Removal of Acid Gases from Methane-Containing Gas Mixtures by Membrane-Assisted Gas Absorption. Hollow-Fibre Module Configuration with Absorption System Based on Dimethyldiethanolammonium Glycinate

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The present study is focused on continuing the development, improvement and optimisation of a new hybrid separation method – membrane-assisted gas absorption, which is designed for processing methane-containing gas mixtures, namely for the removal of acid gases. The second part is devoted to the design of absorbent solutions and their application in the proposed technology in order to improve the efficiency of acid gas removal and reduce hydrocarbon losses. Absorbents of acid gases based on aqueous solutions of methyldiethanolamine containing ionic liquid [M2E2A][Gly] have been proposed and investigated. As a result of the study, the optimal absorbent composition for further separation tests in a membrane-assisted gas absorption unit was determined. The efficiency of the process was investigated on the example of 8-component gas mixture containing methane, ethane, propane, n-butane, nitrogen, carbon dioxide, hydrogen sulfide and xenon. The membrane-assisted gas absorption unit demonstrated high efficiency of acid gas removal and high hydrocarbon recovery. The final efficiency of the investigated system with the new absorbent was up to 99 % for acid gas removal with hydrocarbon losses of up to 1 % at maximum capacity.

Full Text

Restricted Access

About the authors

M. E. Atlaskina

Mendeleev University of Chemical Technology of Russia

Email: atlaskina.m.e@gmail.com
Russian Federation, Moscow

A. A. Atlaskin

Mendeleev University of Chemical Technology of Russia

Email: atlaskina.m.e@gmail.com
Russian Federation, Moscow

A. N. Petukhov

Mendeleev University of Chemical Technology of Russia; Lobachevsky State University of Nizhny Novgorod

Email: atlaskina.m.e@gmail.com
Russian Federation, Moscow; Nizhny Novgorod

K. A. Smorodin

Mendeleev University of Chemical Technology of Russia

Author for correspondence.
Email: atlaskina.m.e@gmail.com
Russian Federation, Moscow

S. S. Kryuchkov

Mendeleev University of Chemical Technology of Russia

Email: atlaskina.m.e@gmail.com
Russian Federation, Moscow

I. V. Vorotyntsev

Mendeleev University of Chemical Technology of Russia

Email: atlaskina.m.e@gmail.com
Russian Federation, Moscow

References

  1. Mendonça A.K. de S., de Andrade Conradi Barni G., Moro M.F., Bornia A.C., Kupek E., Fernandes L // Sustainable Production and Consumption. 2020. V. 22. P. 58–67.
  2. Smith C., Hill A.K., Torrente-Murciano L. // Energy and Environmental Science. 2020. V. 13. I. 2. P. 331–344.
  3. Pata U.K. // Renewable Energy. 2021. V. 173. P. 197–208.
  4. Ebrahimi A., Ziabasharhagh M. // Energy Conversion and Management. 2020. V. 209. № 112624.
  5. Xu D., Wu Q., Zhou B., Li C., Bai L., Huang S. // IEEE Transactions on Sustainable Energy. 2020. V. 11. I. 4. P. 2457–2469.
  6. Tcvetkov P., Cherepovitsyn A., Makhovikov A. // Energy Reports. 2020. V. 6. P. 391–402.
  7. Azam A., Rafiq M., Shafique M., Zhang H., Yuan J. // Energy. 2021. V. 219. № 119592.
  8. Wright R.F., Lu P., Devkota J., Lu F., Ziomek-Moroz M., Ohodnicki P.R. // Sensors (Switzerland). 2019. V. 19. I. 18. № 3964.
  9. Karthigaiselvan K., Panda R.C. // Journal of Natural Gas Science and Engineering. 2021. V. 95. № 104087.
  10. Harrigan D.J., Lawrence J.A., Reid H.W., Rivers J.B., O’Brien J.T., Sharber S.A., Sundell B.J. // Journal of Membrane Science. 2020. V. 602. № 117947.
  11. Jasim D., Mohammed T., Abid M. // Engineering and Technology Journal. 2022. V. 40. I. 3. P. 441–450.
  12. Gupta N.K., Achary S.N., Viltres H., Bae J., Kim K.S. // Scientific Reports. 2023. V. 13. I. 1. № 2330.
  13. Zhang W., Garg N., Peter Andersson M., Chen Q., Zhang B., Gani R., Mansouri S.S. // Separation and Purification Technology. 2022. V. 286. № 120436.
  14. Jahandar Lashaki M., Khiavi S., Sayari A. // Chemical Society Reviews. 2019. V. 48. I. 12. P. 3320–3405.
  15. Mukhtar A., Saqib S., Mellon N.B., Babar M., Rafiq S., Ullah S., Bustam M.A., Al-Sehemi A.G., Muhammad N., Chawla M. // Journal of Natural Gas Science and Engineering. 2020. V. 77. № 103203.
  16. Abd A.A., Naji S.Z., Hashim A.S., Othman M.R. // Journal of Environmental Chemical Engineering. 2020. V. 8. I. 5. № 104142.
  17. Siegelman R.L., Milner P.J., Kim E.J., Weston S.C., Long J.R. // Energy and Environmental Science. 2019. V. 12. I. 7. P. 2161–2173.
  18. Калмыков Д.О., Широких С.А., Матвеев Д.Н., Анохина Т.С., Баженов С.Д. // Мембраны и мембранные технологии. 2023. Т. 13. С. 380
  19. Алентьев А.Ю., Волков А.В., Воротынцев И.В., Максимов А.Л., Ярославцев А.Б. // Мембраны и мембранные технологии. 2023. Т. 11. С. 283
  20. Mulk W.U., Ali S.A., Shah S.N., Shah M.U.H., Zhang Q.J., Younas M., Fatehizadeh A., Sheikh M., Rezakazemi M. // Journal of CO2 Utilization. 2023. V. 75. № 102555.
  21. Sun W., Wang M., Zhang Y., Ding W., Huo F., Wei L., He H. // Green Energy and Environment. 2020. V. 5. I. 2. P. 183–194.
  22. Lian S., Song C., Liu Q., Duan E., Ren H., Kitamura Y. // Journal of Environmental Sciences (China). 2021. V. 99. P. 281–295.
  23. Liu Y., Dai Z., Zhang Z., Zeng S., Li F., Zhang X., Nie Y., Zhang L., Zhang S., Ji X. // Green Energy and Environment. 2021. V. 6. I. 3. P. 314–328.
  24. Kazarina O. V., Petukhov A.N., Nagrimanov R.N., Vorotyntsev A. V., Atlaskina M.E., Atlaskin A.A., Kazarin A.S., Golovacheva A.A., Markin Z.A., Markov A.N., Barysheva A. V., Vorotyntsev I. V. // Journal of Molecular Liquids. 2023. V. 373. № 121216.
  25. Pishnamazi M., Nakhjiri A.T., Taleghani A.S., Marjani A., Heydarinasab A., Shirazian S. // Journal of Molecular Liquids. 2020. V. 314. № 113635.
  26. Daryayehsalameh B., Nabavi M., Vaferi B. // Environmental Technology and Innovation. 2021. V. 22. № 101484.
  27. Chen F.-F., Huang K., Fan J.-P., Tao D.-J. // AIChE Journal. 2017. V. 64. I. 2. P. 632–639.
  28. Sistla Y.S., Khanna A. // Chemical Engineering Journal. 2015. V. 273. I. September. P. 268–276.
  29. Yim J.H., Ha S.J., Lim J.S. // Journal of Supercritical Fluids. 2018. V. 138. P. 73–81.
  30. Noorani N., Mehrdad A. // Fluid Phase Equilibria. 2020. V. 517. P. 112591.
  31. Petukhov A.N., Atlaskin A.A., Kryuchkov S.S., Smorodin K.A., Zarubin D.M., Petukhova A.N., Atlaskina M.E., Nyuchev A. V., Vorotyntsev A. V., Trubyanov M.M., Vorotyntsev I. V., Vorotynstev V.M. // Chemical Engineering Journal. 2021. V. 421. № 127726.
  32. Atlaskin A.A., Kryuchkov S.S., Smorodin K.A., Markov A.N., Kazarina O. V., Zarubin D.M., Atlaskina M.E., Vorotyntsev A. V., Nyuchev A. V., Petukhov A.N., Vorotyntsev I. V. // Separation and Purification Technology. 2021. V. 257. № 117835.
  33. Atlaskin A.A., Kryuchkov S.S., Yanbikov N.R., Smorodin K.A., Petukhov A.N., Trubyanov M.M., Vorotyntsev V.M., Vorotyntsev I. V. // Separation and Purification Technology. 2020. V. 239. № 116578.
  34. Petukhov A.N., Atlaskin A.A., Smorodin K.A., Kryuchkov S.S., Zarubin D.M., Atlaskina M.E., Petukhova A.N., Stepakova A.N., Golovacheva A.A., Markov A.N., Stepanova E.A., Vorotyntsev A. V., Vorotyntsev I. V. // Polymers. 2022. V. 14. I. 11. № 2214.
  35. Сырцова Д.А., Шалыгин М.Г., Тепляков В.В., Palanivelu K., Зиновьев А.В., Пискарев М.С., Кузнецов А.А. // Мембраны и мембранные технологии. 2021. Т. 11. С. 48.
  36. Atlaskina, M. E., Kazarina, O. V., Petukhov, A. N., Atlaskin, A. A., Tsivkovsky, N. S., Tiuleanu, P., Malysheva Y.B., Lin, H., Zhong, G., Lukoyanov A.N., Vorotyntsev A. V., Vorotyntsev, I. V. // Journal of Molecular Liquids. 2024. V. 395. № 123635.
  37. Fu D., Zhang P., Mi C. L. // Energy. 2016. V. 101. P. 288–295.
  38. Othmer D. F., Thakar M. S. // Ind. amp; Eng. Chem. 1953. V. 45. I. 3. P. 589-593.
  39. Barzagli F., Lai S., Mani F. // ChemSusChem. 2015. V. 8. – I. 1. P. 184-191.
  40. Zhang F., Ma J.W, Zhou Z., Wu Y.T, Zhang Z.B. // J. Chem. Eng. 2012. V. 181. P. 222–228.
  41. Ahmady A., Hashim M.A., Aroua M.K. // Chemical engineering journal. 2011. V. 172. I. 2–3. P. 763–770.
  42. Cullinane J. T., Rochelle G. T. // Ind. Eng. Chem. Res. 2006. V. 45. I. 8. P. 2531–2545.
  43. Arachchige U. S. P. R., Aryal N., Eimer D. A., Melaaen, M. C. // Annu. trans. Nord. Rheol. Soc. 2013. V. 21. P. 299.
  44. Fu D., Zhang P., Wang L. M. //Energy. 2016. V. 113. P. 1–8.
  45. Sun, C., Wen, S., Zhao, J., Zhao, C., Li, W., Li, S., & Zhang, D. // Energy & Fuels. 2016. V 31. I. 11. P. 12425–12433.
  46. Friess K., Izák P., Kárászová M., Pasichnyk M., Lanč M., Nikolaeva D., Luis P., Jansen J. // Membranes. 2021. V. 11. I. 2. P. 97.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. 1H NMR spectrum of [M2E2A][Gly]

Download (475KB)
3. Fig. 2. Principle scheme of the installation for determination of gas transport characteristics of the membrane in conjunction with a mass spectrometer. РРГ - gas flow regulator, РДГ - gas pressure regulator, ИРЖ - liquid flow meter

Download (3MB)
4. Fig. 3. Principle scheme of the experimental installation for experimental evaluation of the membrane-absorption gas separation module efficiency. 1, 2 - gas flow regulators; 3, 4 - pressure transducers; 5 - upstream gas pressure regulator; 6 - four-port switching tap; 7 - gas chromatograph

Download (797KB)
5. Fig. 4. Schematic diagram of the membrane gas separation cell

Download (436KB)
6. Fig. 5. Dependence of the sorption capacity of aqueous solutions of MDEA with different content of ILs with respect to CO2 on the saturation time: 0%–20% [33], 30% – this work

Download (328KB)
7. Fig. 6. Dependence of solution viscosity on the mass fraction of [M2E2A][Gly]

Download (165KB)
8. Fig. 7. Effect of the mass fraction of amines on the sorption capacity and viscosity of aqueous solutions of MDEA a) dependence of the sorption capacity of aqueous solutions of MDEA on the mass fraction of amines (MDEA+IL); b) dependence of the viscosity of aqueous solutions of MDEA on the mass fraction of amines (MDEA+IL)

Download (361KB)
9. Fig. 8. Dependence of methane content in the retentate stream on the value of the extraction fraction

Download (120KB)
10. Fig. 9. Dependence of ethane, propane and butane content in the retentate stream on the value of extraction fraction

Download (172KB)
11. Fig. 10. Dependence of nitrogen content in the retentate stream on the value of extraction fraction

Download (110KB)
12. Fig. 11. Dependence of xenon content in the retentate stream on the value of the extraction fraction

Download (97KB)
13. Fig. 12. Dependence of the content of carbon dioxide and hydrogen sulphide in the retentate stream on the value of the withdrawal fraction

Download (155KB)

Copyright (c) 2024 Russian Academy of Sciences