xG MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEaiabgIGiolaadEeaaaa@395A@ , t i1 τ,iτ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDaiabgIGiopaajibapaqaa8qadaqadaWdaeaapeGaamyAaiab gkHiTiaaigdaaiaawIcacaGLPaaacqaHepaDcaGGSaGaamyAaiabes 8a0bGaay5waiaawMcaaaaa@43E2@ , i=1,2,,M MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyAaiabg2da9iaaigdacaGGSaGaaGOmaiaacYcacqGHMacVcaGG SaGaamytaaaa@3DE8@ .

Умножим равенства (14), (15) на постоянные v i l MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamODa8aadaqhaaWcbaWdbiaadMgaa8aabaWdbiaadYgaaaaaaa@3952@  и суммируем по l MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiBaaaa@36FE@  (в соответствующих диапазонах). Получим

G+k=1sCikCi1kτφkxvi+ dx+G+m=12cmk=1sCikφkxmxvixm+x dx+G+k=1sCikbφk+aφkvi+xdx=0Xg1t,x1vi+x1,Zdx10Xgt,x1vi+x1,l0 dx1+G+fvi+ dx0Xβ~iN(k=1sCi1kφkx1,l0-k=1+sNCi1kφkx1,l0)vi+x1,l0 dx1,  (16)

GK=1+sN(CjkCj1k)τφk(x)vj(x)dx++Gm=12cmk=1+sNCikφkxm(x)vix(x)dx++Gk=1+sNCik(bφk+aφk)vi(x)dx==oXg0(t,x1)vi(x1,0)dx1+oXg(t,x1)vi(x1,l0)dx1++Gfvidx+oxβiN(k=1SCi1kφk(x1,l0)    -k=1+sNCi1kφkx1,l0)vix1,l0 dx1, (17)

где v i + = l=1 s v i l φ l MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamODa8aadaqhaaWcbaWdbiaadMgaa8aabaWdbiabgUcaRaaakiab g2da9maawahabeWcpaqaa8qacaWGSbGaeyypa0JaaGymaaWdaeaape Gaam4Caaqdpaqaa8qacqGHris5aaGccaaMk8UaamODa8aadaqhaaWc baWdbiaadMgaa8aabaWdbiaadYgaaaGccqaHgpGApaWaaSbaaSqaa8 qacaWGSbaapaqabaaaaa@4898@ , v i = l=1+s N v i l φ l MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamODa8aadaqhaaWcbaWdbiaadMgaa8aabaWdbiabgkHiTaaakiab g2da9maawahabeWcpaqaa8qacaWGSbGaeyypa0JaaGymaiabgUcaRi aadohaa8aabaWdbiaad6eaa0WdaeaapeGaeyyeIuoaaOGaaGPcVlaa dAhapaWaa0baaSqaa8qacaWGPbaapaqaa8qacaWGSbaaaOGaeqOXdO 2damaaBaaaleaapeGaamiBaaWdaeqaaaaa@4A58@ . Суммируя равенства (16), (17) по i MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyAaaaa@36FB@  и меняя суммирование в первом слагаемом (используем равенства

i=1 M a i a i1 b i = i=1 r a i b i b i+1 a M b M+1 + a 0 b 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaybCaeqal8aabaWdbiaadMgacqGH9aqpcaaIXaaapaqaa8qacaWG nbaan8aabaWdbiabggHiLdaakiaayQW7daqadaWdaeaapeGaamyya8 aadaWgaaWcbaWdbiaadMgaa8aabeaak8qacqGHsislcaWGHbWdamaa BaaaleaapeGaamyAaiabgkHiTiaaigdaa8aabeaaaOWdbiaawIcaca GLPaaacaWGIbWdamaaBaaaleaapeGaamyAaaWdaeqaaOWdbiabg2da 9maawahabeWcpaqaa8qacaWGPbGaeyypa0JaaGymaaWdaeaapeGaam OCaaqdpaqaa8qacqGHris5aaGccaaMk8Uaamyya8aadaWgaaWcbaWd biaadMgaa8aabeaak8qadaqadaWdaeaapeGaamOya8aadaWgaaWcba WdbiaadMgaa8aabeaak8qacqGHsislcaWGIbWdamaaBaaaleaapeGa amyAaiabgUcaRiaaigdaa8aabeaaaOWdbiaawIcacaGLPaaacqGHsi slcaWGHbWdamaaBaaaleaapeGaamytaaWdaeqaaOWdbiaadkgapaWa aSbaaSqaa8qacaWGnbGaey4kaSIaaGymaaWdaeqaaOWdbiabgUcaRi aadggapaWaaSbaaSqaa8qacaaIWaaapaqabaGcpeGaamOya8aadaWg aaWcbaWdbiaaigdaa8aabeaaaaa@68B9@ где полагаем b M+1 =0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOya8aadaWgaaWcbaWdbiaad2eacqGHRaWkcaaIXaaapaqabaGc peGaeyypa0JaaGimaaaa@3B97@ ), получим

i=1M[G+k=1sCikφkxvi+vi+1+τ dx+G+m=12cmk=1sCikφkxmxvixm+x dx+k=1sCikbφk+aφkvi+x dx]=G+k=1sC0kφkxv1+ dx+0Xg1t,x1vi+x1,Z dx10Xgt,x1vi+x1,l0 dx1i=1M[G+fφl dx0Xβ~iNk=1sCi1kφkx1,l0k=1+sNCi1kφkx1,l0vi+x1,l0 dx1], (18)

0Xg0t,x1vix1,0 dx1+0Xgt,x1vix1,l0 dx1+k=1+sNC0kφkxv1 dx+i=1M[Gfvi dx++0Xβ~iNk=1sCi1kφkx1,l0k=1+sNCi1kφkx1,l0vix1,l0 dx1]. (19)

Положим v ¯ N + t,x = l=1 s v i1 l τit τ + v i l tτ i1 τ φ l x MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmODayaaraWdamaaDaaaleaapeGaamOtaaWdaeaapeGaey4kaSca aOWaaeWaa8aabaWdbiaadshacaGGSaGaamiEaaGaayjkaiaawMcaai abg2da9maawahabeWcpaqaa8qacaWGSbGaeyypa0JaaGymaaWdaeaa peGaam4Caaqdpaqaa8qacqGHris5aaGccaaMk8+aaeWaa8aabaWdbi aadAhapaWaa0baaSqaa8qacaWGPbGaeyOeI0IaaGymaaWdaeaapeGa amiBaaaakmaalaaapaqaa8qadaqadaWdaeaapeGaeqiXdqNaamyAai abgkHiTiaadshaaiaawIcacaGLPaaaa8aabaWdbiabes8a0baacqGH RaWkcaWG2bWdamaaDaaaleaapeGaamyAaaWdaeaapeGaamiBaaaakm aalaaapaqaa8qadaqadaWdaeaapeGaamiDaiabgkHiTiabes8a0naa bmaapaqaa8qacaWGPbGaeyOeI0IaaGymaaGaayjkaiaawMcaaaGaay jkaiaawMcaaaWdaeaapeGaeqiXdqhaaaGaayjkaiaawMcaaiabeA8a Q9aadaWgaaWcbaWdbiaadYgaa8aabeaak8qadaqadaWdaeaapeGaam iEaaGaayjkaiaawMcaaaaa@6B1B@  при xG MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEaiabgIGiolaadEeaaaa@395A@ , t i1 τ,iτ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDaiabgIGiopaajibapaqaa8qadaqadaWdaeaapeGaamyAaiab gkHiTiaaigdaaiaawIcacaGLPaaacqaHepaDcaGGSaGaamyAaiabes 8a0bGaay5waiaawMcaaaaa@43E2@ , i=1,2,,M.  v ˜ N + t,x = l=1 s v i l φ l x MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyAaiabg2da9iaaigdacaGGSaGaaGOmaiaacYcacqGHMacVcaGG SaGaamytaiaac6cacaGGGcWdamaaxacabaWdbiaadAhaaSWdaeqaba WdbiaacYTaaaGcpaWaa0baaSqaa8qacaWGobaapaqaa8qacqGHRaWk aaGcdaqadaWdaeaapeGaamiDaiaacYcacaWG4baacaGLOaGaayzkaa Gaeyypa0ZaaybCaeqal8aabaWdbiaadYgacqGH9aqpcaaIXaaapaqa a8qacaWGZbaan8aabaWdbiabggHiLdaakiaayQW7caWG2bWdamaaDa aaleaapeGaamyAaaWdaeaapeGaamiBaaaakiabeA8aQ9aadaWgaaWc baWdbiaadYgaa8aabeaak8qadaqadaWdaeaapeGaamiEaaGaayjkai aawMcaaaaa@5B2E@  при xG MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEaiabgIGiolaadEeaaaa@395A@ , t i1 τ,iτ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDaiabgIGiopaajibapaqaa8qadaqadaWdaeaapeGaamyAaiab gkHiTiaaigdaaiaawIcacaGLPaaacqaHepaDcaGGSaGaamyAaiabes 8a0bGaay5waiaawMcaaaaa@43E2@ , i=1,2,,M MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyAaiabg2da9iaaigdacaGGSaGaaGOmaiaacYcacqGHMacVcaGG SaGaamytaaaa@3DE8@ , v ¯ N t,x = l=1+s N v i1 l τit τ + v i l tτ i1 τ φ l x MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmODayaaraWdamaaDaaaleaapeGaamOtaaWdaeaapeGaeyOeI0ca aOWaaeWaa8aabaWdbiaadshacaGGSaGaamiEaaGaayjkaiaawMcaai abg2da9maawahabeWcpaqaa8qacaWGSbGaeyypa0JaaGymaiabgUca Riaadohaa8aabaWdbiaad6eaa0WdaeaapeGaeyyeIuoaaOGaaGPcVp aabmaapaqaa8qacaWG2bWdamaaDaaaleaapeGaamyAaiabgkHiTiaa igdaa8aabaWdbiaadYgaaaGcdaWcaaWdaeaapeWaaeWaa8aabaWdbi abes8a0jaadMgacqGHsislcaWG0baacaGLOaGaayzkaaaapaqaa8qa cqaHepaDaaGaey4kaSIaamODa8aadaqhaaWcbaWdbiaadMgaa8aaba WdbiaadYgaaaGcdaWcaaWdaeaapeWaaeWaa8aabaWdbiaadshacqGH sislcqaHepaDdaqadaWdaeaapeGaamyAaiabgkHiTiaaigdaaiaawI cacaGLPaaaaiaawIcacaGLPaaaa8aabaWdbiabes8a0baaaiaawIca caGLPaaacqaHgpGApaWaaSbaaSqaa8qacaWGSbaapaqabaGcpeWaae Waa8aabaWdbiaadIhaaiaawIcacaGLPaaaaaa@6CDB@ , при xG MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEaiabgIGiolaadEeaaaa@395A@ , t i1 τ,iτ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDaiabgIGiopaajibapaqaa8qadaqadaWdaeaapeGaamyAaiab gkHiTiaaigdaaiaawIcacaGLPaaacqaHepaDcaGGSaGaamyAaiabes 8a0bGaay5waiaawMcaaaaa@43E2@ , i=1,2,,M MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyAaiabg2da9iaaigdacaGGSaGaaGOmaiaacYcacqGHMacVcaGG SaGaamytaaaa@3DE8@ , v ˜ N t,x = l=1+s N v i l φ l x MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacaWG2baal8aabeqaa8qacaGGClaaaOWdamaaDaaaleaa peGaamOtaaWdaeaapeGaeyOeI0caaOWaaeWaa8aabaWdbiaadshaca GGSaGaamiEaaGaayjkaiaawMcaaiabg2da9maawahabeWcpaqaa8qa caWGSbGaeyypa0JaaGymaiabgUcaRiaadohaa8aabaWdbiaad6eaa0 WdaeaapeGaeyyeIuoaaOGaaGPcVlaadAhapaWaa0baaSqaa8qacaWG Pbaapaqaa8qacaWGSbaaaOGaeqOXdO2damaaBaaaleaapeGaamiBaa WdaeqaaOWdbmaabmaapaqaa8qacaWG4baacaGLOaGaayzkaaaaaa@531E@  при xG MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEaiabgIGiolaadEeaaaa@395A@ , t i1 τ,iτ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDaiabgIGiopaajibapaqaa8qadaqadaWdaeaapeGaamyAaiab gkHiTiaaigdaaiaawIcacaGLPaaacqaHepaDcaGGSaGaamyAaiabes 8a0bGaay5waiaawMcaaaaa@43E2@ , i=1,2,,M MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyAaiabg2da9iaaigdacaGGSaGaaGOmaiaacYcacqGHMacVcaGG SaGaamytaaaa@3DE8@ .

Аналогичным образом определяем функции u ˜ N + MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacaWG1baal8aabeqaa8qacaGGClaaaOWdamaaDaaaleaa peGaamOtaaWdaeaapeGaey4kaScaaaaa@3AFB@ , u ˜ N MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacaWG1baal8aabeqaa8qacaGGClaaaOWdamaaDaaaleaa peGaamOtaaWdaeaapeGaeyOeI0caaaaa@3B06@ , например, u ˜ N t,x = l=1+s N C i l φ l x MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacaWG1baal8aabeqaa8qacaGGClaaaOWdamaaDaaaleaa peGaamOtaaWdaeaapeGaeyOeI0caaOWaaeWaa8aabaWdbiaadshaca GGSaGaamiEaaGaayjkaiaawMcaaiabg2da9maawahabeWcpaqaa8qa caWGSbGaeyypa0JaaGymaiabgUcaRiaadohaa8aabaWdbiaad6eaa0 WdaeaapeGaeyyeIuoaaOGaaGPcVlaadoeapaWaa0baaSqaa8qacaWG Pbaapaqaa8qacaWGSbaaaOGaeqOXdO2damaaBaaaleaapeGaamiBaa WdaeqaaOWdbmaabmaapaqaa8qacaWG4baacaGLOaGaayzkaaaaaa@52EA@  при xG MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEaiabgIGiolaadEeaaaa@395A@ , t i1 τ,iτ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDaiabgIGiopaajibapaqaa8qadaqadaWdaeaapeGaamyAaiab gkHiTiaaigdaaiaawIcacaGLPaaacqaHepaDcaGGSaGaamyAaiabes 8a0bGaay5waiaawMcaaaaa@43E2@ , i=1,2,,M MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyAaiabg2da9iaaigdacaGGSaGaaGOmaiaacYcacqGHMacVcaGG SaGaamytaaaa@3DE8@ . Используя эти определения, можно переписать равенства (19), (18) в виде:

0 T [ G + u ˜ N + v ¯ Nt +  dx+ G + m=1 2 c m u ˜ N x m + v ˜ N x m + t,x  dx+ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Waaubmaeqal8aabaWdbiaaicdaa8aabaWdbiaadsfaa0WdaeaapeGa ey4kIipaaOGaaGPcVlaayQW7caGGBbWaaubeaeqal8aabaWdbiaadE eapaWaaWbaaWqabeaapeGaey4kaScaaaWcbeqdpaqaa8qacqGHRiI8 aaGccaaMk8UaaGPcV=aadaWfGaqaa8qacaWG1baal8aabeqaa8qaca GGClaaaOWdamaaDaaaleaapeGaamOtaaWdaeaapeGaey4kaScaaOGa bmODayaaraWdamaaDaaaleaapeGaamOtaiaadshaa8aabaWdbiabgU caRaaakiaacckacaWGKbGaamiEaiabgUcaRmaavababeWcpaqaa8qa caWGhbWdamaaCaaameqabaWdbiabgUcaRaaaaSqab0WdaeaapeGaey 4kIipaaOGaaGPcVlaayQW7daGfWbqabSWdaeaapeGaamyBaiabg2da 9iaaigdaa8aabaWdbiaaikdaa0WdaeaapeGaeyyeIuoaaOGaaGPcVl aayQW7caWGJbWdamaaBaaaleaapeGaamyBaaWdaeqaaOWaaCbiaeaa peGaamyDaaWcpaqabeaapeGaaii3caaak8aadaqhaaWcbaWdbiaad6 eacaWG4bWdamaaBaaameaapeGaamyBaaWdaeqaaaWcbaWdbiabgUca Raaak8aadaWfGaqaa8qacaWG2baal8aabeqaa8qacaGGClaaaOWdam aaDaaaleaapeGaamOtaiaadIhapaWaaSbaaWqaa8qacaWGTbaapaqa baaaleaapeGaey4kaScaaOWaaeWaa8aabaWdbiaadshacaGGSaGaam iEaaGaayjkaiaawMcaaiaacckacaWGKbGaamiEaiabgUcaRaaa@7CE9@

G + b u ˜ N + +a u ˜ N + v ˜ N + t,x ) dx] dt= 0 T 0 X g 1 t, x 1 v N + t, x 1 ,Z  d x 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Waaubeaeqal8aabaWdbiaadEeapaWaaWbaaWqabeaapeGaey4kaSca aaWcbeqdpaqaa8qacqGHRiI8aaGccaaMk8UaaGPcVpaabmaapaqaa8 qaceWGIbWdayaalaWdbiabgEGir=aadaWfGaqaa8qacaWG1baal8aa beqaa8qacaGGClaaaOWdamaaDaaaleaapeGaamOtaaWdaeaapeGaey 4kaScaaOGaey4kaSIaamyya8aadaWfGaqaa8qacaWG1baal8aabeqa a8qacaGGClaaaOWdamaaDaaaleaapeGaamOtaaWdaeaapeGaey4kaS caaaGccaGLOaGaayzkaaWdamaaxacabaWdbiaadAhaaSWdaeqabaWd biaacYTaaaGcpaWaa0baaSqaa8qacaWGobaapaqaa8qacqGHRaWkaa GcdaqadaWdaeaapeGaamiDaiaacYcacaWG4baacaGLOaGaayzkaaGa aiykaiaacckacaWGKbGaamiEaiaac2facaGGGcGaamizaiaadshacq GH9aqpdaqfWaqabSWdaeaapeGaaGimaaWdaeaapeGaamivaaqdpaqa a8qacqGHRiI8aaGccaaMk8UaaGPcVpaavadabeWcpaqaa8qacaaIWa aapaqaa8qacaWGybaan8aabaWdbiabgUIiYdaakiaayQW7caaMk8Ua am4za8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qadaqadaWdaeaape GaamiDaiaacYcacaWG4bWdamaaBaaaleaapeGaaGymaaWdaeqaaaGc peGaayjkaiaawMcaaiaadAhapaWaa0baaSqaa8qacaWGobaapaqaa8 qacqGHRaWkaaGcdaqadaWdaeaapeGaamiDaiaacYcacaWG4bWdamaa BaaaleaapeGaaGymaaWdaeqaaOWdbiaacYcacaWGAbaacaGLOaGaay zkaaGaaiiOaiaadsgacaWG4bWdamaaBaaaleaapeGaaGymaaWdaeqa aOWdbiabgkHiTaaa@856B@

0 X g t, x 1 v N + t, x 1 , l 0  d x 1  dt+ G + u 0N + x v ¯ N + τ,x  dx+ 0 T [ G + f v N +  dx MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Waaubmaeqal8aabaWdbiaaicdaa8aabaWdbiaadIfaa0WdaeaapeGa ey4kIipaaOGaaGPcVlaayQW7caWGNbWaaeWaa8aabaWdbiaadshaca GGSaGaamiEa8aadaWgaaWcbaWdbiaaigdaa8aabeaaaOWdbiaawIca caGLPaaacaWG2bWdamaaDaaaleaapeGaamOtaaWdaeaapeGaey4kaS caaOWaaeWaa8aabaWdbiaadshacaGGSaGaamiEa8aadaWgaaWcbaWd biaaigdaa8aabeaak8qacaGGSaGaamiBa8aadaWgaaWcbaWdbiaaic daa8aabeaaaOWdbiaawIcacaGLPaaacaGGGcGaamizaiaadIhapaWa aSbaaSqaa8qacaaIXaaapaqabaGcpeGaaiiOaiaadsgacaWG0bGaey 4kaSYaaubeaeqal8aabaWdbiaadEeapaWaaWbaaWqabeaapeGaey4k aScaaaWcbeqdpaqaa8qacqGHRiI8aaGccaaMk8UaaGPcVlaadwhapa Waa0baaSqaa8qacaaIWaGaamOtaaWdaeaapeGaey4kaScaaOWaaeWa a8aabaWdbiaadIhaaiaawIcacaGLPaaaceWG2bGbaebapaWaa0baaS qaa8qacaWGobaapaqaa8qacqGHRaWkaaGcdaqadaWdaeaapeGaeqiX dqNaaiilaiaadIhaaiaawIcacaGLPaaacaGGGcGaamizaiaadIhacq GHRaWkdaqfWaqabSWdaeaapeGaaGimaaWdaeaapeGaamivaaqdpaqa a8qacqGHRiI8aaGccaaMk8UaaGPcVlaacUfadaqfqaqabSWdaeaape Gaam4ra8aadaahaaadbeqaa8qacqGHRaWkaaaaleqan8aabaWdbiab gUIiYdaakiaayQW7caaMk8UaamOzaiaadAhapaWaa0baaSqaa8qaca WGobaapaqaa8qacqGHRaWkaaGccaGGGcGaamizaiaadIhacqGHsisl aaa@8962@

0 X β ˜ N u N + tτ, x 1 , l 0 u N tτ, x 1 , l 0 v ˜ N + t, x 1 , l 0  d x 1 ] dt,          20 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Waaubmaeqal8aabaWdbiaaicdaa8aabaWdbiaadIfaa0WdaeaapeGa ey4kIipaaOGaaGPcVlaayQW7paWaaCbiaeaapeGaeqOSdigal8aabe qaa8qacaGGClaaaOWdamaaCaaaleqabaWdbiaad6eaaaGcdaqadaWd aeaapeGaamyDa8aadaqhaaWcbaWdbiaad6eaa8aabaWdbiabgUcaRa aakmaabmaapaqaa8qacaWG0bGaeyOeI0IaeqiXdqNaaiilaiaadIha paWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaaiilaiaadYgapaWaaS baaSqaa8qacaaIWaaapaqabaaak8qacaGLOaGaayzkaaGaeyOeI0Ia amyDa8aadaqhaaWcbaWdbiaad6eaa8aabaWdbiabgkHiTaaakmaabm aapaqaa8qacaWG0bGaeyOeI0IaeqiXdqNaaiilaiaadIhapaWaaSba aSqaa8qacaaIXaaapaqabaGcpeGaaiilaiaadYgapaWaaSbaaSqaa8 qacaaIWaaapaqabaaak8qacaGLOaGaayzkaaaacaGLOaGaayzkaaWd amaaxacabaWdbiaadAhaaSWdaeqabaWdbiaacYTaaaGcpaWaa0baaS qaa8qacaWGobaapaqaa8qacqGHRaWkaaGcdaqadaWdaeaapeGaamiD aiaacYcacaWG4bWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaacY cacaWGSbWdamaaBaaaleaapeGaaGimaaWdaeqaaaGcpeGaayjkaiaa wMcaaiaacckacaWGKbGaamiEa8aadaWgaaWcbaWdbiaaigdaa8aabe aak8qacaGGDbGaaiiOaiaadsgacaWG0bGaaiilaiaacckacaGGGcGa aiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOamaabmaapa qaa8qacaaIYaGaaGimaaGaayjkaiaawMcaaaaa@8498@

0 T [ G u ˜ N v ¯ Nt  dx+ G m=1 2 c m u ˜ N x m x v ˜ N x m x  dx+ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Waaubmaeqal8aabaWdbiaaicdaa8aabaWdbiaadsfaa0WdaeaapeGa ey4kIipaaOGaaGPcVlaayQW7caGGBbWaaubeaeqal8aabaWdbiaadE eapaWaaWbaaWqabeaapeGaeyOeI0caaaWcbeqdpaqaa8qacqGHRiI8 aaGccaaMk8UaaGPcV=aadaWfGaqaa8qacaWG1baal8aabeqaa8qaca GGClaaaOWdamaaDaaaleaapeGaamOtaaWdaeaapeGaeyOeI0caaOWd aiqadAhagaqeamaaDaaaleaapeGaamOtaiaadshaa8aabaWdbiabgk HiTaaakiaacckacaWGKbGaamiEaiabgUcaRmaavababeWcpaqaa8qa caWGhbWdamaaCaaameqabaWdbiabgkHiTaaaaSqab0WdaeaapeGaey 4kIipaaOGaaGPcVlaayQW7daGfWbqabSWdaeaapeGaamyBaiabg2da 9iaaigdaa8aabaWdbiaaikdaa0WdaeaapeGaeyyeIuoaaOGaaGPcVl aayQW7caWGJbWdamaaBaaaleaapeGaamyBaaWdaeqaaOWaaCbiaeaa peGaamyDaaWcpaqabeaapeGaaii3caaak8aadaqhaaWcbaWdbiaad6 eacaWG4bWdamaaBaaameaapeGaamyBaaWdaeqaaaWcbaWdbiabgkHi Taaakmaabmaapaqaa8qacaWG4baacaGLOaGaayzkaaWdamaaxacaba WdbiaadAhaaSWdaeqabaWdbiaacYTaaaGcpaWaa0baaSqaa8qacaWG obGaamiEa8aadaWgaaadbaWdbiaad2gaa8aabeaaaSqaa8qacqGHsi slaaGcdaqadaWdaeaapeGaamiEaaGaayjkaiaawMcaaiaacckacaWG KbGaamiEaiabgUcaRaaa@7E27@

G b u N +a u N v ˜ N x  dx] dt= 0 T ( 0 X g 0 t, x 1 v N x 1 ,0  d x 1 + MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Waaubeaeqal8aabaWdbiaadEeapaWaaWbaaWqabeaapeGaeyOeI0ca aaWcbeqdpaqaa8qacqGHRiI8aaGccaaMk8UaaGPcVpaabmaapaqaa8 qaceWGIbWdayaalaWdbiabgEGirlaadwhapaWaa0baaSqaa8qacaWG obaapaqaa8qacqGHsislaaGccqGHRaWkcaWGHbGaamyDa8aadaqhaa WcbaWdbiaad6eaa8aabaWdbiabgkHiTaaaaOGaayjkaiaawMcaa8aa daWfGaqaa8qacaWG2baal8aabeqaa8qacaGGClaaaOWdamaaDaaale aapeGaamOtaaWdaeaapeGaeyOeI0caaOWaaeWaa8aabaWdbiaadIha aiaawIcacaGLPaaacaGGGcGaamizaiaadIhacaGGDbGaaiiOaiaads gacaWG0bGaeyypa0JaeyOeI0Yaaubmaeqal8aabaWdbiaaicdaa8aa baWdbiaadsfaa0WdaeaapeGaey4kIipaaOGaaGPcVlaayQW7caGGOa Waaubmaeqal8aabaWdbiaaicdaa8aabaWdbiaadIfaa0WdaeaapeGa ey4kIipaaOGaaGPcVlaayQW7caWGNbWdamaaBaaaleaapeGaaGimaa WdaeqaaOWdbmaabmaapaqaa8qacaWG0bGaaiilaiaadIhapaWaaSba aSqaa8qacaaIXaaapaqabaaak8qacaGLOaGaayzkaaGaamODa8aada qhaaWcbaWdbiaad6eaa8aabaWdbiabgkHiTaaakmaabmaapaqaa8qa caWG4bWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaacYcacaaIWa aacaGLOaGaayzkaaGaaiiOaiaadsgacaWG4bWdamaaBaaaleaapeGa aGymaaWdaeqaaOWdbiabgUcaRaaa@7F25@

0 X g t, x 1 v N x 1 , l 0  d x 1 ) dt+ G u 0N x v ¯ N τ,x  dx+ 0 T [ G f v N  dx+ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Waaubmaeqal8aabaWdbiaaicdaa8aabaWdbiaadIfaa0WdaeaapeGa ey4kIipaaOGaaGPcVlaayQW7caWGNbWaaeWaa8aabaWdbiaadshaca GGSaGaamiEa8aadaWgaaWcbaWdbiaaigdaa8aabeaaaOWdbiaawIca caGLPaaacaWG2bWdamaaDaaaleaapeGaamOtaaWdaeaapeGaeyOeI0 caaOWaaeWaa8aabaWdbiaadIhapaWaaSbaaSqaa8qacaaIXaaapaqa baGcpeGaaiilaiaadYgapaWaaSbaaSqaa8qacaaIWaaapaqabaaak8 qacaGLOaGaayzkaaGaaiiOaiaadsgacaWG4bWdamaaBaaaleaapeGa aGymaaWdaeqaaOWdbiaacMcacaGGGcGaamizaiaadshacqGHRaWkda qfqaqabSWdaeaapeGaam4ra8aadaahaaadbeqaa8qacqGHsislaaaa leqan8aabaWdbiabgUIiYdaakiaayQW7caaMk8UaamyDa8aadaqhaa WcbaWdbiaaicdacaWGobaapaqaa8qacqGHsislaaGcdaqadaWdaeaa peGaamiEaaGaayjkaiaawMcaaiqadAhagaqea8aadaqhaaWcbaWdbi aad6eaa8aabaWdbiabgkHiTaaakmaabmaapaqaa8qacqaHepaDcaGG SaGaamiEaaGaayjkaiaawMcaaiaacckacaWGKbGaamiEaiabgUcaRm aavadabeWcpaqaa8qacaaIWaaapaqaa8qacaWGubaan8aabaWdbiab gUIiYdaakiaayQW7caaMk8Uaai4wamaavababeWcpaqaa8qacaWGhb WdamaaCaaameqabaWdbiabgkHiTaaaaSqab0WdaeaapeGaey4kIipa aOGaaGPcVlaayQW7caWGMbGaamODa8aadaqhaaWcbaWdbiaad6eaa8 aabaWdbiabgkHiTaaakiaacckacaWGKbGaamiEaiabgUcaRaaa@889D@

0 X β ˜ i N u N tτ, x 1 , l 0 ) + u N tτ, x 1 , l 0 v ˜ N t, x 1 , l 0 dx 1 dt,           21 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Waaubmaeqal8aabaWdbiaaicdaa8aabaWdbiaabIfaa0WdaeaapeGa ey4kIipaaOGaaGPcVlaayQW7paWaaCbiaeaapeGaaeOSdaWcpaqabe aapeGaaii3caaak8aadaqhaaWcbaWdbiaabMgaa8aabaWdbiaab6ea aaGcdaqcWaWdaeaapeGaaeyDa8aadaWgaaWcbaWdbiaab6eaa8aabe aak8qadaqadaWdaeaapeGaaeiDaiabgkHiTiaabs8acaGGSaGaaeiE a8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaGGSaGaaeiBa8aada WgaaWcbaWdbiaaicdaa8aabeaak8qacaGGPaWdamaaCaaaleqabaWd biabgUcaRaaakiabgkHiTiaabwhapaWaa0baaSqaa8qacaqGobaapa qaa8qacqGHsislaaGcdaqadaWdaeaapeGaaeiDaiabgkHiTiaabs8a caGGSaGaaeiEa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaGGSa GaaeiBa8aadaWgaaWcbaWdbiaaicdaa8aabeaaaOWdbiaawIcacaGL PaaaaiaawIcacaGLPaaapaWaaCbiaeaapeGaaeODaaWcpaqabeaape Gaaii3caaak8aadaqhaaWcbaWdbiaab6eaa8aabaWdbiabgkHiTaaa kmaabmaapaqaa8qacaqG0bGaaiilaiaabIhapaWaaSbaaSqaa8qaca aIXaaapaqabaGcpeGaaiilaiaabYgapaWaaSbaaSqaa8qacaaIWaaa paqabaaak8qacaGLOaGaayzkaaGaaeizaiaabIhapaWaaSbaaSqaa8 qacaaIXaaapaqabaaak8qacaGLOaGaayzxaaGaaeizaiaabshacaGG SaGaaeiOaiaabckacaqGGcGaaeiOaiaabckacaqGGcGaaeiOaiaabc kacaqGGcGaaeiOamaabmaapaqaa8qacaaIYaGaaGymaaGaayjkaiaa wMcaaaaa@8382@

где u 0N + = k=1 s C 0 k φ k MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyDa8aadaqhaaWcbaWdbiaaicdacaWGobaapaqaa8qacqGHRaWk aaGccqGH9aqpdaGfWbqabSWdaeaapeGaam4Aaiabg2da9iaaigdaa8 aabaWdbiaadohaa0WdaeaapeGaeyyeIuoaaOGaaGPcVlaadoeapaWa a0baaSqaa8qacaaIWaaapaqaa8qacaWGRbaaaOGaeqOXdO2damaaBa aaleaapeGaam4AaaWdaeqaaaaa@48CC@ *,  u 0N = k=1+s N C 0 k φ k MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyDa8aadaqhaaWcbaWdbiaaicdacaWGobaapaqaa8qacqGHsisl aaGccqGH9aqpdaGfWbqabSWdaeaapeGaam4Aaiabg2da9iaaigdacq GHRaWkcaWGZbaapaqaa8qacaWGobaan8aabaWdbiabggHiLdaakiaa yQW7caWGdbWdamaaDaaaleaapeGaaGimaaWdaeaapeGaam4Aaaaaki abeA8aQ9aadaWgaaWcbaWdbiaadUgaa8aabeaaaaa@4A8C@

Предполагаем, что найдутся постоянные c i >0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ya8aadaWgaaWcbaWdbiaadMgaa8aabeaak8qacqGH+aGpcaaI Waaaaa@3A19@  такие, что

c 1 u W 2 1 G 2 Au,u c 2 u W 2 1 G 2  u W 2 1 G , u | Γ =0. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ya8aadaWgaaWcbaWdbiaaigdaa8aabeaatCvAUfeBSn0BKvgu HDwzZbqeg0uySDwDUbYrVrhAPngaiuaak8qacaWFwaIaamyDaiaa=z bipaWaa0baaSqaa8qacaWGxbWdamaaDaaameaapeGaaGOmaaWdaeaa peGaaGymaaaalmaabmaapaqaa8qacaWGhbaacaGLOaGaayzkaaaapa qaa8qacaaIYaaaaOGaeyizIm6aaeWaa8aabaWdbiaadgeacaWG1bGa aiilaiaadwhaaiaawIcacaGLPaaacqGHKjYOcaWGJbWdamaaBaaale aapeGaaGOmaaWdaeqaaOWdbiaa=zbicaWG1bGaa8NfG8aadaqhaaWc baWdbiaadEfapaWaa0baaWqaa8qacaaIYaaapaqaa8qacaaIXaaaaS WaaeWaa8aabaWdbiaadEeaaiaawIcacaGLPaaaa8aabaWdbiaaikda aaGccaqGGcGaeyiaIiIaamyDaiabgIGiolaadEfapaWaa0baaSqaa8 qacaaIYaaapaqaa8qacaaIXaaaaOWaaeWaa8aabaWdbiaadEeaaiaa wIcacaGLPaaacaGGSaGaaeiOaiaadwhacaGG8bWdamaaBaaaleaape Gaeu4KdCeapaqabaGcpeGaeyypa0JaaGimaiaac6caaaa@70F9@

Также предположим, что найдется постоянная C 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qa8aadaWgaaWcbaWdbiaaigdaa8aabeaaaaa@37EA@ , не зависящая от сетки по пространственным переменным и времени, такая, что

max t u ˜ N L 2 G + u ˜ N L 2 0,T; W 2 1 G C 1 ,  β N L 2 0,T; L 2 0,X C 1 . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxababaaeaa aaaaaaa8qacaWGTbGaamyyaiaadIhaaSWdaeaapeGaamiDaaWdaeqa aOWdbiaayQW7tCvAUfeBSn0BKvguHDwzZbqeg0uySDwDUbYrVrhAPn gaiuaacaWFwaYdamaaxacabaWdbiaadwhaaSWdaeqabaWdbiaacYTa aaGcpaWaaSbaaSqaa8qacaWGobaapaqabaGcpeGaa8NfG8aadaWgaa WcbaWdbiaadYeapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeWaaeWa a8aabaWdbiaadEeaaiaawIcacaGLPaaaa8aabeaak8qacqGHRaWkca WFwaYdamaaxacabaWdbiaadwhaaSWdaeqabaWdbiaacYTaaaGcpaWa aSbaaSqaa8qacaWGobaapaqabaGcpeGaa8NfG8aadaWgaaWcbaWdbi aadYeapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeWaaeWaa8aabaWd biaaicdacaGGSaGaamivaiaacUdacaWGxbWdamaaDaaameaapeGaaG OmaaWdaeaapeGaaGymaaaalmaabmaapaqaa8qacaWGhbaacaGLOaGa ayzkaaaacaGLOaGaayzkaaaapaqabaGcpeGaeyizImQaam4qa8aada WgaaWcbaWdbiaaigdaa8aabeaak8qacaGGSaGaaeiOaiaa=zbicqaH YoGypaWaaSbaaSqaa8qacaWGobaapaqabaGcpeGaa8NfG8aadaWgaa WcbaWdbiaadYeapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeWaaeWa a8aabaWdbiaaicdacaGGSaGaamivaiaacUdacaWGmbWdamaaBaaame aapeGaaGOmaaWdaeqaaSWdbmaabmaapaqaa8qacaaIWaGaaiilaiaa dIfaaiaawIcacaGLPaaaaiaawIcacaGLPaaaa8aabeaak8qacqGHKj YOcaWGdbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaac6caaaa@7F70@ ***TRANSLATION ERROR*** (22)

Считаем, что функции Φ i MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeuOPdy0damaaBaaaleaapeGaamyAaaWdaeqaaaaa@38CF@  линейно независимы. Тогда найдется постоянная C 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qa8aadaWgaaWcbaWdbiaaikdaa8aabeaaaaa@37EB@ , не зависящая от N MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOtaaaa@36E0@ , такая, что

τ i=1 M k=1 r | β Ni k | 2 C 2 β N L 2 0,T; L 2 0,X 2 ( C 1 ) 2 C 2 . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiXdq3aaybCaeqal8aabaWdbiaadMgacqGH9aqpcaaIXaaapaqa a8qacaWGnbaan8aabaWdbiabggHiLdaakiaayQW7caaMk8+aaybCae qal8aabaWdbiaadUgacqGH9aqpcaaIXaaapaqaa8qacaWGYbaan8aa baWdbiabggHiLdaakiaayQW7caaMk8UaaiiFaiabek7aI9aadaqhaa WcbaWdbiaad6eacaWGPbaapaqaa8qacaWGRbaaaOGaaiiFa8aadaah aaWcbeqaa8qacaaIYaaaaOGaeyizImQaam4qa8aadaWgaaWcbaWdbi aaikdaa8aabeaatCvAUfeBSn0BKvguHDwzZbqeg0uySDwDUbYrVrhA Pngaiuaak8qacaWFwaIaeqOSdi2damaaBaaaleaapeGaamOtaaWdae qaaOWdbiaa=zbipaWaa0baaSqaa8qacaWGmbWdamaaBaaameaapeGa aGOmaaWdaeqaaSWdbmaabmaapaqaa8qacaaIWaGaaiilaiaadsfaca GG7aGaamita8aadaWgaaadbaWdbiaaikdaa8aabeaal8qadaqadaWd aeaapeGaaGimaiaacYcacaWGybaacaGLOaGaayzkaaaacaGLOaGaay zkaaaapaqaa8qacaaIYaaaaOGaeyizImQaaiikaiaadoeapaWaaSba aSqaa8qacaaIXaaapaqabaGcpeGaaiyka8aadaahaaWcbeqaa8qaca aIYaaaaOGaam4qa8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacaGG Uaaaaa@7BE1@  (23)

Поскольку число r фиксировано, то оценка (23) влечет также оценку вида

βNL20,T;W2s0,XC3, (24)

где s MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaae4Caaaa@3703@  определяется из условия Φ i W 2 s 0,X MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeuOPdy0damaaBaaaleaapeGaamyAaaWdaeqaaOWdbiabgIGiolaa dEfapaWaa0baaSqaa8qacaaIYaaapaqaa8qacaWGZbaaaOWaaeWaa8 aabaWdbiaaicdacaGGSaGaamiwaaGaayjkaiaawMcaaaaa@4161@ . Оценка (22) гарантирует также оценку

u ˜ N t, x 1 , l 0 L 2 0,T; W 2 1/2 0,X C 3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamXvP5wqSX2qVr wzqf2zLnharyqtHX2z15gih9gDOL2yaGqbaabaaaaaaaaapeGaa8Nf G8aadaWfGaqaa8qacaWG1baal8aabeqaa8qacaGGClaaaOWdamaaBa aaleaapeGaamOtaaWdaeqaaOWdbmaabmaapaqaa8qacaWG0bGaaiil aiaadIhapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaaiilaiaadY gapaWaaSbaaSqaa8qacaaIWaaapaqabaaak8qacaGLOaGaayzkaaGa a8NfG8aadaWgaaWcbaWdbiaadYeapaWaaSbaaWqaa8qacaaIYaaapa qabaWcpeWaaeWaa8aabaWdbiaaicdacaGGSaGaamivaiaacUdacaWG xbWdamaaDaaameaapeGaaGOmaaWdaeaapeGaaGymaiaac+cacaaIYa aaaSWaaeWaa8aabaWdbiaaicdacaGGSaGaamiwaaGaayjkaiaawMca aaGaayjkaiaawMcaaaWdaeqaaOWdbiabgsMiJkaadoeapaWaaSbaaS qaa8qacaaIZaaapaqabaaaaa@61A3@ . (25)

Фиксируем s>0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Caiabg6da+iaaicdaaaa@38C7@  и предположим, что ΦiW2s0,X для всех i. Оценки (22)-(25) влекут, что найдутся подпоследовательности uNk,  βNk такие, что

u~NkuL20,T;W21G, u~NkuL0,T;L2G,u~Nkt,x1,l0ut,x1,l0L20,T;W2120,X,β~Nkβ~L2(0,T;W2s0,X 

слабо, * MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeOkaaaa@36BA@  -слабо и по норме.

Если мы дополнительно предположим, что у нас есть оценка вида

u~Nx1,l0W2s00,T;W2s10,XC4 (26)

или вида

βNW2s00,T;W2s10,XC5, (27)

где s 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Ca8aadaWgaaWcbaWdbiaaigdaa8aabeaaaaa@381A@  произвольно (в том числе возможно, что s 1 <0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Ca8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGH8aapcaaI Waaaaa@39F2@  ) и s 0 >0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Ca8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacqGH+aGpcaaI Waaaaa@39F5@ , то стандартные утверждения о компактности влекут, что существует подпоследовательность u N k MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyDa8aadaWgaaWcbaWdbiaad6eapaWaaSbaaWqaa8qacaWGRbaa paqabaaaleqaaaaa@397B@  такая, что u N k t, x 1 , l 0 u t, x 1 , l 0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyDa8aadaWgaaWcbaWdbiaad6eapaWaaSbaaWqaa8qacaWGRbaa paqabaaaleqaaOWdbmaabmaapaqaa8qacaWG0bGaaiilaiaadIhapa WaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaaiilaiaadYgapaWaaSba aSqaa8qacaaIWaaapaqabaaak8qacaGLOaGaayzkaaGaeyOKH4Qaam yDamaabmaapaqaa8qacaWG0bGaaiilaiaadIhapaWaaSbaaSqaa8qa caaIXaaapaqabaGcpeGaaiilaiaadYgapaWaaSbaaSqaa8qacaaIWa aapaqabaaak8qacaGLOaGaayzkaaaaaa@4D14@ , или β N k β ˜ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdi2damaaBaaaleaapeGaamOta8aadaWgaaadbaWdbiaadUga a8aabeaaaSqabaGcpeGaeyOKH46damaaxacabaWdbiabek7aIbWcpa qabeaapeGaaii3caaaaaa@3FB3@  сильно в L 2 0,T; L 2 0,X MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamita8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qadaqadaWdaeaa peGaaGimaiaacYcacaWGubGaai4oaiaadYeapaWaaSbaaSqaa8qaca aIYaaapaqabaGcpeWaaeWaa8aabaWdbiaaicdacaGGSaGaamiwaaGa ayjkaiaawMcaaaGaayjkaiaawMcaaaaa@42A8@ .

При выполнении этих оценок можно сформулировать следующее утверждение:

Лемма 1. Пусть имеют место оценки (22) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSn0BKvguHDwzZbqef00uGuvsGC0B0H wAJbWexLMBbXgBcf2CPn2qVrwzqf2zLnharyavP1wzZbItLDhis9wB H5garmWu51MyVXgaryWqVvNCPvMCG4uz3bqee0evGueE0jxyaibaie Ydh9qrpeeu0dXdh9vqqj=hEeeu0xXdbba9arpi0=irpK0dbba91qpK 0=vr0RYxir=dbbc9q8aq0=yqpe0xbba9suk9fr=xfr=xfrpiWZqaai aaciWacmaadaGabiaaeaGaauaaaOqaaGGaaKqzafaeaaaaaaaaa8qa caWFtacaaa@42F3@ (25) и одна из оценок (26), (27). Тогда в равенствах (30), (31) можно перейти к пределу по N MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOtaaaa@36E0@ , и предельное решение есть обобщенное решение задачи сопряжения из класса

u L 2 Q , u t L 2 0,T, W 2 1 G MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyDaiabgIGiolaadYeapaWaaSbaaSqaa8qacaaIYaaapaqabaGc peWaaeWaa8aabaWdbiaadgfaaiaawIcacaGLPaaacaGGSaGaamyDa8 aadaWgaaWcbaWdbiaadshaa8aabeaak8qacqGHiiIZcaWGmbWdamaa BaaaleaapeGaaGOmaaWdaeqaaOWdbmaabmaapaqaa8qacaaIWaGaai ilaiaadsfacaGGSaGaam4va8aadaqhaaWcbaWdbiaaikdaa8aabaWd biabgkHiTiaaigdaaaGcdaqadaWdaeaapeGaam4raaGaayjkaiaawM caaaGaayjkaiaawMcaaaaa@4E6A@ , u ± L 2 (0,T; W 2 1 G ± MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyDa8aadaahaaWcbeqaa8qacqGHXcqSaaGccqGHiiIZcaWGmbWd amaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiaacIcacaaIWaGaaiilai aadsfacaGG7aGaam4va8aadaqhaaWcbaWdbiaaikdaa8aabaWdbiaa igdaaaGcdaqadaWdaeaapeGaam4ra8aadaahaaWcbeqaa8qacqGHXc qSaaaakiaawIcacaGLPaaaaaa@47FE@ .

Доказательство. Рассмотрим равенства (20), (21). Взяв N= N k MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOtaiabg2da9iaad6eapaWaaSbaaSqaa8qacaWGRbaapaqabaaa aa@3A03@ , фиксировав функции v N ± MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamODa8aadaqhaaWcbaWdbiaad6eaa8aabaWdbiabgglaXcaaaaa@3A34@  и переходя к пределу по k, MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4AaiaacYcaaaa@37AD@  получим равенства:

0 T [ G + u + v ¯ Nt +  dx+ G + m=1 2 c m u x m + v ˜ N x m + t,x  dx+ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Waaubmaeqal8aabaWdbiaaicdaa8aabaWdbiaadsfaa0WdaeaapeGa ey4kIipaaOGaaGPcVlaayQW7caGGBbWaaubeaeqal8aabaWdbiaadE eapaWaaWbaaWqabeaapeGaey4kaScaaaWcbeqdpaqaa8qacqGHRiI8 aaGccaaMk8UaaGPcVlaadwhapaWaaWbaaSqabeaapeGaey4kaScaaO WdaiqadAhagaqeamaaDaaaleaapeGaamOtaiaadshaa8aabaWdbiab gUcaRaaakiaacckacaWGKbGaamiEaiabgUcaRmaavababeWcpaqaa8 qacaWGhbWdamaaCaaameqabaWdbiabgUcaRaaaaSqab0WdaeaapeGa ey4kIipaaOGaaGPcVlaayQW7daGfWbqabSWdaeaapeGaamyBaiabg2 da9iaaigdaa8aabaWdbiaaikdaa0WdaeaapeGaeyyeIuoaaOGaaGPc VlaayQW7caWGJbWdamaaBaaaleaapeGaamyBaaWdaeqaaOWdbiaadw hapaWaa0baaSqaa8qacaWG4bWdamaaBaaameaapeGaamyBaaWdaeqa aaWcbaWdbiabgUcaRaaak8aaceWG2bGbaGaadaqhaaWcbaWdbiaad6 eacaWG4bWdamaaBaaameaapeGaamyBaaWdaeqaaaWcbaWdbiabgUca Raaakmaabmaapaqaa8qacaWG0bGaaiilaiaadIhaaiaawIcacaGLPa aacaGGGcGaamizaiaadIhacqGHRaWkaaa@7579@

G + b u + +a u + v ˜ N + t,x ) dx] dt= G + u 0 + x v ˜ N + τ,x  dx+ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Waaubeaeqal8aabaWdbiaadEeapaWaaWbaaWqabeaapeGaey4kaSca aaWcbeqdpaqaa8qacqGHRiI8aaGccaaMk8UaaGPcVpaabmaapaqaa8 qaceWGIbWdayaalaWdbiabgEGirlaadwhapaWaaWbaaSqabeaapeGa ey4kaScaaOGaey4kaSIaamyyaiaadwhapaWaaWbaaSqabeaapeGaey 4kaScaaaGccaGLOaGaayzkaaWdaiqadAhagaacamaaDaaaleaapeGa amOtaaWdaeaapeGaey4kaScaaOWaaeWaa8aabaWdbiaadshacaGGSa GaamiEaaGaayjkaiaawMcaaiaacMcacaGGGcGaamizaiaadIhacaGG DbGaaiiOaiaadsgacaWG0bGaeyypa0Zaaubeaeqal8aabaWdbiaadE eapaWaaWbaaWqabeaapeGaey4kaScaaaWcbeqdpaqaa8qacqGHRiI8 aaGccaaMk8UaaGPcVlaadwhapaWaa0baaSqaa8qacaaIWaaapaqaa8 qacqGHRaWkaaGcdaqadaWdaeaapeGaamiEaaGaayjkaiaawMcaa8aa ceWG2bGbaGaadaqhaaWcbaWdbiaad6eaa8aabaWdbiabgUcaRaaakm aabmaapaqaa8qacqaHepaDcaGGSaGaamiEaaGaayjkaiaawMcaaiaa cckacaWGKbGaamiEaiabgUcaRaaa@7199@

0TG+fv~N+ dx0Xβ~u+t,x1,l0ut,x1,l0v~N+t,x1,l0dx1dt, (28)

0 T [ G u ˜ v ¯ Nt  dx+ G m=1 2 c m u ˜ x m x v ˜ Nx m x  dx+ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Waaubmaeqal8aabaWdbiaaicdaa8aabaWdbiaabsfaa0WdaeaapeGa ey4kIipaaOGaaGPcVlaayQW7caGGBbWaaubeaeqal8aabaWdbiaabE eapaWaaWbaaWqabeaapeGaeyOeI0caaaWcbeqdpaqaa8qacqGHRiI8 aaGccaaMk8UaaGPcV=aadaWfGaqaa8qacaqG1baal8aabeqaa8qaca GGClaaaOWdamaaCaaaleqabaWdbiabgkHiTaaakiqadAhagaqea8aa daqhaaWcbaWdbiaab6eacaqG0baapaqaa8qacqGHsislaaGccaqGGc GaaeizaiaabIhacqGHRaWkdaqfqaqabSWdaeaapeGaae4ra8aadaah aaadbeqaa8qacqGHsislaaaaleqan8aabaWdbiabgUIiYdaakiaayQ W7caaMk8+aaybCaeqal8aabaWdbiaab2gacqGH9aqpcaaIXaaapaqa a8qacaaIYaaan8aabaWdbiabggHiLdaakiaayQW7caaMk8Uaae4ya8 aadaWgaaWcbaWdbiaab2gaa8aabeaakmaaxacabaWdbiaabwhaaSWd aeqabaWdbiaacYTaaaGcpaWaa0baaSqaa8qacaqG4bWdamaaBaaame aapeGaaeyBaaWdaeqaaaWcbaWdbiabgkHiTaaakmaabmaapaqaa8qa caqG4baacaGLOaGaayzkaaWdamaaxacabaWdbiaabAhaaSWdaeqaba WdbiaacYTaaaGcpaWaa0baaSqaa8qacaqGobGaaeiEa8aadaWgaaad baWdbiaab2gaa8aabeaaaSqaa8qacqGHsislaaGcdaqadaWdaeaape GaaeiEaaGaayjkaiaawMcaaiaabckacaqGKbGaaeiEaiabgUcaRaaa @7C34@

Gbu+auv~Nx dx dt=Gu0xv¯Nτ,x dx+0TGfv~N dx+

0Xβ~ut,x1,l0)+ut,x1,l0v~Nt,x1,l0dx1dt. (29)

Далее берем произвольную функцию v W 2 1 Q ± L 2 Q MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamODaiabgIGiolaadEfapaWaa0baaSqaa8qacaaIYaaapaqaa8qa caaIXaaaaOWaaeWaa8aabaWdbiaadgfapaWaaWbaaSqabeaapeGaey ySaelaaaGccaGLOaGaayzkaaGaeyykICSaamita8aadaWgaaWcbaWd biaaikdaa8aabeaak8qadaqadaWdaeaapeGaamyuaaGaayjkaiaawM caaaaa@4633@ , удовлетворяющую однородным условиям Дирихле на боковой поверхности области G MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4raaaa@36D9@  и такую, что v | t=T =0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamODaiaacYhapaWaaSbaaSqaa8qacaWG0bGaeyypa0JaamivaaWd aeqaaOWdbiabg2da9iaaicdaaaa@3D14@ . Построив приближение функции v MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamODaaaa@3708@  в норме W 2 1 Q ± , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4va8aadaqhaaWcbaWdbiaaikdaa8aabaWdbiaaigdaaaGcdaqa daWdaeaapeGaamyua8aadaahaaWcbeqaa8qacqGHXcqSaaaakiaawI cacaGLPaaacaGGSaaaaa@3E47@  перейдем к пределу и из (28), (29) получим равенства:

0 T [ G + u + v t +  dx+ G + m=1 2 c m u x m + v x m + t,x  dx+ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Waaubmaeqal8aabaWdbiaaicdaa8aabaWdbiaadsfaa0WdaeaapeGa ey4kIipaaOGaaGPcVlaayQW7caGGBbWaaubeaeqal8aabaWdbiaadE eapaWaaWbaaWqabeaapeGaey4kaScaaaWcbeqdpaqaa8qacqGHRiI8 aaGccaaMk8UaaGPcVlaadwhapaWaaWbaaSqabeaapeGaey4kaScaaO GaamODa8aadaqhaaWcbaWdbiaadshaa8aabaWdbiabgUcaRaaakiaa cckacaWGKbGaamiEaiabgUcaRmaavababeWcpaqaa8qacaWGhbWdam aaCaaameqabaWdbiabgUcaRaaaaSqab0WdaeaapeGaey4kIipaaOGa aGPcVlaayQW7daGfWbqabSWdaeaapeGaamyBaiabg2da9iaaigdaa8 aabaWdbiaaikdaa0WdaeaapeGaeyyeIuoaaOGaaGPcVlaayQW7caWG JbWdamaaBaaaleaapeGaamyBaaWdaeqaaOWdbiaadwhapaWaa0baaS qaa8qacaWG4bWdamaaBaaameaapeGaamyBaaWdaeqaaaWcbaWdbiab gUcaRaaakiaadAhapaWaa0baaSqaa8qacaWG4bWdamaaBaaameaape GaamyBaaWdaeqaaaWcbaWdbiabgUcaRaaakmaabmaapaqaa8qacaWG 0bGaaiilaiaadIhaaiaawIcacaGLPaaacaGGGcGaamizaiaadIhacq GHRaWkaaa@73AC@

G + b u + +a u + v + t,x  dx  dt= G + u 0 + x v + 0,x  dx+ 0 T G + f v +  dx MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Waaubeaeqal8aabaWdbiaadEeapaWaaWbaaWqabeaapeGaey4kaSca aaWcbeqdpaqaa8qacqGHRiI8aaGccaaMk8UaaGPcVpaabmaapaqaa8 qaceWGIbWdayaalaWdbiabgEGirlaadwhapaWaaWbaaSqabeaapeGa ey4kaScaaOGaey4kaSIaamyyaiaadwhapaWaaWbaaSqabeaapeGaey 4kaScaaaGccaGLOaGaayzkaaGaamODa8aadaahaaWcbeqaa8qacqGH RaWkaaGcdaqadaWdaeaapeGaamiDaiaacYcacaWG4baacaGLOaGaay zkaaGaaiiOaiaadsgacaWG4bWaaKWia8aabaWdbiaacckacaWGKbGa amiDaiabg2da9maavababeWcpaqaa8qacaWGhbWdamaaCaaameqaba WdbiabgUcaRaaaaSqab0WdaeaapeGaey4kIipaaOGaaGPcVlaayQW7 caWG1bWdamaaDaaaleaapeGaaGimaaWdaeaapeGaey4kaScaaOWaae Waa8aabaWdbiaadIhaaiaawIcacaGLPaaacaWG2bWdamaaCaaaleqa baWdbiabgUcaRaaakmaabmaapaqaa8qacaaIWaGaaiilaiaadIhaai aawIcacaGLPaaacaGGGcGaamizaiaadIhacqGHRaWkdaqfWaqabSWd aeaapeGaaGimaaWdaeaapeGaamivaaqdpaqaa8qacqGHRiI8aaGcca aMk8UaaGPcVdGaayzxaiaawUfaamaavababeWcpaqaa8qacaWGhbWd amaaCaaameqabaWdbiabgUcaRaaaaSqab0WdaeaapeGaey4kIipaaO GaaGPcVlaayQW7caWGMbGaamODa8aadaahaaWcbeqaa8qacqGHRaWk aaGccaGGGcGaamizaiaadIhacqGHsislaaa@851F@

0Xβ~u+t,x1,l0ut,x1,l0v+t,x1,l0 dx1] dt, (30)

0 T [ G u v t  dx+ G m=1 2 c m u x m x v x m t,x  dx+ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Waaubmaeqal8aabaWdbiaaicdaa8aabaWdbiaadsfaa0WdaeaapeGa ey4kIipaaOGaaGPcVlaayQW7caGGBbWaaubeaeqal8aabaWdbiaadE eapaWaaWbaaWqabeaapeGaeyOeI0caaaWcbeqdpaqaa8qacqGHRiI8 aaGccaaMk8UaaGPcVlaadwhapaWaaWbaaSqabeaapeGaeyOeI0caaO GaamODa8aadaqhaaWcbaWdbiaadshaa8aabaWdbiabgkHiTaaakiaa cckacaWGKbGaamiEaiabgUcaRmaavababeWcpaqaa8qacaWGhbWdam aaCaaameqabaWdbiabgkHiTaaaaSqab0WdaeaapeGaey4kIipaaOGa aGPcVlaayQW7daGfWbqabSWdaeaapeGaamyBaiabg2da9iaaigdaa8 aabaWdbiaaikdaa0WdaeaapeGaeyyeIuoaaOGaaGPcVlaayQW7caWG JbWdamaaBaaaleaapeGaamyBaaWdaeqaaOWdbiaadwhapaWaa0baaS qaa8qacaWG4bWdamaaBaaameaapeGaamyBaaWdaeqaaaWcbaWdbiab gkHiTaaakmaabmaapaqaa8qacaWG4baacaGLOaGaayzkaaGaamODa8 aadaqhaaWcbaWdbiaadIhapaWaaSbaaWqaa8qacaWGTbaapaqabaaa leaapeGaeyOeI0caaOWaaeWaa8aabaWdbiaadshacaGGSaGaamiEaa GaayjkaiaawMcaaiaacckacaWGKbGaamiEaiabgUcaRaaa@7693@

G b u +a u v t,x  dx  dt= G u 0 x v 0,x  dx+ 0 T G f v  dx+ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Waaubeaeqal8aabaWdbiaadEeapaWaaWbaaWqabeaapeGaeyOeI0ca aaWcbeqdpaqaa8qacqGHRiI8aaGccaaMk8UaaGPcVpaabmaapaqaa8 qaceWGIbWdayaalaWdbiabgEGirlaadwhapaWaaWbaaSqabeaapeGa eyOeI0caaOGaey4kaSIaamyyaiaadwhapaWaaWbaaSqabeaapeGaey OeI0caaaGccaGLOaGaayzkaaGaamODa8aadaahaaWcbeqaa8qacqGH sislaaGcdaqadaWdaeaapeGaamiDaiaacYcacaWG4baacaGLOaGaay zkaaGaaiiOaiaadsgacaWG4bWaaKWia8aabaWdbiaacckacaWGKbGa amiDaiabg2da9maavababeWcpaqaa8qacaWGhbWdamaaCaaameqaba WdbiabgkHiTaaaaSqab0WdaeaapeGaey4kIipaaOGaaGPcVlaayQW7 caWG1bWdamaaDaaaleaapeGaaGimaaWdaeaapeGaeyOeI0caaOWaae Waa8aabaWdbiaadIhaaiaawIcacaGLPaaacaWG2bWdamaaCaaaleqa baWdbiabgkHiTaaakmaabmaapaqaa8qacaaIWaGaaiilaiaadIhaai aawIcacaGLPaaacaGGGcGaamizaiaadIhacqGHRaWkdaqfWaqabSWd aeaapeGaaGimaaWdaeaapeGaamivaaqdpaqaa8qacqGHRiI8aaGcca aMk8UaaGPcVdGaayzxaiaawUfaamaavababeWcpaqaa8qacaWGhbWd amaaCaaameqabaWdbiabgkHiTaaaaSqab0WdaeaapeGaey4kIipaaO GaaGPcVlaayQW7caWGMbGaamODa8aadaahaaWcbeqaa8qacqGHsisl aaGccaGGGcGaamizaiaadIhacqGHRaWkaaa@8577@

0Xβ~ut,x1,l0)+ut,x1,l0vt,x1,l0dx1dt, (31)

справедливые для всех v ± W 2 1 Q ± MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamODa8aadaahaaWcbeqaa8qacqGHXcqSaaGccqGHiiIZcaWGxbWd amaaDaaaleaapeGaaGOmaaWdaeaapeGaaGymaaaakmaabmaapaqaa8 qacaWGrbWdamaaCaaaleqabaWdbiabgglaXcaaaOGaayjkaiaawMca aaaa@425A@ , таких, что v ± T,x =0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamODa8aadaahaaWcbeqaa8qacqGHXcqSaaGcdaqadaWdaeaapeGa amivaiaacYcacaWG4baacaGLOaGaayzkaaGaeyypa0JaaGimaaaa@3F3A@ , и удовлетворяющих условиям Дирихле в (4). Используя определение обобщенной производной, получим, что существуют обобщенные производные u t ± L 2 0,T; W 2 1 G ± MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyDa8aadaqhaaWcbaWdbiaadshaa8aabaWdbiabgglaXcaakiab gIGiolaadYeapaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeWaaeWaa8 aabaWdbiaaicdacaGGSaGaamivaiaacUdacaWGxbWdamaaDaaaleaa peGaaGOmaaWdaeaapeGaeyOeI0IaaGymaaaakmaabmaapaqaa8qaca WGhbWdamaaCaaaleqabaWdbiabgglaXcaaaOGaayjkaiaawMcaaaGa ayjkaiaawMcaaaaa@4AFF@  и u ± 0,x = u 0 ± x MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyDa8aadaahaaWcbeqaa8qacqGHXcqSaaGcdaqadaWdaeaapeGa aGimaiaacYcacaWG4baacaGLOaGaayzkaaGaeyypa0JaamyDa8aada qhaaWcbaWdbiaaicdaa8aabaWdbiabgglaXcaakmaabmaapaqaa8qa caWG4baacaGLOaGaayzkaaaaaa@451C@ . Таким образом, мы пришли к определению обобщенного решения задачи сопряжения из класса u L 2 Q , u t L 2 0,T, W 2 1 G MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyDaiabgIGiolaadYeapaWaaSbaaSqaa8qacaaIYaaapaqabaGc peWaaeWaa8aabaWdbiaadgfaaiaawIcacaGLPaaacaGGSaGaamyDa8 aadaWgaaWcbaWdbiaadshaa8aabeaak8qacqGHiiIZcaWGmbWdamaa BaaaleaapeGaaGOmaaWdaeqaaOWdbmaabmaapaqaa8qacaaIWaGaai ilaiaadsfacaGGSaGaam4va8aadaqhaaWcbaWdbiaaikdaa8aabaWd biabgkHiTiaaigdaaaGcdaqadaWdaeaapeGaam4raaGaayjkaiaawM caaaGaayjkaiaawMcaaaaa@4E6A@ , u ± L 2 (0,T; W 2 1 G ± MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyDa8aadaahaaWcbeqaa8qacqGHXcqSaaGccqGHiiIZcaWGmbWd amaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiaacIcacaaIWaGaaiilai aadsfacaGG7aGaam4va8aadaqhaaWcbaWdbiaaikdaa8aabaWdbiaa igdaaaGcdaqadaWdaeaapeGaam4ra8aadaahaaWcbeqaa8qacqGHXc qSaaaakiaawIcacaGLPaaaaaa@47FE@ .

РЕЗУЛЬТАТЫ И ЭКСПЕРИМЕНТЫ

Перейдем к рассмотрению численных экспериментов и анализу их результатов. Полученный программный комплекс был зарегистрирован, и получено соответствующее свидетельство. Получаемые результаты вычислений напрямую зависят от характеристик производительности компьютера. Характеристики компьютера, на котором были получены описываемые далее данные, следующие: процессор Intel(R) Core(TM) i5-9500F CPU @ 3.00GHz 3.00GHz, 16.00 GB RAM.

В описываемом эксперименте τ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiXdqhaaa@37D2@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSn0BKvguHDwzZbqef00uGuvsGC0B0H wAJbWexLMBbXgBcf2CPn2qVrwzqf2zLnharyavP1wzZbItLDhis9wB H5garmWu51MyVXgaryWqVvNCPvMCG4uz3bqee0evGueE0jxyaibaie Ydh9qrpeeu0dXdh9vqqj=hEeeu0xXdbba9arpi0=irpK0dbba91qpK 0=vr0RYxir=dbbc9q8aq0=yqpe0xbba9suk9fr=xfr=xfrpiWZqaai aaciWacmaadaGabiaaeaGaauaaaOqaaGGaaKqzafaeaaaaaaaaa8qa caWFtacaaa@42F3@  время выполнения расчета в секундах, ε 0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTdu2damaaBaaaleaapeGaaGimaaWdaeqaaaaa@38C8@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSn0BKvguHDwzZbqef00uGuvsGC0B0H wAJbWexLMBbXgBcf2CPn2qVrwzqf2zLnharyavP1wzZbItLDhis9wB H5garmWu51MyVXgaryWqVvNCPvMCG4uz3bqee0evGueE0jxyaibaie Ydh9qrpeeu0dXdh9vqqj=hEeeu0xXdbba9arpi0=irpK0dbba91qpK 0=vr0RYxir=dbbc9q8aq0=yqpe0xbba9suk9fr=xfr=xfrpiWZqaai aaciWacmaadaGabiaaeaGaauaaaOqaaGGaaKqzafaeaaaaaaaaa8qa caWFtacaaa@42F3@  рассчитаная точность полученных вычислений, δ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiTdqgaaa@37B2@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSn0BKvguHDwzZbqef00uGuvsGC0B0H wAJbWexLMBbXgBcf2CPn2qVrwzqf2zLnharyavP1wzZbItLDhis9wB H5garmWu51MyVXgaryWqVvNCPvMCG4uz3bqee0evGueE0jxyaibaie Ydh9qrpeeu0dXdh9vqqj=hEeeu0xXdbba9arpi0=irpK0dbba91qpK 0=vr0RYxir=dbbc9q8aq0=yqpe0xbba9suk9fr=xfr=xfrpiWZqaai aaciWacmaadaGabiaaeaGaauaaaOqaaGGaaKqzafaeaaaaaaaaa8qa caWFtacaaa@42F3@  уровень случайного шума, r MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOCaaaa@3704@ , функции Φ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeuOPdyeaaa@3787@ :

Φ 1 = x 2 2x MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeOPd8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGH9aqpcaWG 4bWdamaaCaaaleqabaWdbiaaikdaaaGccqGHsislcaaIYaGaamiEaa aa@3E23@

Φ 2 =x*sin 3* x 4 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeOPd8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacqGH9aqpcaWG 4bGaaiOkaiGacohacaGGPbGaaiOBamaabmaapaqaa8qacaaIZaGaai Okamaalaaapaqaa8qacaWG4baapaqaa8qacaaI0aaaaaGaayjkaiaa wMcaaiabgkHiTiaaikdaaaa@44B7@

Φ 3 = x 3 2 x 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeOPd8aadaWgaaWcbaWdbiaaiodaa8aabeaak8qacqGH9aqpcaWG 4bWdamaaCaaaleqabaWdbiaaiodaaaGccqGHsislcaaIYaGaamiEa8 aadaahaaWcbeqaa8qacaaIYaaaaaaa@3F2E@  .

В следующей таблице представлены результаты расчетов при ε= 10 3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTduMaeyypa0JaaGymaiaaicdapaWaaWbaaSqabeaapeGaeyOe I0IaaG4maaaaaaa@3C25@ .

 

Таблица 1. Расчеты при ε= 10 3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeyTdiabg2da9iaaigdacaaIWaWdamaaCaaaleqabaWdbiabgkHi Tiaaiodaaaaaaa@3BB9@

No exp.

Φ

r

δ

ε_0

τ

1

Φ1

3

0

0,0107

6,95

2

Φ1

4

0

0,0136

7,39

3

Φ1

5

0

0,0166

7,2

4

Φ2

3

0

0,0094

7,15

5

Φ2

4

0

0,0126

6,2

6

Φ2

5

0

0,0165

7,18

7

Φ3

3

0

0,01

6,07

8

Φ3

4

0

0,0135

8,35

9

Φ3

5

0

0,0171

6,07

 

Далее представлены результаты при ε= 10 4 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTduMaeyypa0JaaGymaiaaicdapaWaaWbaaSqabeaapeGaeyOe I0IaaGinaaaaaaa@3C26@ .

 

Таблица 2. Расчеты при ε= 10 4 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeyTdiabg2da9iaaigdacaaIWaWdamaaCaaaleqabaWdbiabgkHi Tiaaisdaaaaaaa@3BBA@

No exp.

Φ

r

δ

ε_0

τ

1

Φ1

3

0

0,00102

9,75

2

Φ1

4

0

0,00124

9,79

3

Φ1

5

0

0,00154

10,52

4

Φ2

3

0

0,00099

9,61

5

Φ2

4

0

0,00121

9,71

6

Φ2

5

0

0,00159

8,22

7

Φ3

3

0

0,00091

10,42

8

Φ3

4

0

0,012

9,78

9

Φ3

5

0

0,0164

11,77

 

И результаты при увеличении точности до ε= 10 5 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTduMaeyypa0JaaGymaiaaicdapaWaaWbaaSqabeaapeGaeyOe I0IaaGynaaaaaaa@3C27@ .

 

Таблица 3. Расчеты при ε= 10 5 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeyTdiabg2da9iaaigdacaaIWaWdamaaCaaaleqabaWdbiabgkHi Tiaaiwdaaaaaaa@3BBB@

No exp.

Φ

r

δ

ε_0

τ

1

Φ1

3

0

0,000099

13,9

2

Φ1

4

0

0,000135

12,14

3

Φ1

5

0

0,000166

13,32

4

Φ2

3

0

0,000109

11,56

5

Φ2

4

0

0,000121

13,03

6

Φ2

5

0

0,000163

13,53

7

Φ3

3

0

0,0001

12,91

8

Φ3

4

0

0,000119

12,36

9

Φ3

5

0

0,000165

11,96

 

Также для проверки устойчивости решения на условия переопределения накладывались случайные возмущения данных. ψ new 0 =ψ x 1+δ 2σ1 , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiYdK3damaaBaaaleaapeGaamOBaiaadwgacaWG3baapaqabaGc peWaaeWaa8aabaWdbiaaicdaaiaawIcacaGLPaaacqGH9aqpcqaHip qEdaqadaWdaeaapeGaamiEaaGaayjkaiaawMcaamaabmaapaqaa8qa caaIXaGaey4kaSIaeqiTdq2aaeWaa8aabaWdbiaaikdacqaHdpWCcq GHsislcaaIXaaacaGLOaGaayzkaaaacaGLOaGaayzkaaGaaiilaaaa @4E6C@  где σ 0,1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4WdmNaeyicI48aamWaa8aabaWdbiaaicdacaGGSaGaaGymaaGa ay5waiaaw2faaaaa@3D8A@ , а δ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiTdqgaaa@37B2@  задается пользователем. В ходе экспериментов случайный шум был равен 5 и 10 %, соответственно δ=5 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiTdqMaeyypa0JaaGynaaaa@3977@  или δ=10 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiTdqMaeyypa0JaaGymaiaaicdaaaa@3A2D@ .

Далее были произведены расчеты при различных ε MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTdugaaa@37B4@  при добавлении случайного шума в 5 и 10 %, в таблице 4 приведены расчеты при ε= 10 3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeyTdiabg2da9iaaigdacaaIWaWdamaaCaaaleqabaWdbiabgkHi Tiaaiodaaaaaaa@3BB9@ .

 

Таблица 4. Расчеты при изменениях δ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiTdqgaaa@37B2@  при ε= 10 3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeyTdiabg2da9iaaigdacaaIWaWdamaaCaaaleqabaWdbiabgkHi Tiaaiodaaaaaaa@3BB9@

No exp.

Φ

r

δ

ε_0

τ

2

Φ1

3

5

0,0103

11,04

3

Φ1

3

10

0,015

10,54

5

Φ1

4

5

0,0155

11,98

6

Φ1

4

10

0,015

14,57

8

Φ1

5

5

0,0171

11,63

9

Φ1

5

10

0,0187

18,63

11

Φ2

3

5

0,013

8,8

12

Φ2

3

10

0,0117

11,19

14

Φ2

4

5

0,0153

9,88

15

Φ2

4

10

0,0148

12,79

17

Φ2

5

5

0,0166

11,92

18

Φ2

5

10

0,0186

18,79

20

Φ3

3

5

0,0127

10,69

21

Φ3

3

10

0,0134

13,03

23

Φ3

4

5

0,016

13,46

24

Φ3

4

10

0,0169

12,82

26

Φ3

5

5

0,0186

12,13

27

Φ3

5

10

0,0188

17,16

 

ЗАКЛЮЧЕНИЕ И ВЫВОДЫ

В результате вычислений отчетливо видно увеличение времени работы программы при повышении точности и при достаточно серьезных изменениях входных данных (при увеличении ошибки до 15 и 20 % расчеты могут выполняться с ошибками или занять кратно больше времени). Также стоит отметить, что увеличение времени работы при ε= 10 5 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTduMaeyypa0JaaGymaiaaicdapaWaaWbaaSqabeaapeGaeyOe I0IaaGynaaaaaaa@3C27@  не так заметно повышает точность вычислений, соответственно для большей эффективности и дальнейших вычислений и проверки алгоритма было решено остановиться на ε= 10 4 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTduMaeyypa0JaaGymaiaaicdapaWaaWbaaSqabeaapeGaeyOe I0IaaGinaaaaaaa@3C26@  в связи с небольшими временными потерями, но достаточно точных вычислениях.

×

Об авторах

Сергей Николаевич Шергин

Югорский государственный университет

Автор, ответственный за переписку.
Email: ssn@ugrasu.ru

кандидат физико-математических наук, доцент Инженерной школы цифровых технологий,

Россия, Ханты-Мансийск

Список литературы

  1. Алифанов, О. М. Обратные задачи в исследовании сложного теплообмена / О. М. Алифанов, Е. А. Артюхин, А. В. Ненарокомов. – Москва : Янус-К, 2009. – 299 c.
  2. Белоногов, В. А. О некоторых классах обратных задач определения коэффициента теплообмена в слоистых средах / В. А. Белоногов, С. Г. Пятков // Сибирский математический журнал. – 2022. – Т. 63, № 2(372). – С. 252–271. – doi: 10.33048/smzh.2022.63.202.
  3. Белоногов, В. А. О разрешимости задач сопряжения с условиями типа неидеального контакта / В. А. Белоногов, С. Г. Пятков // Известия высших учебных заведений. Математика. – 2020. – № 7. – С. 18–32. – doi: 10.26907/0021-3446-2020-7-18-32.
  4. К решению нестационарных нелинейных граничных обратных задач теплопроводности / Ю. М. Мацевитый, А. О. Костиков, Н. А. Сафонов, В. В. Ганчин // Проблемы машиностроения. – 2017. – Т. 20, № 4. – С. 15–23.
  5. Ткаченко, В. Н. Математическое моделирование, идентификация и управление технологическими процессами тепловой обработки материалов / В. Н. Ткаченко. – Киев : Наукова думка, 2008. – 243 c.
  6. Шморган, С. А. Об определении точечных источников в обратных задачах тепломассопереноса / С. А. Шморган, Л. В. Неустроева // Вестник Югорского государственного университета. – 2024. – Т. 20, № 4. – С. 82–91. – doi: 10.18822/byusu20240482-91.
  7. A comparison of two inverse problem techniques for the identification of contact failures in multi-layered composites / L. A. S. Abreu, M. J. Colaco, C. J. S. Alves [et al.] // 22nd International Congress of Mechanical Engineering (COBEM 2013) November 3–7. – Ribeirao Preto, Brasil : ABCM 2013. – С. 5422–5432.
  8. Artyukhin, E. A. Deriving the thermal contact resistance from the solution of the incerce heat-conduction problem / E. A. Artyukhin, A. V. Nenarokomov // Journal of Engineering Physics. – 1984. – Т. 46, № 4. – С. 495–499.
  9. Belonogov, V. A. On solvability of Some Classes of Transmission Problems in a Cylindrical Space Domain / V. A. Belonogov, S. G. Pyatkov // Siberian Electronic Mathematical Reports. – 2021. – Vol. 18, No. 1. – P. 176–206. – doi: 10.33048/semi.2021.18.015.
  10. Drenchev, L. B. Inverse heat conduction problems and application to estimate of heat paramters in 2-D experiments / L. B. Drenchev, J. Sobczak // Proc. Int. Conf. High Temperature Capillarity, Cracow, Poland, 29 June – 2 July 1997. – Krakow (Poland) : Foundry Research Institute, 1998. – С. 355–361.
  11. Huang, C. An inverse problem of simultaneously estimating contact conductance and heat transfer coefficient of exhaust gases between engine's exhaust valve and seat / C. Huang, T. Ju // International journal for numerical methods in engineering. – 1995. – № 38. – С. 735–754.
  12. Identification of contact failures in multi-layered composites / A. Abreu, H. R. B. Orlande, C. P. Naveira-Cotta [et al.] // Proceedings of the ASME 2011 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference IDETC/CIE 2011 August 28–31. – Washington, DC, USA : ASME, 2011. – С. 1–9.
  13. Loulou, T. An inverse heat conduction problem with heat flux measurements / T. Loulou, E. Scott // International Journal for Numerical Methods in Engineering. – 2006. – Т. 67, № 11. – С. 1587–1616.
  14. Zhuo, L. Reconstruction of the heat transfer coefficient at the interface of a bi-material / L. Zhuo, D. Lesnic // Inverse Problems in Science and Engineering. – 2020. – Т. 28, № 3. – С. 374–401.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Югорский государственный университет, 2025

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-ShareAlike 4.0 International License.