The Benzene-induced Hepatic Cytochrome P450 2E1 Expression and Activity are Reduced by Quercetin Administration in Mice


Cite item

Full Text

Abstract

Background:Benzene as an environmental and industrial agent induces adverse effects that are mainly metabolism-dependent.

Objectives:Effects of Quercetin (QCN) on Benzene (BNZ)-induced changes in the hepatic Cytochrome P450 2E1 expression and activity were investigated.

Methods:Thirty-six adult male mice were divided into 6 groups (n = 6) and nominated as control, BNZ (exposed to BNZ: 30 ppm), QCN (received QCN: 50 mg/kg, orally), and the fourth, fifth and sixth groups were exposed to 30 ppm BNZ and received 10, 50 and 100 mg/kg QCN respectively, for 28 days. The microsomal subcellular fraction was isolated from the liver samples and the activity of CYP 2E1 was measured based on the hydroxylation rate of 4-nitrophenol. The hepatic activity of myeloperoxidase also was assessed. Total antioxidant capacity and nitric oxide contents of the liver were determined. Expression changes of CYP 2E1 at the mRNA level were examined by qPCR technique.

Results:QCN lowered significantly (p < 0.05) the BNZ-increased hepatic nitric oxide levels and restored the BNZ-reduced antioxidant capacity. The BNZ-elevated activity of myeloperoxidase was declined in QCN-received mice. QCN downregulated the expression and activity of hepatic CYP 2E1 in BNZ-exposed animals.

Conclusion:Our results suggest that QCN could be a novel hepatoprotective compound for BNZ-induced hepatotoxicities, which is attributed to its capability in the down-regulation of CYP 2E1 expression and activity.

About the authors

Jambour-Shabestary Amir-Ata

Department of Pharmacology & Toxicology, Experimental and Applied Pharmaceutical Sciences Research Center,, Urmia University of Medical Sciences

Email: info@benthamscience.net

Vardast Mohammad-Reza

Department of Medicinal Chemistry, School of Pharmacy, Urmia University of Medical Sciences

Email: info@benthamscience.net

Hassan Malekinejad

Department of Pharmacology & Toxicology, Experimental and Applied Pharmaceutical Sciences Research Center,, Urmia University of Medical Sciences

Author for correspondence.
Email: info@benthamscience.net

References

  1. D'Andrea MA, Reddy GK. Health risks associated with benzene exposure in children: A systematic review. Glob Pediatr Health 2018; 5: 2333794X18789275. doi: 10.1177/2333794X18789275
  2. Dere E, Ari F. Effect of benzene on liver functions in rats (Rattus norvegicus). Environ Monit Assess 2009; 154(1-4): 23-7. doi: 10.1007/s10661-008-0374-7 PMID: 18566902
  3. Kotseva K, Popov T. Study of the cardiovascular effects of occupational exposure to organic solvents. Int Arch Occup Environ Health 1998; 71: S87-91. PMID: 9827890
  4. Amin MM, Rafiei N, Poursafa P, et al. Association of benzene exposure with insulin resistance, SOD, and MDA as markers of oxidative stress in children and adolescents. Environ Sci Pollut Res Int 2018; 25(34): 34046-52. doi: 10.1007/s11356-018-3354-7 PMID: 30280344
  5. Snyder R, Hedli CC. An overview of benzene metabolism. Environ Health Perspect 1996; 104(Suppl 6): 1165-71. doi: 10.1289/ehp.961041165 PMID: 9118888
  6. Badham HJ, Renaud SJ, Wan J, Winn LM. Benzene-initiated oxidative stress: Effects on embryonic signaling pathways. Chem Biol Interact 2010; 184(1-2): 218-21. doi: 10.1016/j.cbi.2009.11.005 PMID: 19913523
  7. Valentine JL, Lee SST, Seaton MJ, et al. Reduction of benzene metabolism and toxicity in mice that lack CYP2E1 expression. Toxicol Appl Pharmacol 1996; 141(1): 205-13. doi: 10.1016/S0041-008X(96)80026-3 PMID: 8917693
  8. Weaver-Guevara HM, Fitzgerald RW, Cote NA, Greenberg A. Cytochrome P450 can epoxidize an oxepin to a reactive 2,3-epoxyoxepin intermediate: Potential insights into metabolic ring-opening of benzene. Molecules 2020; 25(19): 4542. doi: 10.3390/molecules25194542 PMID: 33023027
  9. Li Y, Yao J, Han C, et al. Quercetin, inflammation and immunity. Nutrients 2016; 8(3): 167. doi: 10.3390/nu8030167 PMID: 26999194
  10. Surapaneni KM, Priya VV, Mallika J. Pioglitazone, quercetin and hydroxy citric acid effect on cytochrome P450 2E1 (CYP2E1) enzyme levels in experimentally induced non alcoholic steatohepatitis (NASH). Eur Rev Med Pharmacol Sci 2014; 18(18): 2736-41. PMID: 25317811
  11. Maksymchuk O, Shysh A, Rosohatska I, Chashchyn M. Quercetin prevents type 1 diabetic liver damage through inhibition of CYP2E1. Pharmacol Rep 2017; 69(6): 1386-92. doi: 10.1016/j.pharep.2017.05.020 PMID: 29132096
  12. Golabi-Habashi N, Salimi A, Malekinejad H. Quercetin attenuated the Benzene-induced hemato- and hepatotoxicity in mice. Toxicol Rep 2021; 8: 1569-75. doi: 10.1016/j.toxrep.2021.08.001 PMID: 34430219
  13. Abd El-Shakour A, El-Ebiarie AS, Ibrahim YH, Abdel Moneim AE, El-Mekawy AM. Effect of benzene on oxidative stress and the functions of liver and kidney in rats. J Environ Occup Health 2015; 4: 34-9.
  14. Jacquot L, Pourie G, Buron G, Monnin J, Brand G. Effects of toluene inhalation exposure on olfactory functioning: Behavioral and histological assessment. Toxicol Lett 2006; 165(1): 57-65. doi: 10.1016/j.toxlet.2006.01.018 PMID: 16567067
  15. Cuzzocrea S, Ianaro A, Wayman NS, et al. The cyclopentenone prostaglandin 15-deoxy-Δ12,14-PGJ2 attenuates the development of colon injury caused by dinitrobenzene sulphonic acid in the rat. Br J Pharmacol 2003; 138(4): 678-88. doi: 10.1038/sj.bjp.0705077 PMID: 12598422
  16. Benzie IFF, Strain JJ. Ferric reducing/antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol 1999; 299: 15-27. doi: 10.1016/S0076-6879(99)99005-5 PMID: 9916193
  17. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR. Analysis of nitrate, nitrite, and 15Nnitrate in biological fluids. Anal Biochem 1982; 126(1): 131-8. doi: 10.1016/0003-2697(82)90118-X PMID: 7181105
  18. Lowry O, Rosebrough N, Farr AL, Randall R. Protein measurement with the Folin phenol reagent. J Biol Chem 1951; 193(1): 265-75. doi: 10.1016/S0021-9258(19)52451-6 PMID: 14907713
  19. Rutten AAJJL, Falke HE, Catsburg JF, et al. Interlaboratory comparison of total cytochrome P-450 and protein determinations in rat liver microsomes. Arch Toxicol 1987; 61(1): 27-33. doi: 10.1007/BF00324544 PMID: 3439870
  20. Koop DR. Hydroxylation of p-nitrophenol by rabbit ethanol-inducible cytochrome P-450 isozyme 3a. Mol Pharmacol 1986; 29(4): 399-404. PMID: 3702859
  21. Chomczynski P, Sacchi N. The single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction: Twenty-something years on. Nat Protoc 2006; 1(2): 581-5. doi: 10.1038/nprot.2006.83 PMID: 17406285
  22. Geraldino BR, Nunes RFN, Gomes JB, et al. Analysis of benzene exposure in gas station workers using trans,trans-muconic acid. Int J Environ Res Public Health 2020; 17(15): 5295. doi: 10.3390/ijerph17155295 PMID: 32717818
  23. Yang X, Lu Y, He F, et al. Benzene metabolite hydroquinone promotes DNA homologous recombination repair via the NF-κB pathway. Carcinogenesis 2019; 40(8): 1021-30. doi: 10.1093/carcin/bgy157 PMID: 30770924
  24. Guo X, Zhong W, Chen Y, Zhang W, Ren J, Gao A. Benzene metabolites trigger pyroptosis and contribute to haematotoxicity via TET2 directly regulating the Aim2/Casp1 pathway. EBioMedicine 2019; 47: 578-89. doi: 10.1016/j.ebiom.2019.08.056 PMID: 31474553
  25. Martínez-Rodríguez JL, Gutiérrez-Hernández R, Reyes-Estrada CA, Granados-López AJ, Arcos-Ortega T, López JA. Quantitative measurement of oxidative damage in erythrocytes as indicator in benzene intoxications. Toxicol Mech Methods 2018; 28(6): 450-60. doi: 10.1080/15376516.2018.1455786 PMID: 29564940
  26. Jaeschke H. Reactive oxygen and mechanisms of inflammatory liver injury: Present concepts. J Gastroenterol Hepatol 2011; 26(s1): 173-9. doi: 10.1111/j.1440-1746.2010.06592.x PMID: 21199529
  27. Kato Y. Neutrophil myeloperoxidase and its substrates: Formation of specific markers and reactive compounds during inflammation. J Clin Biochem Nutr 2016; 58(2): 99-104. doi: 10.3164/jcbn.15-104 PMID: 27013775
  28. Sharapova NV, Krasikov SI, Petrova AA, Boev VM. Risk assessment metabolic disorders by prolonged exposure to low doses of benzene. Sys Rev Pharm 2020; 11(6): 420-4.
  29. Jena AB, Samal RR, Kumari K, et al. The benzene metabolite p-benzoquinone inhibits the catalytic activity of bovine liver catalase: A biophysical study. Int J Biol Macromol 2021; 167: 871-80. doi: 10.1016/j.ijbiomac.2020.11.044 PMID: 33181220
  30. Li T, Li F, Liu X, Liu J, Li D. Synergistic anti-inflammatory effects of quercetin and catechin via inhibiting activation of TLR4-MyD88-mediated NF-κB and MAPK signaling pathways. Phytother Res 2019; 33(3): 756-67. doi: 10.1002/ptr.6268 PMID: 30637814
  31. Moalin M, Strijdonck GPF, Beckers M, et al. A planar conformation and the hydroxyl groups in the B and C rings play a pivotal role in the antioxidant capacity of quercetin and quercetin derivatives. Molecules 2011; 16(11): 9636-50. doi: 10.3390/molecules16119636 PMID: 22105713
  32. Battelli MG, Polito L, Bortolotti M, Bolognesi A. Xanthine oxidoreductase-derived reactive species: Physiological and pathological effects. Oxid Med Cell Longev 2016; 2016: 1-8. doi: 10.1155/2016/3527579 PMID: 26823950
  33. Boesch-Saadatmandi C, Loboda A, Wagner AE, et al. Effect of quercetin and its metabolites isorhamnetin and quercetin-3-glucuronide on inflammatory gene expression: Role of miR-155. J Nutr Biochem 2011; 22(3): 293-9. doi: 10.1016/j.jnutbio.2010.02.008 PMID: 20579867
  34. Carrasco D, Carrasco C, Souza-Mello V, Sandoval C. Effectiveness of antioxidant treatments on cytochrome P450 2E1 (CYP2E1) activity after alcohol exposure in humans and in vitro models: A systematic review. Int J Food Prop 2021; 24(1): 1300-17. doi: 10.1080/10942912.2021.1961801
  35. Tang Y, Tian H, Shi Y, et al. Quercetin suppressed CYP2E1-dependent ethanol hepatotoxicity via depleting heme pool and releasing CO. Phytomedicine 2013; 20(8-9): 699-704. doi: 10.1016/j.phymed.2013.03.010 PMID: 23583009
  36. Patel HB, Patel UD, Mathapati BS, Modi CM. Effect of piperine and quercetin alone or in combination with marbofloxacin on CYP3A37 and MDR1 mRNA expression levels in broiler chickens. Res Vet Sci 2019; 126: 178-83. doi: 10.1016/j.rvsc.2019.09.005 PMID: 31539794

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers