2,5-Diketopiperazines (DKPs): Promising Scaffolds for Anticancer Agents


Cite item

Full Text

Abstract

2,5-Diketopiperazine (2,5-DKP) derivatives represent a family of secondary metabolites widely produced by bacteria, fungi, plants, animals, and marine organisms. Many natural products with DKP scaffolds exhibited various pharmacological activities such as antiviral, antifungal, antibacterial, and antitumor. 2,5-DKPs are recognized as privileged structures in medicinal chemistry, and compounds that incorporate the 2,5-DKP scaffold have been extensively investigated for their anticancer properties. This review is a thorough update on the anti-cancer activity of natural and synthesized 2,5-DKPs from 1997 to 2022. We have explored various aspects of 2,5-DKPs modifications and summarized their structure-activity relationships (SARs) to gain insight into their anticancer activities. We have also highlighted the novel approaches to enhance the specificity and pharmacokinetics of 2,5-DKP-based anticancer agents.

About the authors

Shaimaa Goher

Chemistry Department, Faculty of Science, Benha University

Email: info@benthamscience.net

Wessam Abdrabo

Chemistry Department, Faculty of Science, Benha University

Email: info@benthamscience.net

Giri Veerakanellore

Center for Clinical Pharmacology, Washington University School of Medicine and University of Health Sciences and Pharmacy

Email: info@benthamscience.net

Bahaa Elgendy

Chemistry Department, Faculty of Science, Benha University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Borthwick AD. 2,5-Diketopiperazines: Synthesis, reactions, medicinal chemistry, and bioactive natural products. Chem Rev 2012; 112(7): 3641-716. doi: 10.1021/cr200398y PMID: 22575049
  2. Huang R, Zhou X, Xu T, Yang X, Liu Y. Diketopiperazines from marine organisms. Chem Biodivers 2010; 7(12): 2809-29. doi: 10.1002/cbdv.200900211 PMID: 21161995
  3. Martins MB, Carvalho I. Diketopiperazines: Biological activity and synthesis. Tetrahedron 2007; 63(40): 9923-32. doi: 10.1016/j.tet.2007.04.105
  4. Greve H, Mohamed IE, Pontius A, Kehraus S, Gross H, König GM. Fungal metabolites: Structural diversity as incentive for anticancer drug development. Phytochem Rev 2010; 9(4): 537-45. doi: 10.1007/s11101-010-9198-5
  5. Mahar KM, Enslin MB, Gress A, Amrine-Madsen H, Cooper M. Single‐ and multiple‐day dosing studies to investigate high‐dose pharmacokinetics of epelsiban and its metabolite, gsk2395448, in healthy female volunteers. Clin Pharmacol Drug Dev 2018; 7(1): 33-43. doi: 10.1002/cpdd.363 PMID: 28556598
  6. Grundmann A, Li SM. Overproduction, purification and characterization of FtmPT1, a brevianamide F prenyltransferase from Aspergillus fumigatus. Microbiology (Reading) 2005; 151(7): 2199-207. doi: 10.1099/mic.0.27962-0 PMID: 16000710
  7. Gresser U, Gleiter CH. Erectile dysfunction: Comparison of efficacy and side effects of the PDE-5 inhibitors sildenafil, vardenafil and tadalafil-review of the literature. Eur J Med Res 2002; 7(10): 435-46. PMID: 12435622
  8. Dinsmore CJ, Beshore DC. Recent advances in the synthesis of diketopiperazines. Tetrahedron 2002; 58(17): 3297-312. doi: 10.1016/S0040-4020(02)00239-9
  9. Gong X, Yang XX, Wang DX. A new route for the synthesis of N-substituted diketopiperazine derivatives. Chin Chem Lett 2006; 17(4): 469.
  10. Nicholson B, Lloyd GK, Miller BR, et al. NPI-2358 is a tubulin-depolymerizing agent: In-vitro evidence for activity as a tumor vascular-disrupting agent. Anticancer Drugs 2006; 17(1): 25-31. doi: 10.1097/01.cad.0000182745.01612.8a PMID: 16317287
  11. Bertelsen LB, Shen YY, Nielsen T, et al. Vascular effects of plinabulin (NPI-2358) and the influence on tumour response when given alone or combined with radiation. Int J Radiat Biol 2011; 87(11): 1126-34. doi: 10.3109/09553002.2011.605418 PMID: 21815749
  12. Poster DS, Penta J, Marsoni S, Bruno S, Macdonald JS. Bis-diketopiperazine derivatives in clinical oncology: ICRF-159. Cancer Clin Trials 1980; 3(4): 315-20. PMID: 7000389
  13. Chen X, Chen X, Steimbach RR, et al. Novel 2, 5-diketopiperazine derivatives as potent selective histone deacetylase 6 inhibitors: Rational design, synthesis and antiproliferative activity. Eur J Med Chem 2020; 187: 111950. doi: 10.1016/j.ejmech.2019.111950 PMID: 31865013
  14. Gaulton A, Hersey A, Nowotka M, et al. The ChEMBL database in 2017. Nucleic Acids Res 2017; 45(D1): D945-54. doi: 10.1093/nar/gkw1074 PMID: 27899562
  15. Davies M, Nowotka M, Papadatos G, et al. ChEMBL web services: Streamlining access to drug discovery data and utilities. Nucleic Acids Res 2015; 43(W1): W612-20. doi: 10.1093/nar/gkv352 PMID: 25883136
  16. McKinney W. Data Structures for Statistical Computing in Python Proc 9th Python Sci Con 1: 56-61. doi: 10.25080/Majora-92bf1922-00a
  17. Harris CR, Millman KJ, van der Walt SJ, et al. Array programming with NumPy. Nature 2020; 585(7825): 357-62. doi: 10.1038/s41586-020-2649-2 PMID: 32939066
  18. Hunter JD. Matplotlib: A 2D graphics environment. Comput Sci Eng 2007; 9(3): 90-5. doi: 10.1109/MCSE.2007.55
  19. Waskom M. Seaborn: Statistical data visualization. J Open Source Softw 2021; 6(60): 3021. doi: 10.21105/joss.03021
  20. van Rossum G. Python tutorial, technical report CS-R9526. Cent Voor Wiskd En Inform 1995.
  21. Kluyver T, Ragan-Kelley B, Pérez F, et al. Jupyter Notebooks-a publishing format for reproducible computational workflows, Position. Power Acad Publ Play Agents Agendas - Proc 20th Int Conf Electron Publ ELPUB 2016; 87-90. doi: 10.3233/978-1-61499-649-1-87
  22. Zhang Q, Li S, Chen Y, et al. New diketopiperazine derivatives from a deep-sea-derived Nocardiopsis alba SCSIO 03039. J Antibiot 2013; 66(1): 31-6. doi: 10.1038/ja.2012.88 PMID: 23093033
  23. Hartung A, Seufert F, Berges C, Gessner V, Holzgrabe U. One-pot Ugi/Aza-Michael synthesis of highly substituted 2,5-diketopiperazines with anti-proliferative properties. Molecules 2012; 17(12): 14685-99. doi: 10.3390/molecules171214685 PMID: 23519247
  24. Purushotham M, Paul B. Iodinated diketopiperazines: Synthesis and biological evaluation of iodinated analogues of cyclo(L‐Tyrosine‐L‐Tyrosine) Peptides. ChemistrySelect 2022; 7(16): e202201120. doi: 10.1002/slct.202201120
  25. Kanoh K, Kohno S, Asari T, et al. (−)-Phenylahistin: A new mammalian cell cycle inhibitor produced by Aspergillus ustus. Bioorg Med Chem Lett 1997; 7(22): 2847-52. doi: 10.1016/S0960-894X(97)10104-4
  26. Kanoh K, Kohno S, Katada J, Takahashi J, Uno I. (-)-Phenylahistin arrests cells in mitosis by inhibiting tubulin polymerization. J Antibiot 1999; 52(2): 134-41. doi: 10.7164/antibiotics.52.134 PMID: 10344567
  27. Tian Z, Chu Y, Wang H, Zhong L, Deng M, Li W. Biological activity and interaction mechanism of the diketopiperazine derivatives as tubulin polymerization inhibitors. RSC Advances 2018; 8(2): 1055-64. doi: 10.1039/C7RA12173C PMID: 35538960
  28. Ding Z, Li F, Zhong C, et al. Structure-based design and synthesis of novel furan-diketopiperazine-type derivatives as potent microtubule inhibitors for treating cancer. Bioorg Med Chem 2020; 28(10): 115435. doi: 10.1016/j.bmc.2020.115435 PMID: 32278711
  29. Singh AV, Bandi M, Raje N, et al. A novel vascular disrupting agent plinabulin triggers JNK-mediated apoptosis and inhibits angiogenesis in multiple myeloma cells. Blood 2011; 117(21): 5692-700. doi: 10.1182/blood-2010-12-323857 PMID: 21454451
  30. Yamazaki Y, Sumikura M, Masuda Y, et al. Synthesis and structure-activity relationships of benzophenone-bearing diketopiperazine-type anti-microtubule agents. Bioorg Med Chem 2012; 20(14): 4279-89. doi: 10.1016/j.bmc.2012.05.059 PMID: 22727370
  31. Honda-Uezono A, Kaida A, Michi Y, et al. Unusual expression of red fluorescence at M phase induced by anti-microtubule agents in HeLa cells expressing the fluorescent ubiquitination-based cell cycle indicator (Fucci). Biochem Biophys Res Commun 2012; 428(2): 224-9. doi: 10.1016/j.bbrc.2012.10.014 PMID: 23063846
  32. Fu Z, Hou Y, Ji C, et al. Design, synthesis and biological evaluation of anti-pancreatic cancer activity of plinabulin derivatives based on the co-crystal structure. Bioorg Med Chem 2018; 26(8): 2061-72. doi: 10.1016/j.bmc.2018.03.005 PMID: 29571653
  33. Ma M, Zhao J, Cheng H, et al. In vitro and in vivo pharmacokinetic and pharmacodynamic study of MBRI-001, a deuterium-substituted plinabulin derivative as a potent anti-cancer agent. Bioorg Med Chem 2018; 26(16): 4687-92. doi: 10.1016/j.bmc.2018.08.009 PMID: 30119994
  34. Ding Z, Cheng H, Wang S, et al. Development of MBRI-001, a deuterium-substituted plinabulin derivative as a potent anti-cancer agent. Bioorg Med Chem Lett 2017; 27(6): 1416-9. doi: 10.1016/j.bmcl.2017.01.096 PMID: 28228362
  35. Yamazaki Y, Tanaka K, Nicholson B, et al. Synthesis and structure-activity relationship study of antimicrotubule agents phenylahistin derivatives with a didehydropiperazine-2,5-dione structure. J Med Chem 2012; 55(3): 1056-71. doi: 10.1021/jm2009088 PMID: 22185476
  36. Deng M, Li L, Zhao J, Yuan S, Li W. Antitumor activity of the microtubule inhibitor MBRI-001 against human hepatocellular carcinoma as monotherapy or in combination with sorafenib. Cancer Chemother Pharmacol 2018; 81(5): 853-62. doi: 10.1007/s00280-018-3547-2 PMID: 29532153
  37. Wang Y, Zhang H, Gigant B, et al. Structures of a diverse set of colchicine binding site inhibitors in complex with tubulin provide a rationale for drug discovery. FEBS J 2016; 283(1): 102-11. doi: 10.1111/febs.13555 PMID: 26462166
  38. Chinh PT, Tham PT, Quynh DH, et al. Synthesis and cytotoxic activity of several novel n-alkyl-plinabulin derivatives with aryl group moieties. Nat Prod Commun 2021; 16(4): 1934578X2110100. doi: 10.1177/1934578X211010040
  39. Sodeoka M, Dodo K, Teng Y, et al. Synthesis and biological activities of chaetocin and its derivatives. Pure Appl Chem 2012; 84(6): 1369-78. doi: 10.1351/PAC-CON-11-10-31
  40. Gardiner DM, Waring P, Howlett BJ. The epipolythiodioxopiperazine (ETP) class of fungal toxins: Distribution, mode of action, functions and biosynthesis. Microbiology 2005; 151(4): 1021-32. doi: 10.1099/mic.0.27847-0 PMID: 15817772
  41. Waring P, Eichner RD, Müllbacher A. The chemistry and biology of the immunomodulating agent gliotoxin and related epipolythiodioxopiperazines. Med Res Rev 1988; 8(4): 499-524. doi: 10.1002/med.2610080404 PMID: 2461498
  42. Hauser D, Weber HP, Sigg HP. Isolierung und strukturaufklärung von chaetocin. Helv Chim Acta 1970; 53(5): 1061-73. doi: 10.1002/hlca.19700530521 PMID: 5448218
  43. Boyer N, Morrison KC, Kim J, Hergenrother PJ, Movassaghi M. Synthesis and anticancer activity of epipolythiodiketopiperazine alkaloids. Chem Sci 2013; 4(4): 1646-57. doi: 10.1039/c3sc50174d PMID: 23914293
  44. Tibodeau JD, Benson LM, Isham CR, Owen WG, Bible KC. The anticancer agent chaetocin is a competitive substrate and inhibitor of thioredoxin reductase. Antioxid Redox Signal 2009; 11(5): 1097-106. doi: 10.1089/ars.2008.2318 PMID: 18999987
  45. Isham CR, Tibodeau JD, Jin W, Xu R, Timm MM, Bible KC. Chaetocin: A promising new antimyeloma agent with in vitro and in vivo activity mediated via imposition of oxidative stress. Blood 2007; 109(6): 2579-88. doi: 10.1182/blood-2006-07-027326 PMID: 17090648
  46. Lai Y-S, Chen J-Y, Tsai H-J, Chen T-Y, Hung W-C. The SUV39H1 inhibitor chaetocin induces differentiation and shows synergistic cytotoxicity with other epigenetic drugs in acute myeloid leukemia cells. Blood Cancer J 2015; 5(5): e313. doi: 10.1038/bcj.2015.37 PMID: 25978433
  47. Song X, Zhao Z, Qi X, et al. Identification of epipolythiodioxopiperazines HDN-1 and chaetocin as novel inhibitor of heat shock protein 90. Oncotarget 2015; 6(7): 5263-74. doi: 10.18632/oncotarget.3029 PMID: 25742791
  48. Lee MC, Kuo YY, Chou WC, Hou HA, Hsiao M, Tien HF. Gfi-1 is the transcriptional repressor of SOCS1 in acute myeloid leukemia cells. J Leukoc Biol 2013; 95(1): 105-15. doi: 10.1189/jlb.0912475 PMID: 24018353
  49. Tran HTT, Kim HN, Lee IK, et al. Improved therapeutic effect against leukemia by a combination of the histone methyltransferase inhibitor chaetocin and the histone deacetylase inhibitor trichostatin A. J Korean Med Sci 2013; 28(2): 237-46. doi: 10.3346/jkms.2013.28.2.237 PMID: 23400519
  50. Jung H-J, Seo I, Casciello F, et al. The anticancer effect of chaetocin is enhanced by inhibition of autophagy. Cell Death Dis 2016; 7(2): e2098-8. doi: 10.1038/cddis.2016.15 PMID: 26890137
  51. Han X, Han Y, Zheng Y, et al. Chaetocin induces apoptosis in human melanoma cells through the generation of reactive oxygen species and the intrinsic mitochondrial pathway, and exerts its anti-tumor activity in vivo. PLoS One 2017; 12(4): e0175950. doi: 10.1371/journal.pone.0175950 PMID: 28419143
  52. Teng Y, Iuchi K, Iwasa E, et al. Unnatural enantiomer of chaetocin shows strong apoptosis-inducing activity through caspase-8/caspase-3 activation. Bioorg Med Chem Lett 2010; 20(17): 5085-8. doi: 10.1016/j.bmcl.2010.07.032 PMID: 20675131
  53. Isham CR, Tibodeau JD, Bossou AR, Merchan JR, Bible KC. The anticancer effects of chaetocin are independent of programmed cell death and hypoxia, and are associated with inhibition of endothelial cell proliferation. Br J Cancer 2012; 106(2): 314-23. doi: 10.1038/bjc.2011.522 PMID: 22187030
  54. Fujishiro S, Dodo K, Iwasa E, et al. Epidithiodiketopiperazine as a pharmacophore for protein lysine methyltransferase G9a inhibitors: Reducing cytotoxicity by structural simplification. Bioorg Med Chem Lett 2013; 23(3): 733-6. doi: 10.1016/j.bmcl.2012.11.087 PMID: 23266120
  55. Du L, Robles AJ, King JB, Mooberry SL, Cichewicz RH. Cytotoxic dimeric epipolythiodiketopiperazines from the ascomycetous fungus Preussia typharum. J Nat Prod 2014; 77(6): 1459-66. doi: 10.1021/np5002253 PMID: 24893224
  56. Takahashi C, Minoura K, Yamada T, et al. Potent cytotoxic metabolites from a Leptosphaeria species. Structure determination and conformational analysis. Tetrahedron 1995; 51(12): 3483-98. doi: 10.1016/0040-4020(95)00102-E
  57. Yanagihara M, Sasaki-Takahashi N, Sugahara T, et al. Leptosins isolated from marine fungus Leptoshaeria species inhibit DNA topoisomerases I and/or II and induce apoptosis by inactivation of Akt/protein kinase B. Cancer Sci 2005; 96(11): 816-24. doi: 10.1111/j.1349-7006.2005.00117.x PMID: 16271076
  58. Minato H, Matsumoto M, Katayama T, Verticillin A. Verticillin A, a new antibiotic from Verticillium sp. J Chem Soc D 1971; 44-45(1): 44. doi: 10.1039/c29710000044
  59. Minato H, Matsumoto M, Katayama T. Studies on the metabolites of Verticillium sp. structures of verticillins A, B, and C. J Chem Soc, Perkin Trans 1 1973; 17: 1819-25. doi: 10.1039/p19730001819 PMID: 4796650
  60. Katagiri K, Sato K, Hayakawa S, Matsushima T, Minato H. Verticillin A, a new antibiotic from Verticillium sp. J Antibiot 1970; 23(8): 420-2. doi: 10.7164/antibiotics.23.420 PMID: 5465723
  61. Paschall AV, Liu K. Epigenetic regulation of apoptosis and cell cycle regulatory genes in human colon carcinoma cells. Genom Data 2015; 5: 189-91. doi: 10.1016/j.gdata.2015.05.043 PMID: 26309812
  62. Chu M, Truumees I, Rothofsky ML, et al. Inhibition of c-fos proto-oncogene induction by Sch 52900 and Sch 52901, novel diketopiperazine produced by Gliocladium sp. J Antibiot 1995; 48(12): 1440-5. doi: 10.7164/antibiotics.48.1440 PMID: 8557601
  63. Joshi BK, Gloer JB, Wicklow DT. New verticillin and glisoprenin analogues from Gliocladium catenulatum, a mycoparasite of Aspergillus flavus sclerotia. J Nat Prod 1999; 62(5): 730-3. doi: 10.1021/np980530x PMID: 10346956
  64. Dong JY, He HP, Shen YM, Zhang KQ. Nematicidal epipolysulfanyldioxopiperazines from Gliocladium roseum. J Nat Prod 2005; 68(10): 1510-3. doi: 10.1021/np0502241 PMID: 16252916
  65. Son BW, Jensen PR, Kauffman CA, Fenical W. New cytotoxic epidithiodioxopiperazines related to verticillin A from a marine isolate of the fungus Penicillium. Nat Prod Lett 1999; 13(3): 213-22. doi: 10.1080/10575639908048788
  66. Figueroa M, Graf TN, Ayers S, et al. Cytotoxic epipolythiodioxopiperazine alkaloids from filamentous fungi of the Bionectriaceae. J Antibiot 2012; 65(11): 559-64. doi: 10.1038/ja.2012.69 PMID: 22968289
  67. Amrine CSM, Raja HA, Darveaux BA, Pearce CJ, Oberlies NH. Media studies to enhance the production of verticillins facilitated by in situ chemical analysis. J Ind Microbiol Biotechnol 2018; 45(12): 1053-65. doi: 10.1007/s10295-018-2083-8 PMID: 30259213
  68. Baumann M, Dieskau AP, Loertscher BM, et al. Tricyclic analogues of epidithiodioxopiperazine alkaloids with promising in vitro and in vivo antitumor activity. Chem Sci 2015; 6(8): 4451-7. doi: 10.1039/C5SC01536G PMID: 26301062
  69. Liu F, Liu Q, Yang D, et al. Verticillin A overcomes apoptosis resistance in human colon carcinoma through DNA methylation-dependent upregulation of BNIP3. Cancer Res 2011; 71(21): 6807-16. doi: 10.1158/0008-5472.CAN-11-1575 PMID: 21911457
  70. Feiyan L, Ping W, Kebin L. Verticillin a inhibition of histone methyltransferases. US Patent 20140161785A1, 2014.
  71. Chen Y, Zhang YX, Li MH, et al. Antiangiogenic activity of 11,11′-dideoxyverticillin, a natural product isolated from the fungus Shiraia bambusicola. Biochem Biophys Res Commun 2005; 329(4): 1334-42. doi: 10.1016/j.bbrc.2005.02.115 PMID: 15766573
  72. He P, Che Y, He Q, Chen Y, Ding J. G226, a novel epipolythiodioxopiperazine derivative, induces autophagy and caspase-dependent apoptosis in human breast cancer cells in vitro. Acta Pharmacol Sin 2014; 35(8): 1055-64. doi: 10.1038/aps.2014.47 PMID: 25066322
  73. Niu S, Yuan D, Jiang X, Che Y. 11′-Deoxyverticillin A (C42) promotes autophagy through K-Ras/GSK3 signaling pathway in HCT116 cells. Protein Cell 2014; 5(12): 945-9. doi: 10.1007/s13238-014-0099-z PMID: 25261996
  74. Zhang YX, Chen Y, Guo XN, et al. 11,11′-Dideoxy-verticillin: A natural compound possessing growth factor receptor tyrosine kinase-inhibitory effect with anti-tumor activity. Anticancer Drugs 2005; 16(5): 515-24. doi: 10.1097/00001813-200506000-00007 PMID: 15846117
  75. Zhang N, Chen Y, Jiang R, et al. PARP and RIP 1 are required for autophagy induced by 11′-deoxyverticillin A, which precedes caspase-dependent apoptosis. Autophagy 2011; 7(6): 598-612. doi: 10.4161/auto.7.6.15103 PMID: 21460625
  76. He P, Zhang J, Che Y, He Q, Chen Y, Ding J. G226, a new epipolythiodioxopiperazine derivative, triggers DNA damage and apoptosis in human cancer cells in vitro via ROS generation. Acta Pharmacol Sin 2014; 35(12): 1546-55. doi: 10.1038/aps.2014.105 PMID: 25468822
  77. Amrine CSM, Huntsman AC, Doyle MG, et al. Semisynthetic derivatives of the verticillin class of natural products through acylation of the c11 hydroxy group. ACS Med Chem Lett 2021; 12(4): 625-30. doi: 10.1021/acsmedchemlett.1c00024 PMID: 33859802
  78. Glister GA, Williams TI. Production of gliotoxin by Aspergillus fumigatus mut. helvola yuill. Nature 1944; 153(3891): 651-1. doi: 10.1038/153651a0
  79. Nguyen VT, Lee J, Qian ZJ, et al. Gliotoxin isolated from marine fungus Aspergillus sp. induces apoptosis of human cervical cancer and chondrosarcoma cells. Mar Drugs 2013; 12(1): 69-87. doi: 10.3390/md12010069 PMID: 24368570
  80. Wilkinson S, Spilsbury JF. Gliotoxin from Aspergillus chevalieri (Mangin) thom et church. Nature 1965; 206(4984): 619-9. doi: 10.1038/206619a0 PMID: 5832836
  81. Beecham AF, Fridrichsons J, Mathieson AM. The structure and absolute configuration of gliotoxin and the absolute configuration of sporidesmin. Tetrahedron Lett 1966; 7(27): 3131-8. doi: 10.1016/S0040-4039(01)99927-7 PMID: 5955875
  82. Johnson JR, Bruce WF, Dutcher JD. Gliotoxin, the antibiotic principle of Gliocladium fimbriatum. i. production, physical and biological properties. J Am Chem Soc 1943; 65(10): 2005-9. doi: 10.1021/ja01250a051
  83. Park YH, Stack JP, Kenerley CM. Production of gliotoxin by Gliocladium virens as a function of source and concentration of carbon and nitrogen. Mycol Res 1991; 95(10): 1242-8. doi: 10.1016/S0953-7562(09)80018-X
  84. Park YH, Park CM. Selective isolation and enumeration of Gliocladium virens and G. roseum from soil. Plant Dis 1992; 76(3): 230-5. doi: 10.1094/PD-76-0230
  85. Anitha R, Murugesan K. Production of gliotoxin on natural substrates Bytrichoderma virens. J Basic Microbiol 2005; 45(1): 12-9. doi: 10.1002/jobm.200410451 PMID: 15678558
  86. W. R. E. O.H, The isolation of a toxic substance from the culture fiItrate of Trichoderma. Phytopathology 1936; 26: 1068-70.
  87. Wright JM. J.M. wright, the production of antibiotics in soil. Ann Appl Biol 1954; 41(2): 280-9. doi: 10.1111/j.1744-7348.1954.tb01121.x
  88. Suhadolnik RJ. Gliotoxin. In: Gottlieb D, Shaw PD, Eds. Biosynthesis, Springer Berlin Heidelberg, Berlin. Heidelberg 1967; 29-31. doi: 10.1007/978-3-662-38441-1_4
  89. Mull RP, Townley RW, Scholz CR. Production of gliotoxin and a second active isolate by Penicillium obscurum biourge. J Am Chem Soc 1945; 67(9): 1626-7. doi: 10.1021/ja01225a518
  90. Liang WL, Le X, Li HJ, et al. Exploring the chemodiversity and biological activities of the secondary metabolites from the marine fungus Neosartorya pseudofischeri. Mar Drugs 2014; 12(11): 5657-76. doi: 10.3390/md12115657 PMID: 25421322
  91. Kaouadji M, Steiman R, Seigle-Murandi F, Krivobok S, Sage L. Gliotoxin: Uncommon 1H couplings and revised 1H- and 13C-NMR assignments. J Nat Prod 1990; 53(3): 717-9. doi: 10.1021/np50069a032
  92. Bracken A, Raistrick H. Studies in the biochemistry of micro-organisms. Biochem J 1947; 41(4): 569-75. doi: 10.1042/bj0410569
  93. Johnson JR, Kidwai AR, Warner JS. Gliotoxin. XI. A related antibiotic from Penicillium terlikowski: Gliotoxin monoacetate. J Am Chem Soc 1953; 75(9): 2110-2. doi: 10.1021/ja01105a026
  94. Sun Y, Takada K, Takemoto Y, et al. Gliotoxin analogues from a marine-derived fungus, Penicillium sp., and their cytotoxic and histone methyltransferase inhibitory activities. J Nat Prod 2012; 75(1): 111-4. doi: 10.1021/np200740e PMID: 22148349
  95. Pahl HL, Krauss B, Schulze-Osthoff K, et al. The immunosuppressive fungal metabolite gliotoxin specifically inhibits transcription factor NF-kappaB. J Exp Med 1996; 183(4): 1829-40. doi: 10.1084/jem.183.4.1829 PMID: 8666939
  96. Coleman JJ, Ghosh S, Okoli I, Mylonakis E. Antifungal activity of microbial secondary metabolites. PLoS One 2011; 6(9): e25321. doi: 10.1371/journal.pone.0025321 PMID: 21966496
  97. Hubmann W, Sieghart R. Tumor treatment with gliotoxin derivatives. 2011. Available from: https://patents.google.com/patent/ US7981878B2/en (Accessed August 4, 2023).
  98. Vigushin DM, Mirsaidi N, Brooke G, et al. Gliotoxin is a dual inhibitor of farnesyltransferase and geranylgeranyltransferase I with antitumor activity against breast cancer in vivo. Med Oncol 2004; 21(1): 21-30. doi: 10.1385/MO:21:1:21 PMID: 15034210
  99. Baust H, Schoke A, Brey A, et al. Evidence for radiosensitizing by gliotoxin in HL-60 cells: Implications for a role of NF-κB independent mechanisms. Oncogene 2003; 22(54): 8786-96. doi: 10.1038/sj.onc.1206969 PMID: 14647473
  100. Nieminen SM, Mäki-Paakkanen J, Hirvonen MR, Roponen M, von Wright A. Genotoxicity of gliotoxin, a secondary metabolite of Aspergillus fumigatus, in a battery of short-term test systems. Mutat Res Genet Toxicol Environ Mutagen 2002; 520(1-2): 161-70. doi: 10.1016/S1383-5718(02)00202-4 PMID: 12297156
  101. Svahn KS, Göransson U, El-Seedi H, et al. Antimicrobial activity of filamentous fungi isolated from highly antibiotic-contaminated river sediment. Infect Ecol Epidemiol 2012; 2(1): 11591. doi: 10.3402/iee.v2i0.11591 PMID: 22957125
  102. Larin NM, Copping MP, Herbst-Laier RH, Roberts B, Wenham RBM. Antiviral activity of gliotoxin. Chemotherapy 1965; 10(1): 12-23. doi: 10.1159/000220389 PMID: 4285752
  103. Rightsel WA, Schneider HG, Sloan BJ, et al. Antiviral activity of gliotoxin and gliotoxin acetate. Nature 1964; 204(4965): 1333-4. doi: 10.1038/2041333b0 PMID: 14254440
  104. Ye W, Liu T, Zhang W, Zhang W. The toxic mechanism of gliotoxins and biosynthetic strategies for toxicity prevention. Int J Mol Sci 2021; 22: 13510. doi: 10.3390/ijms222413510 PMID: 34948306
  105. Scharf DH, Heinekamp T, Remme N, Hortschansky P, Brakhage AA, Hertweck C. Biosynthesis and function of gliotoxin in Aspergillus fumigatus. Appl Microbiol Biotechnol 2012; 93(2): 467-72. doi: 10.1007/s00253-011-3689-1 PMID: 22094977
  106. Chen J, Wang C, Lan W, et al. Gliotoxin inhibits proliferation and induces apoptosis in colorectal cancer cells. Mar Drugs 2015; 13(10): 6259-73. doi: 10.3390/md13106259 PMID: 26445050
  107. Wang Y, Li ZL, Bai J, et al. 2,5-diketopiperazines from the marine-derived fungus Aspergillus fumigatus YK-7. Chem Biodivers 2012; 9(2): 385-93. doi: 10.1002/cbdv.201100061 PMID: 22344914
  108. Park HB, Kim YJ, Park JS, et al. Glionitrin B, a cancer invasion inhibitory diketopiperazine produced by microbial coculture. J Nat Prod 2011; 74(10): 2309-12. doi: 10.1021/np200563x PMID: 21954885
  109. Orfali RS, Aly AH, Ebrahim W, et al. Pretrichodermamide C and N-methylpretrichodermamide B, two new cytotoxic epidithiodiketopiperazines from hyper saline lake derived Penicillium sp. Phytochem Lett 2015; 11: 168-72. doi: 10.1016/j.phytol.2014.12.010
  110. Zhou Y, Debbab A, Mándi A, et al. Alkaloids from the sponge‐associated fungus Aspergillus sp. Eur J Org Chem 2013; 2013(5): 894-906. doi: 10.1002/ejoc.201201220
  111. Wang FZ, Huang Z, Shi XF, et al. Cytotoxic indole diketopiperazines from the deep sea-derived fungus Acrostalagmus luteoalbus SCSIO F457. Bioorg Med Chem Lett 2012; 22(23): 7265-7. doi: 10.1016/j.bmcl.2012.08.115 PMID: 23079524
  112. Adams TC, Payette JN, Cheah JH, Movassaghi M. Concise total synthesis of (+)-luteoalbusins A and B. Org Lett 2015; 17(17): 4268-71. doi: 10.1021/acs.orglett.5b02059 PMID: 26336940
  113. Seya H, Nakajima S, Kawai K, Udagawa S. Structure and absolute configuration of emestrin, a new macrocyclic epidithiodioxopiperazine from Emericell striata. J Chem Soc Chem Commun 1985; 10: 657-8. doi: 10.1039/c39850000657
  114. Onodera H, Hasegawa A, Tsumagari N, Nakai R, Ogawa T, Kanda Y. MPC1001 and its analogues: New antitumor agents from the fungus Cladorrhinum species. Org Lett 2004; 6(22): 4101-4. doi: 10.1021/ol048202d PMID: 15496109
  115. Nursid M, Namirah I, Cahyana AH, Fajarningsih ND, Chasanah E, Emestrin B. Epipolythiodioxypiperazine from marine derived fungus Emericella nidulans. J Med Bioeng 2015; 4(6): 441-5. doi: 10.12720/jomb.4.6.441-445
  116. Seya H, Nozawa K, Nakajima S, Kawai K, Udagawa S. Studies on fungal products. Part 8. Isolation and structure of emestrin, a novel antifungal macrocyclic epidithiodioxopiperazine from Emericella striata. X-Ray molecular structure of emestrin. J Chem Soc, Perkin Trans 1 1986; 109-16. doi: 10.1039/p19860000109
  117. Lipson EJ, Vincent JG, Loyo M, et al. A cytotoxic epitetrathiodioxopiperizine and emericellenes A-E, five sesterterpenoids from Emericella sp. AST0036, a fungal endophyte of Astragalus lentiginosus. J Nat Prod 2014; 76: 1-20. doi: 10.1158/2326-6066.CIR-13-0034.PD-L1
  118. Xu Y, Espinosa-Artiles P, Liu MX, Arnold AE, Gunatilaka AAL, Secoemestrin D. Secoemestrin D, a cytotoxic epitetrathiodioxopiperizine, and emericellenes A-E, five sesterterpenoids from Emericella sp. AST0036, a fungal endophyte of Astragalus lentiginosus1. J Nat Prod 2013; 76(12): 2330-6. doi: 10.1021/np400762k PMID: 24251417
  119. Dong S, Indukuri K, Clive DLJ, Gao JM. Synthesis of models of the BC ring systems of MPC1001 and MPC1001F. Chem Commun 2016; 52(53): 8271-4. doi: 10.1039/C6CC04169H PMID: 27284641
  120. Kong F, Wang Y, Liu P, Dong T, Zhu W. Thiodiketopiperazines from the marine-derived fungus Phoma sp. OUCMDZ-1847. J Nat Prod 2014; 77(1): 132-7. doi: 10.1021/np400802d PMID: 24370114
  121. Cai J, Wang X, Yang Z, et al. Thiodiketopiperazines and alkane derivatives produced by the mangrove sediment-derived fungus Penicillium ludwigii SCSIO 41408. Front Microbiol 2022; 13: 857041. doi: 10.3389/fmicb.2022.857041 PMID: 35418953
  122. Hegde VR, Dai P, Patel M, Das PR, Puar MS. Novel thiodiketopiperazine fungal metabolites as epidermal growth factor receptor antagonists. Tetrahedron Lett 1997; 38(6): 911-4. doi: 10.1016/S0040-4039(96)02457-4
  123. Scharf DH, Remme N, Habel A, et al. A dedicated glutathione S-transferase mediates carbon-sulfur bond formation in gliotoxin biosynthesis. J Am Chem Soc 2011; 133(32): 12322-5. doi: 10.1021/ja201311d PMID: 21749092
  124. Chi LP, Li XM, Li L, Li X, Wang BG. Cytotoxic thiodiketopiperazine derivatives from the deep sea-derived fungus Epicoccum nigrum SD-388. Mar Drugs 2020; 18(3): 160. doi: 10.3390/md18030160 PMID: 32183021
  125. Yamada T, Kogure H, Kataoka M, Kikuchi T, Hirano T. Halosmysin A, a novel 14-membered macrodiolide isolated from the marine-algae-derived fungus Halosphaeriaceae sp. Mar Drugs 2020; 18(6): 320. doi: 10.3390/md18060320 PMID: 32570727
  126. Yamada T, Yoshida K, Kikuchi T, Hirano T. Isolation and structure elucidation of new cytotoxic macrolides halosmysins b and c from the fungus Halosphaeriaceae sp. associated with a marine alga. Mar Drugs 2022; 20(4): 226. doi: 10.3390/md20040226 PMID: 35447898
  127. Wen H, Liu X, Zhang Q, et al. Three new indole diketopiperazine alkaloids from Aspergillus ochraceus. Chem Biodivers 2018; 15(4): e1700550. doi: 10.1002/cbdv.201700550 PMID: 29479805
  128. Peng J, Gao H, Li J, et al. Prenylated indole diketopiperazines from the marine-derived fungus Aspergillus versicolor. J Org Chem 2014; 79(17): 7895-904. doi: 10.1021/jo5010179 PMID: 25089636
  129. Gao H, Zhu T, Li D, Gu Q, Liu W. Prenylated indole diketopiperazine alkaloids from a mangrove rhizosphere soil derived fungus Aspergillus effuses H1-1. Arch Pharm Res 2013; 36(8): 952-6. doi: 10.1007/s12272-013-0107-5 PMID: 23539310
  130. Dossena A, Marchelli R, Pochini A. New metabolites of Aspergillus amstelodami related to the biogenesis of neoechinulin. J Chem Soc Chem Commun 1974; 771-772(19): 771. doi: 10.1039/c39740000771
  131. Li Y, Li X, Kang JS, Choi HD, Son BW. New radical scavenging and ultraviolet-A protecting prenylated dioxopiperazine alkaloid related to isoechinulin A from a marine isolate of the fungus Aspergillus. J Antibiot 2004; 57(5): 337-40. doi: 10.7164/antibiotics.57.337 PMID: 15303494
  132. Wang XN, Tan RX, Liu JK. Xylactam, a new nitrogen-containing compound from the fruiting bodies of ascomycete Xylaria euglossa. J Antibiot 2005; 58(4): 268-70. doi: 10.1038/ja.2005.31 PMID: 15981413
  133. Wijesekara I, Li YX, Vo TS, Van Ta Q, Ngo DH, Kim SK. Induction of apoptosis in human cervical carcinoma HeLa cells by neoechinulin A from marine-derived fungus Microsporum sp. Process Biochem 2013; 48(1): 68-72. doi: 10.1016/j.procbio.2012.11.012
  134. Kobayashi S, Kuramochi K, Aoki T, et al. Synthesis of neoechinulin A and derivatives. Synthesis 2008; 2008(23): 3810-8. doi: 10.1055/s-0028-1083634 PMID: 19043251
  135. Pettit GR, Hogan F, Xu JP, et al. Antineoplastic agents. 536. New sources of naturally occurring cancer cell growth inhibitors from marine organisms, terrestrial plants, and microorganisms(1a,). J Nat Prod 2008; 71(3): 438-44. doi: 10.1021/np700738k PMID: 18327911
  136. Wang S, Li XM, Teuscher F, et al. Chaetopyranin, a benzaldehyde derivative, and other related metabolites from Chaetomium globosum, an endophytic fungus derived from the marine red alga Polysiphonia urceolata. J Nat Prod 2006; 69(11): 1622-5. doi: 10.1021/np060248n PMID: 17125234
  137. Yagi R, Doi M. Isolation of an antioxidative substance produced by Aspergillus repens. Biosci Biotechnol Biochem 1999; 63: 932-3. doi: 10.1271/bbb.63.932 PMID: 27385574
  138. Kuramochi K, Ohnishi K, Fujieda S, et al. Synthesis and biological activities of neoechinulin A derivatives: New aspects of structure-activity relationships for neoechinulin A. Chem Pharm Bull 2008; 56(12): 1738-43. doi: 10.1248/cpb.56.1738 PMID: 19043251
  139. Kimoto K, Aoki T, Shibata Y, et al. Structure-activity relationships of neoechinulin A analogues with cytoprotection against peroxynitrite-induced PC12 cell death. J Antibiot 2007; 60(10): 614-21. doi: 10.1038/ja.2007.79 PMID: 17965477
  140. Li Y, Li X, Kim SK, et al. Golmaenone, a new diketopiperazine alkaloid from the marine-derived fungus Aspergillus sp. Chem Pharm Bull 2004; 52(3): 375-6. doi: 10.1248/cpb.52.375 PMID: 14993767
  141. Miller JD, Sun M, Gilyan A, Roy J, Rand TG. Inflammation-associated gene transcription and expression in mouse lungs induced by low molecular weight compounds from fungi from the built environment. Chem Biol Interact 2010; 183(1): 113-24. doi: 10.1016/j.cbi.2009.09.023 PMID: 19818335
  142. Dewapriya P, Li YX, Himaya SWA, Pangestuti R, Kim SK. Neoechinulin A suppresses amyloid-β oligomer-induced microglia activation and thereby protects PC-12 cells from inflammation-mediated toxicity. Neurotoxicology 2013; 35: 30-40. doi: 10.1016/j.neuro.2012.12.004 PMID: 23261590
  143. Li H, Sun W, Deng M, et al. Asperversiamides, linearly fused prenylated indole alkaloids from the marine-derived fungus Aspergillus versicolor. J Org Chem 2018; 83(15): 8483-92. doi: 10.1021/acs.joc.8b01087 PMID: 30016097
  144. Maruyama K, Ohuchi T, Yoshida K, Shibata Y, Sugawara F, Arai T. Protective properties of neoechinulin A against SIN-1-induced neuronal cell death. J Biochem 2004; 136(1): 81-7. doi: 10.1093/jb/mvh103 PMID: 15269243
  145. Kajimura Y, Aoki T, Kuramochi K, et al. Neoechinulin A protects PC12 cells against MPP+-induced cytotoxicity. J Antibiot 2008; 61(5): 330-3. doi: 10.1038/ja.2008.48 PMID: 18654001
  146. Zheng ZZ, Shan WG, Wang SL, Ying YM, Ma LF, Zhan ZJ. Three new prenylated diketopiperazines from Neosartorya fischeri. Helv Chim Acta 2014; 97(7): 1020-6. doi: 10.1002/hlca.201300416
  147. Saraiva NN, Rodrigues BSF, Jimenez PC, et al. Cytotoxic compounds from the marine-derived fungus Aspergillus sp. recovered from the sediments of the Brazilian coast. Nat Prod Res 2015; 29(16): 1545-50. doi: 10.1080/14786419.2014.987772 PMID: 25532964
  148. Gatti G, Cardillo R, Fuganti C, Ghiringhelli D. Structure determination of two extractives from Aspergillus amstelodami by nuclear magnetic resonance spectroscopy. J Chem Soc Chem Commun 1976; 435-436(12): 435. doi: 10.1039/c39760000435
  149. Zhu JQ, Fan SR, Wei X, et al. Synthesis and biological evaluation of marine natural product, Cryptoechinuline D derivatives as novel antiangiogenic agents. Bioorg Med Chem Lett 2022; 65: 128717. doi: 10.1016/j.bmcl.2022.128717 PMID: 35390450
  150. Lv D, Xia J, Guan X, et al. Indole diketopiperazine alkaloids isolated from the marine-derived fungus Aspergillus chevalieri MCCC M23426. Front Microbiol 2022; 13: 950857. doi: 10.3389/fmicb.2022.950857 PMID: 35875553
  151. Gong G, Qi J, Lv Y, et al. Discovery of 1,3-Disubstituted 2,5-diketopiperazine derivatives as potent class I HDACs inhibitors. Chem Pharm Bull 2020; 68(5): 466-72. doi: 10.1248/cpb.c20-00056 PMID: 32378544
  152. Wang F, Sarotti AM, Jiang G, et al. Waikikiamides A-C: Complex diketopiperazine dimer and diketopiperazine-polyketide hybrids from a hawaiian marine fungal strain Aspergillus sp. FM242. Org Lett 2020; 22(11): 4408-12. doi: 10.1021/acs.orglett.0c01411 PMID: 32433885
  153. Wang N, Dong Y, Yang Y, et al. Penicimutanin C, a new alkaloidal compound, isolated from a neomycin‐resistant mutant 3‐f‐31of Penicillium purpurogenum G59. Chem Biodivers 2020; 17(7): e2000241. doi: 10.1002/cbdv.202000241 PMID: 32385896
  154. Marchini M, Mingozzi M, Colombo R, et al. Cyclic RGD peptidomimetics containing bifunctional diketopiperazine scaffolds as new potent integrin ligands. Chemistry 2012; 18(20): 6195-207. doi: 10.1002/chem.201200457 PMID: 22517378
  155. Fanelli R, Schembri L, Piarulli U, et al. Effects of a novel cyclic RGD peptidomimetic on cell proliferation, migration and angiogenic activity in human endothelial cells. Vasc Cell 2014; 6(1): 11. doi: 10.1186/2045-824X-6-11 PMID: 25053992
  156. Hood JD, Cheresh DA. Role of integrins in cell invasion and migration. Nat Rev Cancer 2002; 2(2): 91-100. doi: 10.1038/nrc727 PMID: 12635172
  157. Panzeri S, Zanella S, Arosio D, et al. Cyclic isoDGR and RGD peptidomimetics containing bifunctional diketopiperazine scaffolds are integrin antagonists. Chemistry 2015; 21(16): 6265-71. doi: 10.1002/chem.201406567 PMID: 25761230
  158. Avraamides CJ, Garmy-Susini B, Varner JA. Integrins in angiogenesis and lymphangiogenesis. Nat Rev Cancer 2008; 8(8): 604-17. doi: 10.1038/nrc2353 PMID: 18497750
  159. Auzzas L, Zanardi F, Battistini L, et al. Targeting alphavbeta3 integrin: Design and applications of mono- and multifunctional RGD-based peptides and semipeptides. Curr Med Chem 2010; 17(13): 1255-99. doi: 10.2174/092986710790936301 PMID: 20166941
  160. Mingozzi M, Manzoni L, Arosio D, et al. Synthesis and biological evaluation of dual action cyclo-RGD/SMAC mimetic conjugates targeting αvβ3/αvβ5 integrins and IAP proteins. Org Biomol Chem 2014; 12(20): 3288-302. doi: 10.1039/C4OB00207E PMID: 24737345
  161. Zanella S, Angerani S, Pina A, et al. Tumor targeting with an iso DGR-drug conjugate. Chemistry 2017; 23(33): 7910-4. doi: 10.1002/chem.201701844 PMID: 28449309
  162. Dal Corso A, Caruso M, Belvisi L, et al. Synthesis and biological evaluation of RGD peptidomimetic-paclitaxel conjugates bearing lysosomally cleavable linkers. Chemistry 2015; 21(18): 6921-9. doi: 10.1002/chem.201500158 PMID: 25784522

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers