The Potential of Natural Products in the Management of Cardiovascular Disease


Цитировать

Полный текст

Аннотация

Cardiovascular Disease (CVD) is one of the most prevalent diseases in the world, comprising a variety of disorders such as hypertension, heart attacks, Peripheral Vascular Disease (PVD), dyslipidemias, strokes, coronary heart disease, and cardiomyopathies. The World Health Organization (WHO) predicts that 22.2 million people will die from CVD in 2030. Conventional treatments for CVDs are often quite expensive and also have several side effects. This potentiates the use of medicinal plants, which are still a viable alternative therapy for a number of diseases, including CVD. Natural products' cardio-protective effects result from their anti-oxidative, anti-hypercholesterolemia, anti-ischemic, and platelet aggregation-inhibiting properties. The conventional therapies used to treat CVD have the potential to be explored in light of the recent increase in the popularity of natural goods and alternative medicine. Some natural products with potential in the management of cardiovascular diseases such as Allium sativum L., Ginkgo biloba, Cinchona ledgeriana, Ginseng, Commiphoramukul Digitalis lanata, Digitalis purpurea L. Murrayakoenigii, Glycyrrhiza glabra, Polygonum cuspidatum, Fenugreek, Capsicum annum, etc. are discussed in this article.

Об авторах

Harshita Singhai

Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University)

Email: info@benthamscience.net

Sunny Rathee

Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University)

Email: info@benthamscience.net

Sanjay Jain

Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University)

Email: info@benthamscience.net

Umesh Patil

Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University)

Автор, ответственный за переписку.
Email: info@benthamscience.net

Список литературы

  1. Bachheti RK. Prevention and treatment of cardiovascular diseases with plant phytochemicals: A review. Evid Based Complement Alternat Med 2022; 2022: 5741198. doi: 10.1155/2022/5741198
  2. Global status report on noncommunicable diseases 2014. World Health Organization 2014.
  3. Dziemitko S, Harasim-Symbor E, Chabowski A. How do phytocannabinoids affect cardiovascular health? An update on the most common cardiovascular diseases. Ther Adv Chronic Dis 2023; 14. doi: 10.1177/20406223221143239 PMID: 36636553
  4. Shaito A, Thuan DTB, Phu HT, et al. Herbal medicine for cardiovascular diseases: Efficacy, mechanisms, and safety. Front Pharmacol 2020; 11: 422. doi: 10.3389/fphar.2020.00422 PMID: 32317975
  5. Yadav S. A review article on current pharmacological status of cardioprotective plant. Curr Res Pharmaceut Sci 2023; 27-43.
  6. Hesari M, Mohammadi P, Khademi F, et al. Current advances in the use of nanophytomedicine therapies for human cardiovascular diseases. Int J Nanomed 2021; 16: 3293-315. doi: 10.2147/IJN.S295508 PMID: 34007178
  7. Jain S, Buttar HS, Chintameneni M, Kaur G. Prevention of cardiovascular diseases with anti-inflammatory and anti-oxidant nutraceuticals and herbal products: An overview of pre-clinical and clinical studies. Recent Pat Inflamm Allergy Drug Discov 2018; 12(2): 145-57. doi: 10.2174/1872213X12666180815144803 PMID: 30109827
  8. Bress AP, Colantonio LD, Cooper RS, et al. Potential cardiovascular disease events prevented with adoption of the 2017 American College of Cardiology/American Heart Association Blood Pressure Guideline. Circulation 2019; 139(1): 24-36. doi: 10.1161/CIRCULATIONAHA.118.035640 PMID: 30586736
  9. Chang X. Natural drugs as a treatment strategy for cardiovascular disease through the regulation of oxidative stress. Oxid Med Cell Longev 2020; 2020: 5430407. doi: 10.1155/2020/5430407
  10. Nyakudya TT, Tshabalala T, Dangarembizi R, Erlwanger KH, Ndhlala AR. The potential therapeutic value of medicinal plants in the management of metabolic disorders. Molecules 2020; 25(11): 2669. doi: 10.3390/molecules25112669 PMID: 32526850
  11. Shang A, Cao SY, Xu XY, et al. Bioactive compounds and biological functions of garlic (Allium sativum L.). Foods 2019; 8(7): 246. doi: 10.3390/foods8070246 PMID: 31284512
  12. Imaizumi VM, Laurindo LF, Manzan B, et al. Garlic: A systematic review of the effects on cardiovascular diseases. Crit Rev Food Sci Nutr 2023; 63(24): 6797-819. doi: 10.1080/10408398.2022.2043821 PMID: 35193446
  13. Altaf R. Sources and possible mechanisms of action of important phytoconstituents with cardiovascular properties. Afr J Pharm Pharmacol 2012; 6(9): 563-80.
  14. Daiber A, Xia N, Steven S, et al. New therapeutic implications of endothelial nitric oxide synthase (eNOS) function/dysfunction in cardiovascular disease. Int J Mol Sci 2019; 20(1): 187. doi: 10.3390/ijms20010187 PMID: 30621010
  15. Majewski M. Allium sativum: Facts and myths regarding human health. Rocz Panstw Zakl Hig 2014; 65(1): 1-8. PMID: 24964572
  16. Shouk R, Abdou A, Shetty K, Sarkar D, Eid AH. Mechanisms underlying the antihypertensive effects of garlic bioactives. Nutr Res 2014; 34(2): 106-15. doi: 10.1016/j.nutres.2013.12.005 PMID: 24461311
  17. Entezari MH, Aslani N, Askari G, Maghsoudi Z, Maracy M. Effect of garlic and lemon juice mixture on lipid profile and some cardiovascular risk factors in people 30-60 years old with moderate hyperlipidaemia: A randomized clinical trial. Int J Prev Med 2016; 7(1): 95. doi: 10.4103/2008-7802.187248 PMID: 27563431
  18. Lawson L, Hunsaker S. Allicin bioavailability and bioequivalence from garlic supplements and garlic foods. Nutrients 2018; 10(7): 812. doi: 10.3390/nu10070812 PMID: 29937536
  19. Yang Y, Li Y, Wang J, et al. Systematic investigation of Ginkgo biloba leaves for treating cardio-cerebrovascular diseases in an animal model. ACS Chem Biol 2017; 12(5): 1363-72. doi: 10.1021/acschembio.6b00762 PMID: 28333443
  20. Mesquita TRR, de Jesus ICG, dos Santos JF, et al. Cardioprotective action of Ginkgo biloba extract against sustained β-adrenergic stimulation occurs via activation of M2/NO pathway. Front Pharmacol 2017; 8: 220. doi: 10.3389/fphar.2017.00220 PMID: 28553225
  21. Hong JM, Shin DH, Lim YA, Lee JS, Joo IS. Ticlopidine with Ginkgo biloba extract: A feasible combination for patients with acute cerebral ischemia. Thromb Res 2013; 131(4): e147-53. doi: 10.1016/j.thromres.2013.01.026 PMID: 23477707
  22. Silva EAP, Carvalho JS, Guimarães AG, et al. The use of terpenes and derivatives as a new perspective for cardiovascular disease treatment: A patent review (2008-2018). Expert Opin Ther Pat 2019; 29(1): 43-53. doi: 10.1080/13543776.2019.1558211 PMID: 30583706
  23. Song CE. An overview of cinchona alkaloids in chemistry. In: Cinchona Alkaloids in Synthesis and Catalysis: Ligands, Immobilization and Organocatalysis. Wiley 2009. doi: 10.1002/9783527628179.ch1
  24. Mazzanti A, Tenuta E, Marino M, et al. Efficacy and limitations of quinidine in patients with Brugada syndrome. Circ Arrhythm Electrophysiol 2019; 12(5): e007143. doi: 10.1161/CIRCEP.118.007143
  25. Anwar MA, Al Disi SS, Eid AH. Anti-hypertensive herbs and their mechanisms of action: Part II. Front Pharmacol 2016; 7: 50. doi: 10.3389/fphar.2016.00050 PMID: 27014064
  26. Kim JH. Cardiovascular diseases and Panax ginseng: A review on molecular mechanisms and medical applications. J Ginseng Res 2012; 36(1): 16-26. doi: 10.5142/jgr.2012.36.1.16 PMID: 23717100
  27. Deng J, Wang YW, Chen WM, Wu Q, Huang XN. Role of nitric oxide in ginsenoside Rg(1)-induced protection against left ventricular hypertrophy produced by abdominal aorta coarctation in rats. Biol Pharm Bull 2010; 33(4): 631-5. doi: 10.1248/bpb.33.631 PMID: 20410597
  28. Shahrajabian MH. A review of three ancient Chinese herbs, goji berry, ginger and ginseng in pharmacological and modern science. J Biol Environm Sci 2019; 13(39): 161-71.
  29. Lee CH, Kim JH. A review on the medicinal potentials of ginseng and ginsenosides on cardiovascular diseases. J Ginseng Res 2014; 38(3): 161-6. doi: 10.1016/j.jgr.2014.03.001 PMID: 25378989
  30. Sarup P, Bala S, Kamboj S. Pharmacology and phytochemistry of oleogum resin of Commiphora wightii (Guggulu). Scientifica 2015; 2015
  31. Chander R, Rizvi F, Khanna AK, Pratap R. Cardioprotective activity of synthetic guggulsterone (E and Z-isomers) in isoproterenol induced myocardial ischemia in rats: A comparative study. Indian J Clin Biochem 2003; 18(2): 71-9. doi: 10.1007/BF02867370 PMID: 23105395
  32. Mota AH. A review of medicinal plants used in therapy of cardiovascular diseases. Int J Pharmacogn Phytochem Res 2016; 8: 572-91.
  33. Dal Cero M, Saller R, Leonti M, Weckerle CS. Trends of medicinal plant use over the last 2000 years in central Europe. Plants 2022; 12(1): 135. doi: 10.3390/plants12010135 PMID: 36616265
  34. Reddy BA. Digitalis therapy in patients with congestive heart failure. Int J Pharm Sci Rev Res 2010; 3(2): 90-5.
  35. Abeysinghe D. Nutritive importance and therapeutics uses of three different varieties (Murraya koenigii, Micromelum minutum, and Clausena indica) of curry leaves: An updated review. Evid-Based Complemen Altern Med 2021; 2021.
  36. Gopal R, Ambiha R, Sivasubramanian N, et al. Effect of curry leaves in lowering blood pressure among hypertensive Indian patients. Bioinformation 2023; 19(10): 1020-4. doi: 10.6026/973206300191020 PMID: 37969660
  37. Wahab S, Annadurai S, Abullais SS, et al. Glycyrrhiza glabra (Licorice): A comprehensive review on its phytochemistry, biological activities, clinical evidence and toxicology. Plants 2021; 10(12): 2751. doi: 10.3390/plants10122751 PMID: 34961221
  38. Markina YV, Kirichenko TV, Markin AM, et al. Atheroprotective effects of Glycyrrhiza glabra L. Molecules 2022; 27(15): 4697. doi: 10.3390/molecules27154697 PMID: 35897875
  39. Pourbagher-Shahri AM, Farkhondeh T, Ashrafizadeh M, Talebi M, Samargahndian S. Curcumin and cardiovascular diseases: Focus on cellular targets and cascades. Biomed Pharmacother 2021; 136: 111214. doi: 10.1016/j.biopha.2020.111214 PMID: 33450488
  40. Kocaadam B, Şanlier N. Curcumin, an active component of turmeric (Curcuma longa), and its effects on health. Crit Rev Food Sci Nutr 2017; 57(13): 2889-95. doi: 10.1080/10408398.2015.1077195 PMID: 26528921
  41. Karimi A, Moini Jazani A, Darzi M, Doost Azgomi RN, Vajdi M. Effects of curcumin on blood pressure: A systematic review and dose-response meta-analysis. Nutr Metab Cardiovasc Dis 2023; 33(11): 2089-101. doi: 10.1016/j.numecd.2023.07.003 PMID: 37567790
  42. Du J, Sun LN, Xing WW, et al. Lipid-lowering effects of polydatin from Polygonum cuspidatum in hyperlipidemic hamsters. Phytomedicine 2009; 16(6-7): 652-8. doi: 10.1016/j.phymed.2008.10.001 PMID: 19106037
  43. Ke J, Li MT, Xu S, Ma J, Liu MY, Han Y. Advances for pharmacological activities of Polygonum cuspidatum - A review. Pharm Biol 2023; 61(1): 177-88. doi: 10.1080/13880209.2022.2158349 PMID: 36620922
  44. Fogacci F, Tocci G, Presta V, Fratter A, Borghi C, Cicero AFG. Effect of resveratrol on blood pressure: A systematic review and meta-analysis of randomized, controlled, clinical trials. Crit Rev Food Sci Nutr 2019; 59(10): 1605-18. doi: 10.1080/10408398.2017.1422480 PMID: 29359958
  45. dos Santos Baião D, Vieira Teixeira da Silva D, Margaret Flosi Paschoalin V. A narrative review on dietary strategies to provide nitric oxide as a non-drug cardiovascular disease therapy: Beetroot formulations-A smart nutritional intervention. Foods 2021; 10(4): 859. doi: 10.3390/foods10040859 PMID: 33920855
  46. Chauhan S, Chamoli K, Sharma S. Beetroot-A review paper. J Pharmacogn Phytochem 2020; 9(2S): 424-7.
  47. Silva DVT, Baião DS, Ferreira VF, Paschoalin VMF. Betanin as a multipath oxidative stress and inflammation modulator: A beetroot pigment with protective effects on cardiovascular disease pathogenesis. Crit Rev Food Sci Nutr 2022; 62(2): 539-54. doi: 10.1080/10408398.2020.1822277 PMID: 32997545
  48. Coles LT, Clifton PM. Effect of beetroot juice on lowering blood pressure in free-living, disease-free adults: A randomized, placebo-controlled trial. Nutr J 2012; 11(1): 106. doi: 10.1186/1475-2891-11-106 PMID: 23231777
  49. Bhalla A. Native medicines and cardiovascular toxicity. In: Heart and toxins. Elsevier 2015; pp. 175-202. doi: 10.1016/B978-0-12-416595-3.00006-2
  50. Katare C, Saxena S, Agrawal S, et al. Lipid-lowering and antioxidant functions of bottle gourd (Lagenaria siceraria) extract in human dyslipidemia. J Evid Based Complementary Altern Med 2014; 19(2): 112-8. doi: 10.1177/2156587214524229 PMID: 24647091
  51. Upaganlawar A, Balaraman R. Cardioprotective effects of Lagenaria siceraria fruit juice on isoproterenol-induced myocardial infarction in wistar rats: A biochemical and histoarchitecture study. J Young Pharm 2011; 3(4): 297-303. doi: 10.4103/0975-1483.90241 PMID: 22224036
  52. Syed QA, Rashid Z, Ahmad MH, et al. Nutritional and therapeutic properties of fenugreek (Trigonella foenum-graecum): A review. Int J Food Prop 2020; 23(1): 1777-91. doi: 10.1080/10942912.2020.1825482
  53. Jain PG. A comprehensive review on plant derived natural products for diabetes and its complication as nephropathy. J Drug Deliv Ther 2019; 9(2-s): 625-33.
  54. Nikolaeva M, Johnstone M. Nitric oxide, its role in diabetes mellitus and methods to improve endothelial function. In: Diabetes and Cardiovascular Disease. Springer 2023. doi: 10.1007/978-3-031-13177-6_7
  55. Visuvanathan T, Than LTL, Stanslas J, Chew SY, Vellasamy S. Revisiting Trigonella foenum-graecum L.: Pharmacology and therapeutic potentialities. Plants 2022; 11(11): 1450. doi: 10.3390/plants11111450 PMID: 35684222
  56. Heshmat-Ghahdarijani K, Mashayekhiasl N, Amerizadeh A, Teimouri Jervekani Z, Sadeghi M. Effect of fenugreek consumption on serum lipid profile: A systematic review and meta‐analysis. Phytother Res 2020; 34(9): 2230-45. doi: 10.1002/ptr.6690 PMID: 32385866
  57. Askarpour M, Alami F, Campbell MS, Venkatakrishnan K, Hadi A, Ghaedi E. Effect of fenugreek supplementation on blood lipids and body weight: A systematic review and meta-analysis of randomized controlled trials. J Ethnopharmacol 2020; 253: 112538. doi: 10.1016/j.jep.2019.112538 PMID: 32087319
  58. Iriti M, Vitalini S, Fico G, Faoro F. Neuroprotective herbs and foods from different traditional medicines and diets. Molecules 2010; 15(5): 3517-55. doi: 10.3390/molecules15053517 PMID: 20657497
  59. Stompor-Gorący M. The health benefits of emodin, a natural anthraquinone derived from rhubarb-A summary update. Int J Mol Sci 2021; 22(17): 9522. doi: 10.3390/ijms22179522 PMID: 34502424
  60. Catalfamo LM, Marrone G, Basilicata M, et al. The utility of Capsicum annuum L. in internal medicine and in dentistry: A comprehensive review. Int J Environ Res Public Health 2022; 19(18): 11187. doi: 10.3390/ijerph191811187 PMID: 36141454
  61. Eghbali S. Therapeutic effects of Punica granatum (pomegranate): An updated review of clinical trials. J Nutrit Metabol 2021.
  62. Singh J, Kaur HP, Verma A, et al. Pomegranate peel phytochemistry, pharmacological properties, methods of extraction, and its application: A comprehensive review. ACS Omega 2023; 8(39): 35452-69. doi: 10.1021/acsomega.3c02586 PMID: 37810640
  63. Rababa’h AM, Alzoubi MA. Origanum majorana L. extract protects against isoproterenol-induced cardiotoxicity in rats. Cardiovasc Toxicol 2021; 21(7): 543-52. doi: 10.1007/s12012-021-09645-2 PMID: 33786740
  64. Karakol P, Kapi E. Use of selected antioxidant-rich spices and herbs in foods. In: Antioxidants-Benefits, Sources, Mechanisms of Action. intechopen 2021. doi: 10.5772/intechopen.96136
  65. Wang X, Yang S, Li Y, Jin X, Lu J, Wu M. Role of emodin in atherosclerosis and other cardiovascular diseases: Pharmacological effects, mechanisms, and potential therapeutic target as a phytochemical. Biomed Pharmacother 2023; 161: 114539. doi: 10.1016/j.biopha.2023.114539 PMID: 36933375
  66. Dwivedi S, Chopra D. Revisiting Terminalia arjuna-An ancient cardiovascular drug. J Tradit Complement Med 2014; 4(4): 224-31. doi: 10.4103/2225-4110.139103 PMID: 25379463
  67. Kumar V, Sharma N, Orfali R, et al. Multitarget potential of phytochemicals from traditional medicinal tree, Terminalia arjuna (roxb. ex dc.) wight & arnot as potential medicaments for cardiovascular disease: An in-silico approach. Molecules 2023; 28(3): 1046. doi: 10.3390/molecules28031046 PMID: 36770716
  68. Dai N, Zhao F, Fang M, Pu F, Kong L, Liu J. Gynostemma pentaphyllum for dyslipidemia: A systematic review of randomized controlled trials. Front Pharmacol 2022; 13: 917521. doi: 10.3389/fphar.2022.917521 PMID: 36091752
  69. Razavi B-M, Hosseinzadeh H. Cardiovascular effects of saffron and its active constituents. In: Saffron. Elsevier 2020; pp. 451-60. doi: 10.1016/B978-0-12-818638-1.00030-7
  70. Kamalipour M, Akhondzadeh S. Cardiovascular effects of saffron: An evidence-based review. J Tehran Univ Heart Cent 2011; 6(2): 59-61. PMID: 23074606
  71. Anaeigoudari F, Anaeigoudari A, Kheirkhah-Vakilabad A. A review of therapeutic impacts of saffron (Crocus sativus L.) and its constituents. Physiol Rep 2023; 11(15): e15785. doi: 10.14814/phy2.15785 PMID: 37537722
  72. Ellis LR, Zulfiqar S, Holmes M, Marshall L, Dye L, Boesch C. A systematic review and meta-analysis of the effects of Hibiscus sabdariffa on blood pressure and cardiometabolic markers. Nutr Rev 2022; 80(6): 1723-37. doi: 10.1093/nutrit/nuab104 PMID: 34927694
  73. Sapian S, Ibrahim Mze AA, Jubaidi FF, et al. Therapeutic potential of Hibiscus sabdariffa Linn. in attenuating cardiovascular risk factors. Pharmaceuticals 2023; 16(6): 807. doi: 10.3390/ph16060807 PMID: 37375755
  74. Tiwari M, Barooah MS. A comprehensive review on the ethno-medicinal and pharmacological properties of Terminalia chebula fruit. Phytochem Rev 2023; 1-21. doi: 10.1007/s11101-023-09878-9
  75. Sultan MT, Anwar MJ, Imran M, et al. Phytochemical profile and pro-healthy properties of Terminalia chebula: A comprehensive review. Int J Food Prop 2023; 26(1): 526-51. doi: 10.1080/10942912.2023.2166951

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2024