Viral MicroRNAs in Herpes Simplex Virus 1 Pathobiology


Cite item

Full Text

Abstract

Simplexvirus humanalpha1 (Herpes simplex virus type 1 [HSV-1]) infects millions of people globally, manifesting as vesiculo-ulcerative lesions of the oral or genital mucosa. After primary infection, the virus establishes latency in the peripheral neurons and reactivates sporadically in response to various environmental and genetic factors. A unique feature of herpesviruses is their ability to encode tiny noncoding RNAs called microRNA (miRNAs). Simplexvirus humanalpha1 encodes eighteen miRNA precursors that generate twentyseven different mature miRNA sequences. Unique Simplexvirus humanalpha1 miRNAs repertoire is expressed in lytic and latent stages and exhibits expressional disparity in various cell types and model systems, suggesting their key pathological functions. This review will focus on elucidating the mechanisms underlying the regulation of host-virus interaction by HSV-1 encoded viral miRNAs. Numerous studies have demonstrated sequence- specific targeting of both viral and host transcripts by Simplexvirus humanalpha1 miRNAs. While these noncoding RNAs predominantly target viral genes involved in viral life cycle switch, they regulate host genes involved in antiviral immunity, thereby facilitating viral evasion and lifelong viral persistence inside the host. Expression of Simplexvirus humanalpha1 miRNAs has been associated with disease progression and resolution. Systemic circulation and stability of viral miRNAs compared to viral mRNAs can be harnessed to utilize their potential as diagnostic and prognostic markers. Moreover, functional inhibition of these enigmatic molecules may allow us to devise strategies that have therapeutic significance to contain Simplexvirus humanalpha1 infection.

About the authors

Raza Naqvi

Department of Periodontics, College of Dentistry, University of Illinois Chicago

Email: info@benthamscience.net

Araceli Valverde

Department of Periodontics, College of Dentistry, University of Illinois Chicago

Email: info@benthamscience.net

Tejabhiram Yadavalli

Department of Ophthalmology and Visual Sciences, Medical Center,, University of Illinois Chicago

Email: info@benthamscience.net

Fatima Bobat

Department of Ophthalmology and Visual Sciences, Medical Center,, University of Illinois

Email: info@benthamscience.net

Kristelle Capistrano

Department of Periodontics, College of Dentistry, University of Illinois Chicago

Email: info@benthamscience.net

Deepak Shukla

Department of Ophthalmology and Visual Sciences, Medical Center, University of Illinois

Author for correspondence.
Email: info@benthamscience.net

Afsar Naqvi

Department of Periodontics, College of Dentistry, University of Illinois Chicago

Author for correspondence.
Email: info@benthamscience.net

References

  1. James C, Harfouche M, Welton NJ, et al. Herpes simplex virus: Global infection prevalence and incidence estimates, 2016. Bull World Health Organ 2020; 98(5): 315-29. doi: 10.2471/BLT.19.237149 PMID: 32514197
  2. Wald A, Corey L. HSV: Persistence in the population: Epidemiology, transmission. Human Herpesviruses. Cambridge University Press 2007; pp. 656-72. doi: 10.1017/CBO9780511545313.037
  3. Ramchandani M, Kong M, Tronstein E, et al. Herpes simplex virus type 1 shedding in tears and nasal and oral mucosa of healthy adults. Sex Transm Dis 2016; 43(12): 756-60. doi: 10.1097/OLQ.0000000000000522 PMID: 27835628
  4. Johnston C, Walker A. Epidemiology, clinical manifestations, and diagnosis of herpes simplex virus type 1 infection. UpToDate 2023. Available from: uptodate.com/contents/epidemiology-clinical-manifestations-and-diagnosis-of-herpes-simplex-virus-type-1-infection
  5. Van Wagoner N, Qushair F, Johnston C. Genital herpes infection. Infect Dis Clin North Am 2023; 37(2): 351-67. doi: 10.1016/j.idc.2023.02.011 PMID: 37105647
  6. Möckel M, De La Cruz NC, Rübsam M, et al. Herpes simplex virus 1 can bypass impaired epidermal barriers upon ex vivo infection of skin from atopic dermatitis patients. J Virol 2022; 96(17): e00864-922.
  7. Wilson EK, deWeber K, Berry JW, Wilckens JH. Cutaneous infections in wrestlers. Sports Health 2013; 5(5): 423-37. doi: 10.1177/1941738113481179 PMID: 24427413
  8. Betz D, Fane K. Herpetic whitlow. StatPearls. Treasure Island, FL: StatPearls Publishing 2023.
  9. Saleh D, Yarrarapu SNS, Sharma S. Herpes simplex type 1. StatPearls. Treasure Island, FL: StatPearls Publishing 2023.
  10. Franco AR, Mendo R, Barosa R, Figueiredo P. HSV-1 hepatitis in an immunocompetent patient – Act before you know. IDCases 2022; 30: e01605. doi: 10.1016/j.idcr.2022.e01605 PMID: 36061138
  11. Lobo AM, Agelidis AM, Shukla D. Pathogenesis of herpes simplex keratitis: The host cell response and ocular surface sequelae to infection and inflammation. Ocul Surf 2019; 17(1): 40-9. doi: 10.1016/j.jtos.2018.10.002 PMID: 30317007
  12. St Leger AJ, Koelle DM, Kinchington PR, Verjans GMGM. Local immune control of latent herpes simplex virus type 1 in ganglia of mice and man. Front Immunol 2021; 12: 723809. doi: 10.3389/fimmu.2021.723809 PMID: 34603296
  13. Farooq AV, Shukla D. Corneal latency and transmission of herpes simplex virus-1. Future Virol 2011; 6(1): 101-8. doi: 10.2217/fvl.10.74 PMID: 21436960
  14. Theil D, Derfuss T, Paripovic I, et al. Latent herpesvirus infection in human trigeminal ganglia causes chronic immune response. Am J Pathol 2003; 163(6): 2179-84. doi: 10.1016/S0002-9440(10)63575-4 PMID: 14633592
  15. Jeshvaghani ZS, Soleimani M, Asgharpour S, Arefian E. Latency-associated transcript-derived micrornas in herpes simplex virus type 1 target SMAD3 and SMAD4 in TGF-upbeta/Smad signaling pathway. Iran Biomed J 2021; 25(3): 169-79. doi: 10.52547/ibj.25.3.169 PMID: 33546553
  16. Everett RD. Biology and life cycle. Methods in Molecular Biology. Springer New York 2014; pp. 1-17. doi: 10.1007/978-1-4939-0428-0_1
  17. De Mello CPP, Bloom DC, Paixão ICNP. Herpes simplex virus type-1: Replication, latency, reactivation and its antiviral targets. Antivir Ther 2016; 21(4): 277-86. doi: 10.3851/IMP3018 PMID: 26726828
  18. Bagga B, Kate A, Joseph J, Dave VP. Herpes simplex infection of the eye: An introduction. Community Eye Health 2020; 33(108): 68-70. PMID: 32395028
  19. Farooq AV, Shukla D. Herpes simplex epithelial and stromal keratitis: An epidemiologic update. Surv Ophthalmol 2012; 57(5): 448-62. doi: 10.1016/j.survophthal.2012.01.005 PMID: 22542912
  20. Sugar A. Herpes simplex keratitis. UpToDate 2022. Available from: uptodate.com/contents/herpes-simplex-keratitis
  21. Valerio GS, Lin CC. Ocular manifestations of herpes simplex virus. Curr Opin Ophthalmol 2019; 30(6): 525-31. doi: 10.1097/ICU.0000000000000618 PMID: 31567695
  22. Issiaka M, Abounaceur A, Aitlhaj J, et al. Chronic unilateral anterior scleritis, think about a herpetic origin: A case report. Ann Med Surg 2021; 68: 102611. doi: 10.1016/j.amsu.2021.102611 PMID: 34381600
  23. Koujah L, Suryawanshi RK, Shukla D. Pathological processes activated by herpes simplex virus-1 (HSV-1) infection in the cornea. Cell Mol Life Sci 2019; 76(3): 405-19. doi: 10.1007/s00018-018-2938-1 PMID: 30327839
  24. Moshirfar M, Murri MS, Shah TJ, et al. A review of corneal endotheliitis and endotheliopathy: Differential diagnosis, evaluation, and treatment. Ophthalmol Ther 2019; 8(2): 195-213. doi: 10.1007/s40123-019-0169-7 PMID: 30859513
  25. Semeraro F, Forbice E, Romano V, et al. Neurotrophic keratitis. Ophthalmologica 2014; 231(4): 191-7. doi: 10.1159/000354380 PMID: 24107451
  26. Mannis MJ, Holland EJ. Cornea. Elsevier Health Sciences 2016.
  27. Remeijer L, Maertzdorf J, Doornenbal P, Verjans GMGM, Osterhaus ADME. Herpes simplex virus 1 transmission through corneal transplantation. Lancet 2001; 357(9254): 442. doi: 10.1016/S0140-6736(00)04011-3 PMID: 11273067
  28. Borderie VM, Méritet JF, Chaumeil C, et al. Culture-proven herpetic keratitis after penetrating keratoplasty in patients with no previous history of herpes disease. Cornea 2004; 23(2): 118-24. doi: 10.1097/00003226-200403000-00003 PMID: 15075879
  29. Fan Q, Kopp S, Connolly SA, Muller WJ, Longnecker R. Mapping sites of herpes simplex virus type 1 glycoprotein D that permit insertions and impact gD and gB receptors usage. Sci Rep 2017; 7(1): 43712. doi: 10.1038/srep43712 PMID: 28255168
  30. Akhtar J, Tiwari V, Oh MJ, et al. HVEM and nectin-1 are the major mediators of herpes simplex virus 1 (HSV-1) entry into human conjunctival epithelium. Invest Ophthalmol Vis Sci 2008; 49(9): 4026-35. doi: 10.1167/iovs.08-1807 PMID: 18502984
  31. Zhu S, Viejo-Borbolla A. Pathogenesis and virulence of herpes simplex virus. Virulence 2021; 12(1): 2670-702. doi: 10.1080/21505594.2021.1982373 PMID: 34676800
  32. Edwards RG, Kopp SJ, Ifergan I, et al. Murine corneal inflammation and nerve damage after infection With HSV-1 are promoted by HVEM and ameliorated by immune-modifying nanoparticle therapy. Invest Ophthalmol Vis Sci 2017; 58(1): 282-91. doi: 10.1167/iovs.16-20668 PMID: 28114589
  33. Tiwari V, Clement C, Xu D, et al. Role for 3-sulfated heparan sulfate as the receptor for herpes simplex virus type 1 entry into primary human corneal fibroblasts. J Virol 2006; 80(18): 8970-80. doi: 10.1128/JVI.00296-06 PMID: 16940509
  34. Tognarelli EI, Palomino TF, Corrales N, Bueno SM, Kalergis AM, González PA. Herpes simplex virus evasion of early host antiviral responses. Front Cell Infect Microbiol 2019; 9: 127. doi: 10.3389/fcimb.2019.00127 PMID: 31114761
  35. Amin I, Vajeeha A, Younas S, et al. HSV-1 infection: Role of viral proteins and cellular receptors. Crit Rev Eukaryot Gene Expr 2019; 29(5): 461-9. doi: 10.1615/CritRevEukaryotGeneExpr.2019025561 PMID: 32422002
  36. Pan D, Li G, Morris-Love J, et al. Herpes simplex virus 1 lytic infection blocks microRNA (miRNA) biogenesis at the stage of nuclear export of pre-miRNAs. mBio 2019; 10(1): 10-128. doi: 10.1128/mBio.02856-18
  37. Cui C, Griffiths A, Li G, et al. Prediction and identification of herpes simplex virus 1-encoded microRNAs. J Virol 2006; 80(11): 5499-508. doi: 10.1128/JVI.00200-06 PMID: 16699030
  38. Naqvi AR, Shango J, Seal A, Shukla D, Nares S. Viral miRNAs alter host cell miRNA profiles and modulate innate immune responses. Front Immunol 2018; 9: 433. doi: 10.3389/fimmu.2018.00433 PMID: 29559974
  39. Zheng K, Liu Q, Wang S, et al. HSV-1-encoded microRNA miR-H1 targets Ubr1 to promote accumulation of neurodegeneration-associated protein. Virus Genes 2018; 54(3): 343-50. doi: 10.1007/s11262-018-1551-6 PMID: 29541932
  40. Umbach JL, Kramer MF, Jurak I, Karnowski HW, Coen DM, Cullen BR. MicroRNAs expressed by herpes simplex virus 1 during latent infection regulate viral mRNAs. Nature 2008; 454(7205): 780-3. doi: 10.1038/nature07103 PMID: 18596690
  41. Cokarić Brdovčak M, Zubković A, Jurak I. Herpes simplex virus 1 deregulation of host microRNAs. Noncoding RNA 2018; 4(4): 36. doi: 10.3390/ncrna4040036 PMID: 30477082
  42. Piedade D, Azevedo-Pereira J. The role of micrornas in the pathogenesis of herpesvirus infection. Viruses 2016; 8(6): 156. doi: 10.3390/v8060156 PMID: 27271654
  43. Duan F, Liao J, Huang Q, Nie Y, Wu K. HSV-1 miR-H6 inhibits HSV-1 replication and IL-6 expression in human corneal epithelial cells in vitro. Clin Dev Immunol 2012; 2012: 1-8. doi: 10.1155/2012/192791 PMID: 22550533
  44. Zou W, Zhou X, Wang L, Zhou GG, Chen X. Degradation of herpes simplex virus-1 viral miRNA H11 by vaccinia virus protein VP55 attenuates viral replication. Front Microbiol 2020; 11: 717. doi: 10.3389/fmicb.2020.00717 PMID: 32390978
  45. Wu W, Guo Z, Zhang X, et al. A microRNA encoded by HSV-1 inhibits a cellular transcriptional repressor of viral immediate early and early genes. Sci China Life Sci 2013; 56(4): 373-83. doi: 10.1007/s11427-013-4458-4 PMID: 23512275
  46. Han Z, Liu X, Chen X, et al. miR-H28 and miR-H29 expressed late in productive infection are exported and restrict HSV-1 replication and spread in recipient cells. Proc Natl Acad Sci USA 2016; 113(7): E894-901. doi: 10.1073/pnas.1525674113 PMID: 26831114
  47. Wilcox DR, Longnecker R. The herpes simplex virus neurovirulence factorupgamma34.5: Revealing virus–host interactions. PLOS Pathog 2016; 12(3): e1005449.
  48. Cohen JI. Herpesvirus latency. J Clin Invest 2020; 130(7): 3361-9. doi: 10.1172/JCI136225 PMID: 32364538
  49. Roizman B, Knipe DM, Whitley R. Herpes Simplex Viruses. (6th ed.), Philadelphia: Fields Virology 2013.
  50. Knipe DM, Cliffe A. Chromatin control of herpes simplex virus lytic and latent infection. Nat Rev Microbiol 2008; 6(3): 211-21. doi: 10.1038/nrmicro1794 PMID: 18264117
  51. Herrera FJ, Triezenberg SJ. VP16-dependent association of chromatin-modifying coactivators and underrepresentation of histones at immediate-early gene promoters during herpes simplex virus infection. J Virol 2004; 78(18): 9689-96. doi: 10.1128/JVI.78.18.9689-9696.2004 PMID: 15331701
  52. Oh J, Fraser NW. Temporal association of the herpes simplex virus genome with histone proteins during a lytic infection. J Virol 2008; 82(7): 3530-7. doi: 10.1128/JVI.00586-07 PMID: 18160436
  53. Cliffe AR, Garber DA, Knipe DM. Transcription of the herpes simplex virus latency-associated transcript promotes the formation of facultative heterochromatin on lytic promoters. J Virol 2009; 83(16): 8182-90. doi: 10.1128/JVI.00712-09 PMID: 19515781
  54. Kwiatkowski DL, Thompson HW, Bloom DC. The polycomb group protein Bmi1 binds to the herpes simplex virus 1 latent genome and maintains repressive histone marks during latency. J Virol 2009; 83(16): 8173-81. doi: 10.1128/JVI.00686-09 PMID: 19515780
  55. Wang QY, Zhou C, Johnson KE, Colgrove RC, Coen DM, Knipe DM. Herpesviral latency-associated transcript gene promotes assembly of heterochromatin on viral lytic-gene promoters in latent infection. Proc Natl Acad Sci USA 2005; 102(44): 16055-9. doi: 10.1073/pnas.0505850102 PMID: 16247011
  56. Cullen BR. Viruses and microRNAs: RISCy interactions with serious consequences. Genes Dev 2011; 25(18): 1881-94. doi: 10.1101/gad.17352611 PMID: 21896651
  57. Kincaid RP, Sullivan CS. Virus-encoded microRNAs: An overview and a look to the future. PLoS Pathog 2012; 8(12): e1003018.
  58. Qureshi A, Thakur N, Monga I, Thakur A, Kumar M. VIRmiRNA: A comprehensive resource for experimentally validated viral miRNAs and their targets. Database 2014; 2014: bau103. doi: 10.1093/database/bau103 PMID: 25380780
  59. Grey F. Role of microRNAs in herpesvirus latency and persistence. J Gen Virol 2015; 96(4): 739-51. doi: 10.1099/vir.0.070862-0 PMID: 25406174
  60. Cai X, Lu S, Zhang Z, Gonzalez CM, Damania B, Cullen BR. Kaposi’s sarcoma-associated herpesvirus expresses an array of viral microRNAs in latently infected cells. Proc Natl Acad Sci USA 2005; 102(15): 5570-5. doi: 10.1073/pnas.0408192102 PMID: 15800047
  61. Pfeffer S, Sewer A, Lagos-Quintana M, et al. Identification of microRNAs of the herpesvirus family. Nat Methods 2005; 2(4): 269-76. doi: 10.1038/nmeth746 PMID: 15782219
  62. Sullivan CS, Grundhoff AT, Tevethia S, Pipas JM, Ganem D. SV40-encoded microRNAs regulate viral gene expression and reduce susceptibility to cytotoxic T cells. Nature 2005; 435(7042): 682-6. doi: 10.1038/nature03576 PMID: 15931223
  63. Jurak I, Griffiths A, Coen DM. Mammalian alphaherpesvirus miRNAs. Biochim Biophys Acta BBA - Gene Regul Mech 1809; 1809(11–12): 641-53.
  64. Pfeffer S, Zavolan M, Grässer FA, et al. Identification of virus-encoded microRNAs. Science 2004; 304(5671): 734-6. doi: 10.1126/science.1096781 PMID: 15118162
  65. Tang S, Bertke AS, Patel A, Wang K, Cohen JI, Krause PR. An acutely and latently expressed herpes simplex virus 2 viral microRNA inhibits expression of ICP34.5, a viral neurovirulence factor. Proc Natl Acad Sci USA 2008; 105(31): 10931-6. doi: 10.1073/pnas.0801845105 PMID: 18678906
  66. Tang S, Patel A, Krause PR. Novel less-abundant viral microRNAs encoded by herpes simplex virus 2 latency-associated transcript and their roles in regulating ICP34.5 and ICP0 mRNAs. J Virol 2009; 83(3): 1433-42. doi: 10.1128/JVI.01723-08 PMID: 19019961
  67. Kramer MF, Jurak I, Pesola JM, Boissel S, Knipe DM, Coen DM. Herpes simplex virus 1 microRNAs expressed abundantly during latent infection are not essential for latency in mouse trigeminal ganglia. Virology 2011; 417(2): 239-47. doi: 10.1016/j.virol.2011.06.027 PMID: 21782205
  68. Du T, Han Z, Zhou G, Roizman B. Patterns of accumulation of miRNAs encoded by herpes simplex virus during productive infection, latency, and on reactivation. Proc Natl Acad Sci USA 2015; 112(1): E49-55. doi: 10.1073/pnas.1422657112 PMID: 25535379
  69. Held K, Junker A, Dornmair K, et al. Expression of herpes simplex virus 1-encoded microRNAs in human trigeminal ganglia and their relation to local T-cell infiltrates. J Virol 2011; 85(19): 9680-5. doi: 10.1128/JVI.00874-11 PMID: 21795359
  70. Samols MA, Hu J, Skalsky RL, Renne R. Cloning and identification of a microRNA cluster within the latency-associated region of Kaposi’s sarcoma-associated herpesvirus. J Virol 2005; 79(14): 9301-5. doi: 10.1128/JVI.79.14.9301-9305.2005 PMID: 15994824
  71. Umbach JL, Nagel MA, Cohrs RJ, Gilden DH, Cullen BR. Analysis of human alphaherpesvirus microRNA expression in latently infected human trigeminal ganglia. J Virol 2009; 83(20): 10677-83. doi: 10.1128/JVI.01185-09 PMID: 19656888
  72. Fu M, Gao Y, Zhou Q, et al. Human cytomegalovirus latent infection alters the expression of cellular and viral microRNA. Gene 2014; 536(2): 272-8. doi: 10.1016/j.gene.2013.12.012 PMID: 24361963
  73. Meshesha MK, Bentwich Z, Solomon SA, Avni YS. In vivo expression of human cytomegalovirus (HCMV) microRNAs during latency. Gene 2016; 575(1): 101-7. doi: 10.1016/j.gene.2015.08.040 PMID: 26302752
  74. Mikell I, Crawford LB, Hancock MH, et al. HCMV miR-US22 down-regulation of EGR-1 regulates CD34mathplus hematopoietic progenitor cell proliferation and viral reactivation. PLOS Pathog 2019; 15(11): e1007854.
  75. Tuddenham L, Jung JS, Chane-Woon-Ming B, Dölken L, Pfeffer S. Small RNA deep sequencing identifies microRNAs and other small noncoding RNAs from human herpesvirus 6B. J Virol 2012; 86(3): 1638-49. doi: 10.1128/JVI.05911-11 PMID: 22114334
  76. Nukui M, Mori Y, Murphy EA. A human herpesvirus 6a-encoded microRNA: Role in viral lytic replication. J Virol 2015; 89(5): 2615-27.
  77. Barrozo ER, Nakayama S, Singh P, et al. Deletion of herpes simplex virus 1 MicroRNAs miR-H1 and miR-H6 impairs reactivation. J Virol 2020; 94(15): 10-128. doi: 10.1128/JVI.00639-20
  78. Hancock MH, Mitchell J, Goodrum FD, Nelson JA. Human cytomegalovirus miR-US5-2 downregulation of GAB1 regulates cellular proliferation and lessigreaterul138less/igreater expression through modulation of epidermal growth factor receptor signaling pathways. mSphere . 2020; 5.(4) doi: 10.1128/mSphere.00582-20
  79. Skalsky RL, Cullen BR. Viruses, microRNAs, and host interactions. Annu Rev Microbiol 2010; 64(1): 123-41. doi: 10.1146/annurev.micro.112408.134243 PMID: 20477536
  80. Alekseev O, Donegan WE, Donovan KR, Limonnik V, Azizkhan- Clifford J. HSV-1 hijacks the host DNA damage response in corneal epithelial cells through ICP4-mediated activation of ATM. Invest Ophthalmol Vis Sci 2020; 61(6): 39. doi: 10.1167/iovs.61.6.39 PMID: 32543665
  81. Banerjee A, Kulkarni S, Mukherjee A. Herpes simplex virus: The hostile guest that takes over your home. Front Microbiol 2020; 11: 733. doi: 10.3389/fmicb.2020.00733 PMID: 32457704
  82. Zhao H, Zhang C, Hou G, Song J. MicroRNA-H4-5p encoded by HSV-1 latency-associated transcript promotes cell proliferation, invasion and cell cycle progression via p16-mediated PI3K-Akt signaling pathway in SHSY5Y cells. Int J Clin Exp Med 2015; 8(5): 7526-34. PMID: 26221296
  83. Chen S, Deng Y, Pan D. MicroRNA regulation of human herpesvirus latency. Viruses 2022; 14(6): 1215. doi: 10.3390/v14061215 PMID: 35746686
  84. Gupta A, Gartner JJ, Sethupathy P, Hatzigeorgiou AG, Fraser NW. Retraction note: Anti-apoptotic function of a microRNA encoded by the HSV-1 latency-associated transcript. Nature 2008; 451(7178): 600-0. doi: 10.1038/nature06621 PMID: 18235505
  85. Enk J, Levi A, Weisblum Y, et al. HSV1 microRNA modulation of GPI anchoring and downstream immune evasion. Cell Rep 2016; 17(4): 949-56. doi: 10.1016/j.celrep.2016.09.077 PMID: 27760325
  86. Kim H, Iizasa H, Kanehiro Y, Fekadu S, Yoshiyama H. Herpesviral microRNAs in cellular metabolism and immune responses. Front Microbiol 2017; 8: 1318. doi: 10.3389/fmicb.2017.01318 PMID: 28769892
  87. Mishra R, Kumar A, Ingle H, Kumar H. The interplay between viral-derived mirnas and host immunity during infection. Front Immunol 2020; 10: 3079. doi: 10.3389/fimmu.2019.03079 PMID: 32038626
  88. Duan Y, Zeng J, Fan S, et al. Herpes simplex virus type 1–encoded miR-H2-3p manipulates cytosolic DNA–stimulated antiviral innate immune response by targeting DDX41. Viruses 2019; 11(8): 756. doi: 10.3390/v11080756 PMID: 31443275
  89. Paludan SR, Bowie AG, Horan KA, Fitzgerald KA. Recognition of herpesviruses by the innate immune system. Nat Rev Immunol 2011; 11(2): 143-54. doi: 10.1038/nri2937 PMID: 21267015
  90. Conwell SE, White AE, Harper JW, Knipe DM. Identification of TRIM27 as a novel degradation target of herpes simplex virus 1 ICP0. J Virol 2015; 89(1): 220-9.
  91. Kurt-Jones EA, Orzalli MH, Knipe DM. Innate immune mechanisms and herpes simplex virus infection and disease. Cell Biology of Herpes Viruses. Springer International Publishing 2017; pp. 49-75. doi: 10.1007/978-3-319-53168-7_3
  92. Crameri M, Bauer M, Caduff N, et al. MxB is an interferon-induced restriction factor of human herpesviruses. Nat Commun 2018; 9(1): 1980. doi: 10.1038/s41467-018-04379-2 PMID: 29773792
  93. Ku CC, Che XB, Reichelt M, et al. Herpes simplex virus-1 induces expression of a novel MxA isoform that enhances viral replication. Immunol Cell Biol 2011; 89(2): 173-82. doi: 10.1038/icb.2010.83 PMID: 20603636
  94. Staeheli P, Haller O. Human MX2/MxB: A potent interferon-induced postentry inhibitor of herpesviruses and HIV-1. J Virol 2018; 92(24): 10-128. doi: 10.1128/JVI.00709-18
  95. Domke-Opitz I, Straub P, Kirchner H. Effect of interferon on replication of herpes simplex virus types 1 and 2 in human macrophages. J Virol 1986; 60(1): 37-42. doi: 10.1128/jvi.60.1.37-42.1986 PMID: 3018299
  96. Rosato PC, Leib DA. Intrinsic innate immunity fails to control herpes simplex virus and vesicular stomatitis virus replication in sensory neurons and fibroblasts. J Virol 2014; 88(17): 9991-10001. doi: 10.1128/JVI.01462-14
  97. Sainz B Jr, Halford WP. Alpha/Beta interferon and gamma interferon synergize to inhibit the replication of herpes simplex virus type 1. J Virol 2002; 76(22): 11541-50. doi: 10.1128/JVI.76.22.11541-11550.2002 PMID: 12388715
  98. Leib DA, Harrison TE, Laslo KM, Machalek MA, Moorman NJ, Virgin HW. Interferons regulate the phenotype of wild-type and mutant herpes simplex viruses in vivo. J Exp Med 1999; 189(4): 663-72. doi: 10.1084/jem.189.4.663 PMID: 9989981
  99. Luker GD, Prior JL, Song J, Pica CM, Leib DA. Bioluminescence imaging reveals systemic dissemination of herpes simplex virus type 1 in the absence of interferon receptors. J Virol 2003; 77(20): 11082-93. doi: 10.1128/JVI.77.20.11082-11093.2003 PMID: 14512556
  100. Xie Y, He S, Wang J. MicroRNA-373 facilitates HSV-1 replication through suppression of type I IFN response by targeting IRF1. Biomed Pharmacother 2018; 97: 1409-16. doi: 10.1016/j.biopha.2017.11.071 PMID: 29156530
  101. Sharma N, Wang C, Kessler P, Sen GC. Herpes simplex virus 1 evades cellular antiviral response by inducing microRNA-24, which attenuates STING synthesis. PLOS Pathog 2021; 17(9): e1009950. doi: 10.1371/journal.ppat.1009950
  102. Liang D, Gao Y, Lin X, et al. A human herpesvirus miRNA attenuates interferon signaling and contributes to maintenance of viral latency by targeting IKKɛ. Cell Res 2011; 21(5): 793-806. doi: 10.1038/cr.2011.5 PMID: 21221132
  103. Chen M, Sun F, Han L, Qu Z. Kaposi’s sarcoma herpesvirus (KSHV) microRNA K12-1 functions as an oncogene by activating NF-κB/IL-6/STAT3 signaling. Oncotarget 2016; 7(22): 33363-73. doi: 10.18632/oncotarget.9221 PMID: 27166260
  104. Ehtisham S, Sunil-Chandra NP, Nash AA. Pathogenesis of murine gammaherpesvirus infection in mice deficient in CD4 and CD8 T cells. J Virol 1993; 67(9): 5247-52. doi: 10.1128/jvi.67.9.5247-5252.1993 PMID: 8394447
  105. Kägi D, Ledermann B, Bürki K, et al. Cytotoxicity mediated by T cells and natural killer cells is greatly impaired in perforin-deficient mice. Nature 1994; 369(6475): 31-7. doi: 10.1038/369031a0 PMID: 8164737
  106. Walsh CM, Matloubian M, Liu CC, et al. Immune function in mice lacking the perforin gene. Proc Natl Acad Sci USA 1994; 91(23): 10854-8. doi: 10.1073/pnas.91.23.10854 PMID: 7526382
  107. Müllbacher A, Hla RT, Museteanu C, Simon MM. Perforin is essential for control of ectromelia virus but not related poxviruses in mice. J Virol 1999; 73(2): 1665-7. doi: 10.1128/JVI.73.2.1665-1667.1999 PMID: 9882377
  108. Snyder HL, Yewdell JW, Bennink JR. Trimming of antigenic peptides in an early secretory compartment. J Exp Med 1994; 180(6): 2389-94. doi: 10.1084/jem.180.6.2389 PMID: 7964513
  109. Craiu A, Akopian T, Goldberg A, Rock KL. Two distinct proteolytic processes in the generation of a major histocompatibility complex class I-presented peptide. Proc Natl Acad Sci USA 1997; 94(20): 10850-5. doi: 10.1073/pnas.94.20.10850 PMID: 9380723
  110. Neefjes JJ, Momburg F, Hämmerling GJ. Selective and ATP-dependent translocation of peptides by the MHC-encoded transporter. Science 1993; 261(5122): 769-71. doi: 10.1126/science.8342042 PMID: 8342042
  111. Bukur J, Jasinski S, Seliger B. The role of classical and non-classical HLA class I antigens in human tumors. Semin Cancer Biol 2012; 22(4): 350-8. doi: 10.1016/j.semcancer.2012.03.003 PMID: 22465194
  112. York IA, Roop C, Andrews DW, Riddell SR, Graham FL, Johnson DC. A cytosolic herpes simplex virus protein inhibits antigen presentation to CD8+ T lymphocytes. Cell 1994; 77(4): 525-35. doi: 10.1016/0092-8674(94)90215-1 PMID: 8187174
  113. Røder G, Geironson L, Bressendorff I, Paulsson K. Viral proteins interfering with antigen presentation target the major histocompatibility complex class I peptide-loading complex. J Virol 2008; 82(17): 8246-52. doi: 10.1128/JVI.00207-08 PMID: 18448533
  114. Hislop AD, Ressing ME, van Leeuwen D, et al. A CD8+ T cell immune evasion protein specific to Epstein-Barr virus and its close relatives in old world primates. J Exp Med 2007; 204(8): 1863-73. doi: 10.1084/jem.20070256 PMID: 17620360
  115. Zuo J, Currin A, Griffin BD, et al. The Epstein-Barr virus G-protein-coupled receptor contributes to immune evasion by targeting MHC class I molecules for degradation. PLoS Pathog 2009; 5(1): e1000255.
  116. Abendroth A, Lin I, Slobedman B, Ploegh H, Arvin AM. Varicella-zoster virus retains major histocompatibility complex class I proteins in the Golgi compartment of infected cells. J Virol 2001; 75(10): 4878-88. doi: 10.1128/JVI.75.10.4878-4888.2001 PMID: 11312359
  117. Quinn LL, Williams LR, White C, Forrest C, Zuo J, Rowe M. The missing link in epstein-barr virus immune evasion: The BDLF3 Gene induces ubiquitination and downregulation of major histocompatibility complex class I (MHC-I) and MHC-II. J Virol 2016; 90(1): 356-67.
  118. Furman MH, Dey N, Tortorella D, Ploegh HL. The human cytomegalovirus US10 gene product delays trafficking of major histocompatibility complex class I molecules. J Virol 2002; 76(22): 11753-6. doi: 10.1128/JVI.76.22.11753-11756.2002 PMID: 12388737
  119. Wiertz EJHJ, Jones TR, Sun L, Bogyo M, Geuze HJ, Ploegh HL. The human cytomegalovirus US11 gene product dislocates MHC class I heavy chains from the endoplasmic reticulum to the cytosol. Cell 1996; 84(5): 769-79. doi: 10.1016/S0092-8674(00)81054-5 PMID: 8625414
  120. Hudson AW, Blom D, Howley PM, Ploegh HL. The ER-lumenal domain of the HHV-7 immunoevasin U21 directs class I MHC molecules to lysosomes. Traffic 2003; 4(12): 824-37. doi: 10.1046/j.1398-9219.2003.0137.x PMID: 14617346
  121. Coscoy L, Ganem D. Kaposi’s sarcoma-associated herpesvirus encodes two proteins that block cell surface display of MHC class I chains by enhancing their endocytosis. Proc Natl Acad Sci USA 2000; 97(14): 8051-6. doi: 10.1073/pnas.140129797 PMID: 10859362
  122. Stern-Ginossar N, Elefant N, Zimmermann A, et al. Host immune system gene targeting by a viral miRNA. Science 2007; 317(5836): 376-81. doi: 10.1126/science.1140956 PMID: 17641203
  123. Nachmani D, Lankry D, Wolf DG, Mandelboim O. The human cytomegalovirus microRNA miR-UL112 acts synergistically with a cellular microRNA to escape immune elimination. Nat Immunol 2010; 11(9): 806-13. doi: 10.1038/ni.1916 PMID: 20694010
  124. Esteso G, Luzón E, Sarmiento E, et al. Altered microRNA expression after infection with human cytomegalovirus leads to TIMP3 downregulation and increased shedding of metalloprotease substrates, including MICA. J Immunol 2014; 193(3): 1344-52. doi: 10.4049/jimmunol.1303441 PMID: 24973455
  125. Mylin LM, Schell TD, Roberts D, et al. Quantitation of CD8(+) T- lymphocyte responses to multiple epitopes from simian virus 40 (SV40) large T antigen in C57BL/6 mice immunized with SV40, SV40 T-antigen-transformed cells, or vaccinia virus recombinants expressing full-length T antigen or epitope minigenes. J Virol 2000; 74(15): 6922-34. doi: 10.1128/JVI.74.15.6922-6934.2000 PMID: 10888631
  126. Lo AKF, To KF, Lo KW, et al. Modulation of LMP1 protein expression by EBV-encoded microRNAs. Proc Natl Acad Sci USA 2007; 104(41): 16164-9. doi: 10.1073/pnas.0702896104 PMID: 17911266
  127. Lung RWM, Tong JHM, Sung YM, et al. Modulation of LMP2A expression by a newly identified Epstein-Barr virus-encoded microRNA miR-BART22. Neoplasia 2009; 11(11): 1174-IN17. doi: 10.1593/neo.09888 PMID: 19881953
  128. Grégoire C, Chasson L, Luci C, et al. The trafficking of natural killer cells. Immunol Rev 2007; 220(1): 169-82. doi: 10.1111/j.1600-065X.2007.00563.x PMID: 17979846
  129. Lanier LL, Ruitenberg JJ, Phillips JH. Functional and biochemical analysis of CD16 antigen on natural killer cells and granulocytes. J Immunol 1988; 141(10): 3478-85. doi: 10.4049/jimmunol.141.10.3478 PMID: 2903193
  130. Fehniger TA, Shah MH, Turner MJ, et al. Differential cytokine and chemokine gene expression by human NK cells following activation with IL-18 or IL-15 in combination with IL-12: Implications for the innate immune response. J Immunol 1999; 162(8): 4511-20. doi: 10.4049/jimmunol.162.8.4511 PMID: 10201989
  131. Orange JS, Ballas ZK. Natural killer cells in human health and disease. Clin Immunol 2006; 118(1): 1-10. doi: 10.1016/j.clim.2005.10.011 PMID: 16337194
  132. Zingoni A, Sornasse T, Cocks BG, Tanaka Y, Santoni A, Lanier LL. Cross-talk between activated human NK cells and CD4+ T cells via OX40-OX40 ligand interactions. J Immunol 2004; 173(6): 3716-24. doi: 10.4049/jimmunol.173.6.3716 PMID: 15356117
  133. Trinchieri G. Interleukin-12: A proinflammatory cytokine with immunoregulatory functions that bridge innate resistance and antigen-specific adaptive immunity. Annu Rev Immunol 1995; 13(1): 251-76. doi: 10.1146/annurev.iy.13.040195.001343 PMID: 7612223
  134. SEKIYAMA KD, YOSHIBA M, THOMSON AW. Circulating proinflammatory cytokines (IL-1upbeta, TNF-upalpha, and IL-6) and IL-1 receptor antagonist (IL-1Ra) in fulminant hepatic failure and acute hepatitis. Clin Exp Immunol 1994; 98(1): 71-7. PMID: 7923888
  135. Dinarello CA. IL-18: A TH1-inducing, proinflammatory cytokine and new member of the IL-1 family. J Allergy Clin Immunol 1999; 103(1): 11-24. doi: 10.1016/S0091-6749(99)70518-X PMID: 9893178
  136. Duvallet E, Semerano L, Assier E, Falgarone G, Boissier MC. Interleukin-23: A key cytokine in inflammatory diseases. Ann Med 2011; 43(7): 503-11. doi: 10.3109/07853890.2011.577093 PMID: 21585245
  137. Zlotnik A, Yoshie O. The chemokine superfamily revisited. Immunity 2012; 36(5): 705-16. doi: 10.1016/j.immuni.2012.05.008 PMID: 22633458
  138. Mogensen TH, Melchjorsen J, Malmgaard L, Casola A, Paludan SR. Suppression of proinflammatory cytokine expression by herpes simplex virus type 1. J Virol 2004; 78(11): 5883-90. doi: 10.1128/JVI.78.11.5883-5890.2004 PMID: 15140986
  139. Morrison TE, Mauser A, Wong A, Ting JPY, Kenney SC. Inhibition of IFN-gamma signaling by an Epstein-Barr virus immediate-early protein. Immunity 2001; 15(5): 787-99. doi: 10.1016/S1074-7613(01)00226-6 PMID: 11728340
  140. Nok-hei MW. Suppression of IFN-β production by Epstein-Barr virus lytic transactivator Zta. J Immunol 2017; 198(1_Supplement): 214-5. doi: 10.5353/th_991044040583503414
  141. Chuang HC, Lay JD, Chuang SE, Hsieh WC, Chang Y, Su IJ. Epstein-barr virus (EBV) latent membrane protein-1 down-regulates tumor necrosis factor-α (TNF-α) receptor-1 and confers resistance to TNF-α-induced apoptosis in T cells. Am J Pathol 2007; 170(5): 1607-17. doi: 10.2353/ajpath.2007.061026 PMID: 17456766
  142. Miller DM, Zhang Y, Rahill BM, Waldman WJ, Sedmak DD. Human cytomegalovirus inhibits IFN-alpha-stimulated antiviral and immunoregulatory responses by blocking multiple levels of IFN-alpha signal transduction. J Immunol 1999; 162(10): 6107-13. doi: 10.4049/jimmunol.162.10.6107 PMID: 10229853
  143. Choi H jin, Park A, Kang S, Lee TA, Ra EA. Human cytomegalovirus-encoded US9 targets MAVS and STING signaling to evade type I interferon immune responses. Nat Commun 2018; 9(1): 125. doi: 10.1038/s41467-017-02624-8
  144. Baillie J, Sahlender DA, Sinclair JH. Human cytomegalovirus infection inhibits tumor necrosis factor alpha (TNF-alpha) signaling by targeting the 55-kilodalton TNF-alpha receptor. J Virol 2003; 77(12): 7007-16. doi: 10.1128/JVI.77.12.7007-7016.2003 PMID: 12768019
  145. Herbst H, Foss HD, Samol J, et al. Frequent expression of interleukin-10 by Epstein-Barr virus-harboring tumor cells of Hodgkin’s disease. Blood 1996; 87(7): 2918-29. doi: 10.1182/blood.V87.7.2918.bloodjournal8772918 PMID: 8639912
  146. Qin Z, Kearney P, Plaisance K, Parsons CH. Pivotal advance: Kaposi’s sarcoma-associated herpesvirus (KSHV)-encoded microRNA specifically induce IL-6 and IL-10 secretion by macrophages and monocytes. J Leukoc Biol 2009; 87(1): 25-34. doi: 10.1189/jlb.0409251 PMID: 20052801
  147. Abend JR, Uldrick T, Ziegelbauer JM. Regulation of tumor necrosis factor-like weak inducer of apoptosis receptor protein (TWEAKR) expression by Kaposi’s sarcoma-associated herpesvirus microRNA prevents TWEAK-induced apoptosis and inflammatory cytokine expression. J Virol 2010; 84(23): 12139-51. doi: 10.1128/JVI.00884-10 PMID: 20844036
  148. Dölken L, Krmpotic A, Kothe S, et al. Cytomegalovirus microRNAs facilitate persistent virus infection in salivary glands. PLoS Pathog 2010; 6(10): e1001150. doi: 10.1371/journal.ppat.1001150
  149. Xia T, O’Hara A, Araujo I, et al. EBV MicroRNAs in primary lymphomas and targeting of lessigreaterCXCL-11less/igreater by ebv-mir-BHRF1-3. Cancer Res 2008; 68(5): 1436-42. doi: 10.1158/0008-5472.CAN-07-5126 PMID: 18316607
  150. Bhela S, Rouse BT. Are miRNAs critical determinants in herpes simplex virus pathogenesis? Microbes Infect 2018; 20(9-10): 461-5. doi: 10.1016/j.micinf.2017.12.007 PMID: 29287990
  151. Rupaimoole R, Slack FJ. MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov 2017; 16(3): 203-22. doi: 10.1038/nrd.2016.246 PMID: 28209991
  152. Yang H, Yang X, Wang Y, Zheng X, Zhang Y, Shao Y. Comparative analysis of the tear protein profile in herpes simplex virus type 1 epithelial keratitis. BMC Ophthalmol 2020; 20(1): 355. doi: 10.1186/s12886-020-01626-3 PMID: 32867704
  153. Grundhoff A, Sullivan CS. Virus-encoded microRNAs. Virology 2011; 411(2): 325-43. doi: 10.1016/j.virol.2011.01.002 PMID: 21277611
  154. Valverde A, Seal A, Nares S, Shukla D, Naqvi AR. Human herpesvirus-encoded MicroRNA in host-pathogen interaction. Adv Biol Regul 2021; 82: 100829. doi: 10.1016/j.jbior.2021.100829 PMID: 34560402
  155. Janssen HLA, Reesink HW, Lawitz EJ, et al. Treatment of HCV infection by targeting microRNA. N Engl J Med 2013; 368(18): 1685-94. doi: 10.1056/NEJMoa1209026 PMID: 23534542
  156. van der Ree MH, de Vree JM, Stelma F, et al. Safety, tolerability, and antiviral effect of RG-101 in patients with chronic hepatitis C: A phase 1B, double-blind, randomised controlled trial. Lancet 2017; 389(10070): 709-17. doi: 10.1016/S0140-6736(16)31715-9 PMID: 28087069
  157. Yun SJ, Jeong P, Kang HW, et al. Urinary MicroRNAs of prostate cancer: Virus-encoded hsv1-miRH18 and hsv2-miR-H9-5p could be valuable diagnostic markers. Int Neurourol J 2015; 19(2): 74-84. doi: 10.5213/inj.2015.19.2.74 PMID: 26126436
  158. McNally CJ, Ruddock MW, Moore T, McKenna DJ. Biomarkers that differentiate benign prostatic hyperplasia from prostate cancer: A literature review. Cancer Manag Res 2020; 12: 5225-41. doi: 10.2147/CMAR.S250829 PMID: 32669872
  159. Tahamtan A, Inchley CS, Marzban M, et al. The role of microRNAs in respiratory viral infection: Friend or foe? Rev Med Virol 2016; 26(6): 389-407. doi: 10.1002/rmv.1894 PMID: 27373545
  160. Wang M, Gu B, Chen X, Wang Y, Li P, Wang K. The function and therapeutic potential of epstein-barr virus-encoded MicroRNAs in cancer. Mol Ther Nucleic Acids 2019; 17: 657-68. doi: 10.1016/j.omtn.2019.07.002 PMID: 31400608
  161. Cai L, Li J, Zhang X, et al. Gold nano-particles (AuNPs) carrying anti-EBV-miR-BART7-3p inhibit growth of EBV-positive nasopharyngeal carcinoma. Oncotarget 2015; 6(10): 7838-50. doi: 10.18632/oncotarget.3046 PMID: 25691053
  162. Pan Y, Wang N, Zhou Z, et al. Circulating human cytomegalovirus-encoded HCMV-miR-US4-1 as an indicator for predicting the efficacy of IFNα treatment in chronic hepatitis B patients. Sci Rep 2016; 6(1): 23007. doi: 10.1038/srep23007 PMID: 26961899
  163. Wood AJJ, Whitley RJ, Gnann JW Jr. Acyclovir: A decade later. N Engl J Med 1992; 327(11): 782-9. doi: 10.1056/NEJM199209103271108 PMID: 1288525
  164. Elion GB. Acyclovir: Discovery, mechanism of action, and selectivity. J Med Virol 1993; 41(S1) (Suppl. 1): 2-6. doi: 10.1002/jmv.1890410503 PMID: 8245887
  165. Elion GB. Mechanism of action and selectivity of acyclovir. Am J Med 1982; 73(1): 7-13. doi: 10.1016/0002-9343(82)90055-9 PMID: 6285736
  166. Clark K, Plater L, Peggie M, Cohen P. Use of the Pharmacological Inhibitor BX795 to Study the Regulation and Physiological Roles of TBK1 and IκB Kinase ϵ: A distinct upstream kinase mediates Ser-172 phosphorylation and activation. J Biol Chem 2009; 284(21): 14136-46. doi: 10.1074/jbc.M109.000414 PMID: 19307177
  167. Jaishankar D, Yakoub AM, Yadavalli T, et al. An off-target effect of BX795 blocks herpes simplex virus type 1 infection of the eye. Sci Transl Med 2018; 10(428): eaan5861. doi: 10.1126/scitranslmed.aan5861 PMID: 29444978
  168. Cheshenko N, Trepanier JB, Stefanidou M, et al. HSV activates Akt to trigger calcium release and promote viral entry: Novel candidate target for treatment and suppression. FASEB J 2013; 27(7): 2584-99. doi: 10.1096/fj.12-220285 PMID: 23507869
  169. Chuluunbaatar U, Roller R, Feldman ME, Brown S, Shokat KM, Mohr I. Constitutive mTORC1 activation by a herpesvirus Akt surrogate stimulates mRNA translation and viral replication. Genes Dev 2010; 24(23): 2627-39. doi: 10.1101/gad.1978310 PMID: 21123650
  170. Gopinath SCB, Hayashi K, Kumar PKR. Aptamer that binds to the gD protein of herpes simplex virus 1 and efficiently inhibits viral entry. J Virol 2012; 86(12): 6732-44. doi: 10.1128/JVI.00377-12 PMID: 22514343
  171. Moore MD, Escudero-Abarca BI, Suh SH, Jaykus LA. Generation and characterization of nucleic acid aptamers targeting the capsid P domain of a human norovirus GII.4 strain. J Biotechnol 2015; 209: 41-9. doi: 10.1016/j.jbiotec.2015.06.389 PMID: 26080079
  172. Yadavalli T, Agelidis A, Jaishankar D, et al. Targeting herpes simplex virus-1 gD by a DNA aptamer can be an effective new strategy to curb viral infection. Mol Ther Nucleic Acids 2017; 9: 365-78. doi: 10.1016/j.omtn.2017.10.009 PMID: 29246315
  173. Park PJ, Antoine TE, Farooq AV, Valyi-Nagy T, Shukla D. An investigative peptide-acyclovir combination to control herpes simplex virus type 1 ocular infection. Invest Ophthalmol Vis Sci 2013; 54(9): 6373-81. doi: 10.1167/iovs.13-12832 PMID: 23989188
  174. Roehm PC, Shekarabi M, Wollebo HS, et al. Inhibition of HSV-1 replication by gene editing strategy. Sci Rep 2016; 6(1): 23146. doi: 10.1038/srep23146 PMID: 27064617
  175. van Diemen FR, Kruse EM, Hooykaas MJG, et al. CRISPR/Cas9- mediated genome editing of herpesviruses limits productive and latent infections. PLOS Pathog 2016; 12(6): e1005701.
  176. Agelidis AM, Hadigal SR, Jaishankar D, Shukla D. Viral activation of heparanase drives pathogenesis of herpes simplex virus-1. Cell Rep 2017; 20(2): 439-50. doi: 10.1016/j.celrep.2017.06.041 PMID: 28700944
  177. Courtney SM, Hay PA, Buck RT, et al. Furanyl-1,3-thiazol-2-yl and benzoxazol-5-yl acetic acid derivatives: Novel classes of heparanase inhibitor. Bioorg Med Chem Lett 2005; 15(9): 2295-9. doi: 10.1016/j.bmcl.2005.03.014 PMID: 15837312
  178. Dhanushkodi NR, Srivastava R, Coulon PGA, et al. Healing of ocular herpetic disease following treatment with an engineered FGF-1 is associated with increased corneal anti-inflammatory M2 macrophages. Front Immunol 2021; 12: 673763. doi: 10.3389/fimmu.2021.673763 PMID: 34054858
  179. Moghim S, Shabani M, Nasr Esfahani B, et al. Inhibition of herpes simplex virus type 1 replication by novel hsa-miR-7704 in vitro. Res Pharm Sci 2019; 14(2): 167-74. doi: 10.4103/1735-5362.253364 PMID: 31620193
  180. Pan D, Pesola JM, Li G, McCarron S, Coen DM. Mutations inactivating herpes simplex virus 1 MicroRNA miR-H2 do not detectably increase ICP0 gene expression in infected cultured cells or mouse trigeminal ganglia. J Virol 2017; 91(2): e02001-16. doi: 10.1128/JVI.02001-16 PMID: 27847363
  181. Flores O, Nakayama S, Whisnant AW, Javanbakht H, Cullen BR, Bloom DC. Mutational inactivation of herpes simplex virus 1 microRNAs identifies viral mRNA targets and reveals phenotypic effects in culture. J Virol 2013; 87(12): 6589-603.
  182. Bultmann H, Busse JS, Brandt CR. Modified FGF4 signal peptide inhibits entry of herpes simplex virus type 1. J Virol 2001; 75(6): 2634-45. doi: 10.1128/JVI.75.6.2634-2645.2001 PMID: 11222686
  183. Jaishankar D, Buhrman JS, Valyi-Nagy T, Gemeinhart RA, Shukla D. Extended release of an anti–heparan sulfate peptide from a contact lens suppresses corneal herpes simplex virus-1 infection. Invest Ophthalmol Vis Sci 2016; 57(1): 169-80. doi: 10.1167/iovs.15-18365 PMID: 26780322
  184. Bauer D, Alt M, Dirks M, et al. A therapeutic antiviral antibody inhibits the anterograde directed neuron-to-cell spread of herpes simplex virus and protects against ocular disease. Front Microbiol 2017; 8: 2115. doi: 10.3389/fmicb.2017.02115 PMID: 29163407

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers