Organogels: "GelVolution" in Topical Drug Delivery - Present and Beyond


Cite item

Full Text

Abstract

Topical drug delivery holds immense significance in dermatological treatments due to its non-invasive nature and direct application to the target site. Organogels, a promising class of topical drug delivery systems, have acquired substantial attention for enhancing drug delivery efficiency. This review article aims to explore the advantages of organogels, including enhanced drug solubility, controlled release, improved skin penetration, non-greasy formulations, and ease of application. The mechanism of organogel permeation into the skin is discussed, along with formulation strategies, which encompass the selection of gelling agents, cogelling agents, and additives while considering the influence of temperature and pH on gel formation. Various types of organogelators and organogels and their properties, such as viscoelasticity, non-birefringence, thermal stability, and optical clarity, are presented. Moreover, the biomedical applications of organogels in targeting skin cancer, anti-inflammatory drug delivery, and antifungal drug delivery are discussed. Characterization parameters, biocompatibility, safety considerations, and future directions in optimizing skin permeation, ensuring long-term stability, addressing regulatory challenges, and exploring potential combination therapies are thoroughly examined. Overall, this review highlights the immense potential of organogels in redefining topical drug delivery and their significant impact on the field of dermatological treatments, thus paving the way for exciting prospects in the domain.

About the authors

Krishnaraj Shirur

Department of Conservative Dentistry and Endodontics, Manipal College of Dental Sciences Manipal, Manipal Academy of Higher Education

Email: info@benthamscience.net

Abhijeet Pandey

Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal College of Pharmaceutical Sciences

Email: info@benthamscience.net

Srinivas Mutalik

Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal College of Pharmaceutical Sciences

Author for correspondence.
Email: info@benthamscience.net

Ajinkya Nikam

Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education

Email: info@benthamscience.net

Amrita Roy

Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal College of Pharmaceutical Sciences

Email: info@benthamscience.net

Ruchira Raychaudhuri

Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal College of Pharmaceutical Sciences

Email: info@benthamscience.net

Prerana Navti

Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal College of Pharmaceutical Sciences

Email: info@benthamscience.net

Soji Soman

Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal College of Pharmaceutical Sciences

Email: info@benthamscience.net

Sanjay Kulkarni

Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal College of Pharmaceutical Sciences

Email: info@benthamscience.net

References

  1. Nikam AN, Jacob A, Raychaudhuri R, et al. Topical micro-emulsion of 5-fluorouracil by a twin screw processor-based novel continuous manufacturing process for the treatment of skin cancer: Preparation and in vitro and in vivo evaluations. Pharmaceutics 2023; 15(9): 2175. doi: 10.3390/pharmaceutics15092175 PMID: 37765146
  2. Navti PD, Pandey A, Nikam AN, et al. Ionic liquids assisted topical drug delivery for permeation enhancement: Formulation strategies, biomedical applications, and toxicological perspective. AAPS PharmSciTech 2022; 23(5): 161. doi: 10.1208/s12249-022-02313-w PMID: 35676441
  3. Mutalik S, Shetty PK, Kumar A, Kalra R, Parekh HS. Enhancement in deposition and permeation of 5-fluorouracil through human epidermis assisted by peptide dendrimers. Drug Deliv 2014; 21(1): 44-54. doi: 10.3109/10717544.2013.845861 PMID: 24134794
  4. Hegde AR, Rewatkar PV, Manikkath J, Tupally K, Parekh HS, Mutalik S. Peptide dendrimer-conjugates of ketoprofen: Synthesis and ex vivo and in vivo evaluations of passive diffusion, sonophoresis and iontophoresis for skin delivery. Eur J Pharm Sci 2017; 102: 237-49. doi: 10.1016/j.ejps.2017.03.009 PMID: 28285173
  5. Shetty PK, Manikkath J, Tupally K, et al. Skin delivery of EGCG and silibinin: Potential of peptide dendrimers for enhanced skin permeation and deposition. AAPS PharmSciTech 2017; 18(6): 2346-57. doi: 10.1208/s12249-017-0718-0 PMID: 28124212
  6. Pandey M, Belgamwar V, Gattani S, Surana S, Tekade A. Pluronic lecithin organogel as a topical drug delivery system. Drug Deliv 2010; 17(1): 38-47. doi: 10.3109/10717540903508961 PMID: 22747074
  7. Zeng L, Lin X, Li P, Liu FQ, Guo H, Li WH. Recent advances of organogels: From fabrications and functions to applications. Prog Org Coat 2021; 159: 106417. doi: 10.1016/j.porgcoat.2021.106417
  8. Esposito CL, Kirilov P, Roullin VG. Organogels, promising drug delivery systems: An update of state-of-the-art and recent applications. J Control Release 2018; 271: 1-20. doi: 10.1016/j.jconrel.2017.12.019 PMID: 29269143
  9. Jhawat V, Gupta S, Saini V. Formulation and evaluation of novel controlled release of topical pluronic lecithin organogel of mefenamic acid. Drug Deliv 2016; 23(9): 3573-81. doi: 10.1080/10717544.2016.1212439 PMID: 27494650
  10. Sahoo S, Kumar N, Bhattacharya C, et al. Organogels: Properties and applications in drug delivery. Des Monomers Polym 2011; 14(2): 95-108. doi: 10.1163/138577211X555721
  11. Martinez RM, Rosado C, Velasco MVR, Lannes SCS, Baby AR. Main features and applications of organogels in cosmetics. Int J Cosmet Sci 2019; 41(2): 109-17. doi: 10.1111/ics.12519 PMID: 30994939
  12. Jose J, Gopalan K. Organogels: A versatile drug delivery tool in pharmaceuticals. Res J Pharma Technol 2018; 11(3): 1242-6. doi: 10.5958/0974-360X.2018.00231.7
  13. Kaur J, Raza K, Preet S. Organogel mediated co-delivery of nisin and 5-fluorouracil: A synergistic approach against skin cancer. J Microencapsul 2022; 39(7-8): 609-25. doi: 10.1080/02652048.2022.2149871 PMID: 36472891
  14. Uzan S, Barış D, Çolak M, Aydın H, Hoşgören H. Organogels as novel carriers for dermal and topical drug delivery vehicles. Tetrahedron 2016; 72(47): 7517-25. doi: 10.1016/j.tet.2016.10.009
  15. Singh VK, Pal K, Banerjee I, Pramanik K, Anis A, Al-Zahrani SM. Novel organogel based lyotropic liquid crystal physical gels for controlled delivery applications. Eur Polym J 2015; 68: 326-37. doi: 10.1016/j.eurpolymj.2015.05.009
  16. Raut S, Bhadoriya SS, Uplanchiwar V, Mishra V, Gahane A, Jain SK. Lecithin organogel: A unique micellar system for the delivery of bioactive agents in the treatment of skin aging. Acta Pharm Sin B 2012; 2(1): 8-15. doi: 10.1016/j.apsb.2011.12.005
  17. Mahalingam R, Li X, Jasti BR. Semisolid dosages: Ointments, creams, and gels. Pharm Manuf Handb 2008; 1: 267-312. doi: 10.1002/9780470259818.ch9
  18. Madan M, Bajaj A, Lewis S, Udupa N, Baig JA. In situ forming polymeric drug delivery systems. Indian J Pharm Sci 2009; 71(3): 242-51. doi: 10.4103/0250-474X.56015 PMID: 20490289
  19. Trimble JO. Salt stable lecithin organogel composition. Google Patents 2009.
  20. Balata G, El Nahas HM, Radwan S. Propolis organogel as a novel topical delivery system for treating wounds. Drug Deliv 2014; 21(1): 55-61. doi: 10.3109/10717544.2013.847032 PMID: 24295500
  21. Balata GF, Shamardl HEM, Abd Elmoneim HM, Hakami AA, Almodhwahi MA. Propolis emulgel: A natural remedy for burn and wound. Drug Dev Ind Pharm 2018; 44(11): 1797-808. doi: 10.1080/03639045.2018.1496449 PMID: 29973098
  22. Haznedaroglu MZ, Yurdasiper A, Koyu H, Yalcin G, Ozturk I, Gokce EH. Preparation and evaluation of a novel organogel formulation of Salvia tomentosa Mill. essential oil. Lat Am J Pharm 2013; 32(6): 845-51.
  23. Sanapalli BKR, Kannan E, Balasubramanian S, Natarajan J, Baruah UK, Karri VVSR. Pluronic lecithin organogel of 5-aminosalicylic acid for wound healing. Drug Dev Ind Pharm 2018; 44(10): 1650-8. doi: 10.1080/03639045.2018.1483393 PMID: 29848103
  24. Singh VK, Pramanik K, Ray SS, Pal K. Development and characterization of sorbitan monostearate and sesame oil-based organogels for topical delivery of antimicrobials. AAPS PharmSciTech 2015; 16(2): 293-305. doi: 10.1208/s12249-014-0223-7 PMID: 25277240
  25. Upadhyay KK, Tiwari C, Khopade AJ, Bohidar HB, Jain SK. Sorbitan ester organogels for transdermal delivery of sumatriptan. Drug Dev Ind Pharm 2007; 33(6): 617-25. doi: 10.1080/03639040701199266 PMID: 17613026
  26. Katariya M, Mehta D. Fabrication of an organogel-based transdermal delivery system of loxoprofen sodium. Proc MDPI 2020.
  27. Jatav MP, Ramteke S. Formulation and evaluation of lecithin organogel for treatment of arthritis. Int J Sci World 2015; 3(2): 267-74. doi: 10.14419/ijsw.v3i2.5028
  28. Pawar S, Jahagirdar A, Kolkar D, Patil M, Udavant P, Kshirsagar S. Investigation of potential of organogel carrying etodolac for anti-inflammatory activity. Pharm Biol Eval 2015; 2: 284-97.
  29. Sevinç-Özakar R, Seyret E, Özakar E, Adıgüzel MC. Nanoemulsion-based hydrogels and organogels containing propolis and dexpanthenol: Preparation, characterization, and comparative evaluation of stability, antimicrobial, and cytotoxic properties. Gels 2022; 8(9): 578. doi: 10.3390/gels8090578 PMID: 36135290
  30. Thakur K, Mahajan A, Sharma G, et al. Implementation of Quality by Design (QbD) approach in development of silver sulphadiazine loaded egg oil organogel: An improved dermatokinetic profile and therapeutic efficacy in burn wounds. Int J Pharm 2020; 576: 118977. doi: 10.1016/j.ijpharm.2019.118977 PMID: 31870953
  31. Querobino SM, de Faria NC, Vigato AA, et al. Sodium alginate in oil-poloxamer organogels for intravaginal drug delivery: Influence on structural parameters, drug release mechanisms, cytotoxicity and in vitro antifungal activity. Mater Sci Eng C 2019; 99: 1350-61. doi: 10.1016/j.msec.2019.02.036 PMID: 30889669
  32. Patil MP, Shinde GP, Kshirsagar SJ, Parakh DR. Development and characterization of ketoconazole loaded organogel for topical drug delivery. Inven J 2015; 3: 1-10.
  33. Ambreen Z, Faran SA, Daniel A, et al. Physicochemical, rheological and antifungal evaluation of miconazole nitrate organogels for topical delivery. Pak J Pharm Sci 2022; 35(4(Special)): 1215-21. PMID: 36218100
  34. Kumar R, Katare OP. Lecithin organogels as a potential phospholipid-structured system for topical drug delivery: A review. AAPS PharmSciTech 2005; 6(2): E298-310. doi: 10.1208/pt060240 PMID: 16353989
  35. Ahmad MU. Lipids in nanotechnology. Elsevier 2015.
  36. Sreedevi T, Ramya D, Vedha H. An emerging era in topical delivery: Organogels. Int J Drug Dev Res 2012; 4(2): 35-40.
  37. Mehta C, Bhatt G, Kothiyal P. A review on organogel for skin aging. Indian J Pharmaceut Biol Res 2016; 4(3): 28-37. doi: 10.30750/ijpbr.4.3.5
  38. Almeida H, Amaral MH, Lobão P, Lobo JMS. Pluronic® F-127 and Pluronic Lecithin Organogel (PLO): Main features and their applications in topical and transdermal administration of drugs. J Pharm Pharm Sci 2012; 15(4): 592-605. doi: 10.18433/J3HW2B PMID: 23106961
  39. Belgamwar VS, Pandey MS, Chauk DS, Surana SJ. Pluronic lecithin organogel. Asian J Pharm AJP 2008; 2(3): 43295. doi: 10.4103/0973-8398.43295
  40. Alsaab H, Bonam SP, Bahl D, Chowdhury P, Alexander K, Boddu SHS. Organogels in drug delivery: A special emphasis on pluronic lecithin organogels. J Pharm Pharm Sci 2016; 19(2): 252-73. doi: 10.18433/J3V89W PMID: 27518174
  41. Zhang Q, Song Y, Page SW, Garg S. Evaluation of transdermal drug permeation as modulated by lipoderm and pluronic lecithin organogel. J Pharm Sci 2018; 107(2): 587-94. doi: 10.1016/j.xphs.2017.09.008 PMID: 28935590
  42. Murdan S. Organogels in drug delivery. Expert Opin Drug Deliv 2005; 2(3): 489-505. doi: 10.1517/17425247.2.3.489 PMID: 16296770
  43. Feringa BL, Feringa BL. New functional materials based on self- assembling organogels: From serendipity towards design the royal netherlands academy of science is gratefully acknowledged for a fellowship for J.H.V.E. Angew Chem Int Ed Engl 2000; 39(13): 2263-6. doi: 10.1002/1521-3773(20000703)39:133.0.CO;2-V PMID: 10941059
  44. Chetia M, Debnath S, Chowdhury S, Chatterjee S. Self-assembly and multifunctionality of peptide organogels: Oil spill recovery, dye absorption and synthesis of conducting biomaterials. RSC Advances 2020; 10(9): 5220-33. doi: 10.1039/C9RA10395C PMID: 35498311
  45. Zhang YP, Wang BX, Yang YS, Liang C, Yang C, Chai HL. Synthesis and self-assembly of chalcone-based organogels. Colloids Surf A Physicochem Eng Asp 2019; 577: 449-55. doi: 10.1016/j.colsurfa.2019.06.010
  46. Hirst AR, Coates IA, Boucheteau TR, et al. Low-molecular-weight gelators: Elucidating the principles of gelation based on gelator solubility and a cooperative self-assembly model. J Am Chem Soc 2008; 130(28): 9113-21. doi: 10.1021/ja801804c PMID: 18558681
  47. Mujawar NK, Ghatage SL, Yeligar VC. Organogel: Factors and its importance. Int J Pharm 2014; 4(3): 758-73.
  48. Lee WK, Lim YY, Leow ATC, Namasivayam P, Abdullah JO, Ho CL. Factors affecting yield and gelling properties of agar. J Appl Phycol 2017; 29(3): 1527-40. doi: 10.1007/s10811-016-1009-y
  49. Jin FY, Yuan CD, Pu WF, et al. Investigation on gelation process and microstructure for partially hydrolyzed polyacrylic amide (HPAm)-Cr(III) acetate–methanal compound crosslinked weak gel. J Sol-Gel Sci Technol 2015; 73(1): 181-91. doi: 10.1007/s10971-014-3509-z
  50. Alwin S, Sahaya Shajan X. Aerogels: Promising nanostructured materials for energy conversion and storage applications. Mater Renew Sustain Energy 2020; 9(2): 7. doi: 10.1007/s40243-020-00168-4
  51. Das J, Bhattacharjee B, Dutta J, Paul T. Organogel: An ideal drug delivery carrier. World J Pharm Res 2021; 10: 446.
  52. Bera R, Dey A, Chakrabarty D. Studies on gelling characteristics of N-tertiary butyl acrylamide-acrylic acid copolymer. Adv Polym Technol 2014; 33(2)
  53. Kabiri K, Azizi A, Zohuriaan-Mehr MJ, Marandi GB, Bouhendi H. Alcohophilic gels: Polymeric organogels composing carboxylic and sulfonic acid groups. J Appl Polym Sci 2011; 120(6): 3350-6. doi: 10.1002/app.33521
  54. Hu B, Sun W, Yang B, Li H, Zhou L, Li S. Application of solvent parameters for predicting organogel formation. AAPS PharmSciTech 2018; 19(5): 2288-300. doi: 10.1208/s12249-018-1074-4 PMID: 29845502
  55. Ohsedo Y, Taniguchi M, Oono M, Saruhashi K, Watanabe H. Creation of thixotropic multicomponent alkylamide organogels containing non-volatile oil as potential drug release host materials. RSC Advances 2014; 4(67): 35484-8. doi: 10.1039/C4RA06130F
  56. Zafar S, Hanif M, Azeem M, Mahmood K, Gondal SA. Role of crosslinkers for synthesizing biocompatible, biodegradable and mechanically strong hydrogels with desired release profile. Polym Bull 2022; 79(11): 9199-219. doi: 10.1007/s00289-021-03956-8
  57. Ceylan D, Okay O. Macroporous polyisobutylene gels: A novel tough organogel with superfast responsivity. Macromolecules 2007; 40(24): 8742-9. doi: 10.1021/ma071605j
  58. Marković N, Ginić-Marković M, Dutta NK. Benzene physical and chemical organogels: Effect of network scaffolding on the thermodynamic behavior of entrapped solvent molecules. J Appl Polym Sci 2004; 94(3): 1253-64. doi: 10.1002/app.21059
  59. Baglioni P, Bonelli N, Chelazzi D, et al. Organogel formulations for the cleaning of easel paintings. Appl Phys, A Mater Sci Process 2015; 121(3): 857-68. doi: 10.1007/s00339-015-9364-0
  60. Yao X, Wu S, Chen L, et al. Self-replenishable anti-waxing organogel materials. Angew Chem Int Ed Engl 2015; 54(31): 8975-9. doi: 10.1002/anie.201503031 PMID: 26083324
  61. Flory PJ, Rehner J Jr. Statistical mechanics of cross-linked polymer networks II. Swelling. J Chem Phys 1943; 11(11): 521-6. doi: 10.1063/1.1723792
  62. Liu Q, Li S, Zhang P, Lan Y, Lu M. Facile preparation of PNIPAM gel with improved deswelling kinetics by using 1-dodecanethiol as chain transfer agent. J Polym Res 2007; 14(5): 397-400. doi: 10.1007/s10965-007-9122-x
  63. Kuzina MA, Kartsev DD, Stratonovich AV, Levkin PA. Organogels versus hydrogels: Advantages, challenges, and applications. Adv Funct Mater 2023; 33(27): 2301421. doi: 10.1002/adfm.202301421
  64. Ayarza J, Wang Z, Wang J, Esser-Kahn AP. Mechanically promoted synthesis of polymer organogels via disulfide bond cross-linking. ACS Macro Lett 2021; 10(7): 799-804. doi: 10.1021/acsmacrolett.1c00337 PMID: 35549197
  65. Ding Q, Wu Z, Tao K, et al. Environment tolerant, adaptable and stretchable organohydrogels: Preparation, optimization, and applications. Mater Horiz 2022; 9(5): 1356-86. doi: 10.1039/D1MH01871J PMID: 35156986
  66. Bartocci S, Morbioli I, Maggini M, Mba M. Solvent-tunable morphology and emission of pyrene-dipeptide organogels. J Pept Sci 2015; 21(12): 871-8. doi: 10.1002/psc.2829 PMID: 26767742
  67. Lai WC, Tseng SJ, Chao YS. Effect of hydrophobicity of monomers on the structures and properties of 1,3:2,4-dibenzylidene-D-sorbitol organogels and polymers prepared by templating the gels. Langmuir 2011; 27(20): 12630-5. doi: 10.1021/la2023055 PMID: 21919442
  68. Luboradzki R, Gronwald O, Ikeda A, Shinkai S. Sugar-integrated "Supergelators" which can form organogels with 0.03-0.05% g mL−1. Chem Lett 2000; 29(10): 1148-9. doi: 10.1246/cl.2000.1148
  69. Gronwald O, Shinkai S. Sugar-integrated gelators of organic solvents. Chemistry 2001; 7(20): 4328-34. PMID: 11695665
  70. Zhang L, Jiao T, Ma K, et al. Self-assembly and drug release capacities of organogels via some amide compounds with aromatic substituent headgroups. Materials 2016; 9(7): 541. doi: 10.3390/ma9070541 PMID: 28773663
  71. Jha S, Maurya SD. Organogels in drug delivery. J Biomed Pharm Res 2013; 2: 89-99.
  72. Chaves KF, Barrera-Arellano D, Ribeiro APB. Potential application of lipid organogels for food industry. Food Res Int 2018; 105: 863-72. doi: 10.1016/j.foodres.2017.12.020 PMID: 29433283
  73. Ozel B, Oztop MH. Rheology of food hydrogels, and organogels. Advances in Food Rheology and Its Applications. Elsevier 2023; pp. 661-88. doi: 10.1016/B978-0-12-823983-4.00018-2
  74. Martins AJ, Vicente AA, Cunha RL, Cerqueira MA. Edible oleogels: An opportunity for fat replacement in foods. Food Funct 2018; 9(2): 758-73. doi: 10.1039/C7FO01641G PMID: 29417124
  75. Sanches SCDC, Ré MI, Silva-Júnior JOC, Ribeiro-Costa RM. Organogel of acai oil in cosmetics: Microstructure, stability, rheology and mechanical properties. Gels 2023; 9(2): 150. doi: 10.3390/gels9020150 PMID: 36826320
  76. Skilling KJ, Citossi F, Bradshaw TD, Ashford M, Kellam B, Marlow M. Insights into low molecular mass organic gelators: A focus on drug delivery and tissue engineering applications. Soft Matter 2014; 10(2): 237-56. doi: 10.1039/C3SM52244J PMID: 24651822
  77. Dutta SD, Patel DK, Lim KT. Functional cellulose-based hydrogels as extracellular matrices for tissue engineering. J Biol Eng 2019; 13(1): 55. doi: 10.1186/s13036-019-0177-0 PMID: 31249615
  78. Kalcioglu ZI, Mrozek RA, Mahmoodian R, VanLandingham MR, Lenhart JL, Van Vliet KJ. Tunable mechanical behavior of synthetic organogels as biofidelic tissue simulants. J Biomech 2013; 46(9): 1583-91. doi: 10.1016/j.jbiomech.2013.03.011 PMID: 23623681
  79. Kaczorowski M, Ronowicz M, Rokicki G. Organogels containing immobilized shear thickening fluid and their composites with polyurethane elastomer. Smart Mater Struct 2019; 28(3): 035034. doi: 10.1088/1361-665X/ab02a6
  80. Saifee DM, Gosavi PP. Organogels in topical drug delivery system: A systematic review. World J Pharm Res 2022: 1810-33.
  81. Teepireddy T. Preparation and characterization of novel span 80: Tween-80 based organogels for food and pharmaceutical industries Agr Food Sci Chem 2011.
  82. Sharma J, Agrawal D, Sharma AK, Khandelwal M, Aman S. New topical drug delivery system pharmaceutical organogel: A review. Asian J Pharmaceut Res Develop 2022; 10(1): 75-8. doi: 10.22270/ajprd.v10i1.1088
  83. Hamed R, Farhan A, Abu-Huwaij R, Mahmoud NN, Kamal A. Lidocaine microemulsion-laden organogels as lipid-based systems for topical delivery. J Pharm Innov 2020; 15(4): 521-34. doi: 10.1007/s12247-019-09399-z
  84. Pereira Camelo SR, Franceschi S, Perez E, Girod Fullana S, Ré MI. Factors influencing the erosion rate and the drug release kinetics from organogels designed as matrices for oral controlled release of a hydrophobic drug. Drug Dev Ind Pharm 2016; 42(6): 985-97. doi: 10.3109/03639045.2015.1103746 PMID: 26548427
  85. Assadpour E, Jafari SM. An overview of lipid-based nanostructures for encapsulation of food ingredients. Lipid-Based Nanostructures for Food Encapsulation Purposes. Academic Press 2019; pp. 1-34. doi: 10.1016/B978-0-12-815673-5.00001-5
  86. Bhattacharya C, Kumar N, Sagiri SS, Pal K, Ray SS. Development of span 80-tween 80 based fluid-filled organogels as a matrix for drug delivery. J Pharm Bioallied Sci 2012; 4(2): 155-63. doi: 10.4103/0975-7406.94822 PMID: 22557927
  87. Murashova NM, Yurtov EV. Lecithin organogels as prospective functional nanomaterial. Nanotechnol Russ 2015; 10(7-8): 511-22. doi: 10.1134/S199507801504014X
  88. Vierros S, Sammalkorpi M. Role of hydration in phosphatidylcholine reverse micelle structure and gelation in cyclohexane: A molecular dynamics study. Phys Chem Chem Phys 2015; 17(22): 14951-60. doi: 10.1039/C5CP01799H PMID: 25982225
  89. Aggarwal G, Nagpal M. Pharmaceutical polymer gels in drug delivery. Polym Gels Perspect Appl 2018; 249-84.
  90. Mitura S, Sionkowska A, Jaiswal A. Biopolymers for hydrogels in cosmetics: Review. J Mater Sci Mater Med 2020; 31(6): 50. doi: 10.1007/s10856-020-06390-w PMID: 32451785
  91. Lee WY, Asadujjaman M, Jee J-P. Long acting injectable formulations: The state of the arts and challenges of poly(lactic-co-glycolic acid) microsphere, hydrogel, organogel and liquid crystal. J Pharm Investig 2019; 49(4): 459-76. doi: 10.1007/s40005-019-00449-9
  92. Carretti E, Dei L, Macherelli A, Weiss RG. Rheoreversible polymeric organogels: The art of science for art conservation. Langmuir 2004; 20(20): 8414-8. doi: 10.1021/la0495175 PMID: 15379453
  93. Tokuyama H, Kato Y. Preparation of thermosensitive polymeric organogels and their drug release behaviors. Eur Polym J 2010; 46(2): 277-82. doi: 10.1016/j.eurpolymj.2009.10.016
  94. Liu B, Yang J, Yang M, et al. Polyoxometalate cluster-contained hybrid gelator and hybrid organogel: A new concept of softenization of polyoxometalate clusters. Soft Matter 2011; 7(6): 2317-20. doi: 10.1039/c1sm05032j
  95. Lai WC, Huang PH. Self-assembly behaviors of dibenzylidene sorbitol hybrid organogels with inorganic silica. Soft Matter 2017; 13(17): 3107-15. doi: 10.1039/C6SM02853E PMID: 28393159
  96. Kumar V, Awasthi R, Single S. Pluronic lecithin organogel- A review. World J Pharm Pharm Sci 2021; 10(9): 2278-4357.
  97. Lukyanova L, Franceschi-Messant S, Vicendo P, Perez E, Rico-Lattes I, Weinkamer R. Preparation and evaluation of microporous organogel scaffolds for cell viability and proliferation. Colloids Surf B Biointerfaces 2010; 79(1): 105-12. doi: 10.1016/j.colsurfb.2010.03.044 PMID: 20427161
  98. Xuan XY, Cheng YL, Acosta E. Lecithin-linker microemulsion gelatin gels for extended drug delivery. Pharmaceutics 2012; 4(1): 104-29. doi: 10.3390/pharmaceutics4010104 PMID: 24300183
  99. Häring G, Luisi PL, Meussdoerffer F. Solubilization of bacterial cells in organic solvents via reverse micelles. Biochem Biophys Res Commun 1985; 127(3): 911-5. doi: 10.1016/S0006-291X(85)80030-9 PMID: 3921020
  100. Pavlidis IV, Tzafestas K, Stamatis H. Water-in-ionic liquid microemulsion-based organogels as novel matrices for enzyme immobilization. Biotechnol J 2010; 5(8): 805-12. doi: 10.1002/biot.201000052 PMID: 20449844
  101. Sagiri SS, Pal K, Basak P. Encapsulation of animal wax-based organogels in alginate microparticles. J Appl Polym Sci 2014; 131(20): app.40910. doi: 10.1002/app.40910
  102. Sagiri SS, Pal K, Basak P, Rana UA, Shakir I, Anis A. Encapsulation of sorbitan ester-based organogels in alginate microparticles. AAPS PharmSciTech 2014; 15(5): 1197-208. doi: 10.1208/s12249-014-0147-2 PMID: 24889733
  103. Sagiri SS, Singh VK, Banerjee I, Pramanik K, Basak P, Pal K. Core-shell-type organogel-alginate hybrid microparticles: A controlled delivery vehicle. Chem Eng J 2015; 264: 134-45. doi: 10.1016/j.cej.2014.11.032
  104. Chou IC, Chen SI, Chiu WY. Surfactant-free dispersion polymerization as an efficient synthesis route to a successful encapsulation of nanoparticles. RSC Advances 2014; 4(88): 47436-47. doi: 10.1039/C4RA07475K
  105. Machtakova M, Thérien-Aubin H, Landfester K. Polymer nano-systems for the encapsulation and delivery of active biomacromolecular therapeutic agents. Chem Soc Rev 2022; 51(1): 128-52. doi: 10.1039/D1CS00686J PMID: 34762084
  106. Lu M, Cao Y, Ho CT, Huang Q. Development of organogel-derived capsaicin nanoemulsion with improved bioaccessibility and reduced gastric mucosa irritation. J Agric Food Chem 2016; 64(23): 4735-41. doi: 10.1021/acs.jafc.6b01095 PMID: 27170269
  107. Yu H, Huang Q. Improving the oral bioavailability of curcumin using novel organogel-based nanoemulsions. J Agric Food Chem 2012; 60(21): 5373-9. doi: 10.1021/jf300609p PMID: 22506728
  108. Martin B, Garrait G, Beyssac E, Goudouneche D, Perez E, Franceschi S. Organogel nanoparticles as a new way to improve oral bioavailability of poorly soluble compounds. Pharm Res 2020; 37(6): 92. doi: 10.1007/s11095-020-02808-w PMID: 32394200
  109. Kirilov P, Rum S, Gilbert E, et al. Aqueous dispersions of organogel nanoparticles - Potential systems for cosmetic and dermo-cosmetic applications. Int J Cosmet Sci 2014; 36(4): 336-46. doi: 10.1111/ics.12131 PMID: 24749969
  110. Kirilov P, Gauffre F, Franceschi-Messant S, Perez E, Rico-Lattes I. Rheological characterization of a new type of colloidal dispersion based on nanoparticles of gelled oil. J Phys Chem B 2009; 113(32): 11101-8. doi: 10.1021/jp905260s PMID: 19621943
  111. Simmons B, Li S, John VT, et al. Spatial compartmentalization of nanoparticles into strands of a self-assembled organogel. Nano Lett 2002; 2(10): 1037-42. doi: 10.1021/nl015691r
  112. Banerjee S, Das RK, Terech P, et al. Hybrid organogels and aerogels from co-assembly of structurally different low molecular weight gelators. J Mater Chem C Mater Opt Electron Devices 2013; 1(20): 3305-16. doi: 10.1039/c3tc30104d
  113. Zhao T, Wang G, Hao D, Chen L, Liu K, Liu M. Macroscopic layered organogel-hydrogel hybrids with controllable wetting and swelling performance. Adv Funct Mater 2018; 28(49): 1800793. doi: 10.1002/adfm.201800793
  114. Ash D, Majee SB, Avlani D. Characterisation of novel topical olive oil oleohydrogel hybrid for controlled drug release. Int J Pharm Sci Rev Res 2020; 64(1): 128-32. doi: 10.47583/ijpsrr.2020.v64i01.024
  115. Li C, Feng S, Li C, et al. Synthesizing organo/hydrogel hybrids with diverse programmable patterns and ultrafast self-actuating ability via a site-specific "in situ" transformation strategy. Adv Funct Mater 2020; 30(32): 2002163. doi: 10.1002/adfm.202002163
  116. Wadhavane PD, Izquierdo MA, Galindo F, Burguete MI, Luis SV. Organogel-quantum dots hybrid materials displaying fluorescence sensitivity and structural stability towards nitric oxide. Soft Matter 2012; 8(16): 4373-81. doi: 10.1039/c2sm07175d
  117. Wadhavane PD, Galian RE, Izquierdo MA, et al. Photoluminescence enhancement of CdSe quantum dots: A case of organogel- nanoparticle symbiosis. J Am Chem Soc 2012; 134(50): 20554-63. doi: 10.1021/ja310508r PMID: 23214451
  118. Dos Santos MC, Kroetz T, Dora CL, et al. Elucidating Bauhinia variegata lectin/phosphatidylcholine interactions in lectin-containing liposomes. J Colloid Interface Sci 2018; 519: 232-41. doi: 10.1016/j.jcis.2018.02.028 PMID: 29501995
  119. Chakrabarty A, Maitra U. Organogels from dimeric bile acid esters: In situ formation of gold nanoparticles. J Phys Chem B 2013; 117(26): 8039-46. doi: 10.1021/jp4029497 PMID: 23751127
  120. Peveler WJ, Bear JC, Southern P, Parkin IP. Organic-inorganic hybrid materials: Nanoparticle containing organogels with myriad applications. Chem Commun 2014; 50(92): 14418-20. doi: 10.1039/C4CC05745G PMID: 25302345
  121. Shakeel A, Farooq U, Gabriele D, Marangoni AG, Lupi FR. Bigels and multi-component organogels: An overview from rheological perspective. Food Hydrocoll 2021; 111: 106190. doi: 10.1016/j.foodhyd.2020.106190
  122. Behera B, Sagiri SS, Pal K, et al. Sunflower oil and protein-based novel bigels as matrices for drug delivery applications-characterization and in vitro antimicrobial efficiency. Polym Plast Technol Eng 2015; 54(8): 837-50. doi: 10.1080/03602559.2014.974268
  123. Patel AR, Mankoč B, Bin Sintang MD, Lesaffer A, Dewettinck K. Fumed silica-based organogels and ‘aqueous-organic’ bigels. RSC Advances 2015; 5(13): 9703-8. doi: 10.1039/C4RA15437A
  124. Gökçe EH, Yurdasiper A, Korkmaz E, Özer Ö. A novel preparation method for organogels: High-speed homogenization and micro-irradiation. AAPS PharmSciTech 2013; 14(1): 391-7. doi: 10.1208/s12249-013-9922-8 PMID: 23344854
  125. Bedse A, Singh D, Raut S, Baviskar K, Wable A, Pagare P. Organogel: A propitious carman in drug delivery system. Advances in Drug Delivery Methods. IntechOpen 2022.
  126. Banaś K, Harasym J. Natural gums as oleogelators. Int J Mol Sci 2021; 22(23): 12977. doi: 10.3390/ijms222312977 PMID: 34884775
  127. Harris L, Rosen-Kligvasser J, Davidovich-Pinhas M. Gelation of oil using combination of different free fatty acids. Food Struct 2019; 21: 100121. doi: 10.1016/j.foostr.2019.100121
  128. Pal KB, Mukhopadhyay B. Carbohydrate-basedsafe fuel gel with significant self-healing property. ChemistrySelect 2017; 2(3): 967-74. doi: 10.1002/slct.201601776
  129. Nostro PL, Ramsch R, Fratini E, et al. Organogels from a vitamin C-based surfactant. J Phys Chem B 2007; 111(40): 11714-21. doi: 10.1021/jp0730085 PMID: 17880125
  130. Vigato AA, Querobino SM, de Faria NC, et al. Physico-chemical characterization and biopharmaceutical evaluation of lipid-poloxamer-based organogels for curcumin skin delivery. Front Pharmacol 2019; 10: 1006. doi: 10.3389/fphar.2019.01006 PMID: 31572185
  131. Rogers M, Wright AJ, Marangoni A. Ceramide oleogels. Edible Oleogels. AOCS Press 2011. doi: 10.1016/B978-0-9830791-1-8.50013-9
  132. Rogers MA, Wright AJ, Marangoni AG. Nanostructuring fiber morphology and solvent inclusions in 12-hydroxystearic acid/canola oil organogels. Curr Opin Colloid Interface Sci 2009; 14(1): 33-42. doi: 10.1016/j.cocis.2008.02.004
  133. Motulsky A, Lafleur M, Couffin-Hoarau AC, et al. Characterization and biocompatibility of organogels based on L-alanine for parenteral drug delivery implants. Biomaterials 2005; 26(31): 6242-53. doi: 10.1016/j.biomaterials.2005.04.004 PMID: 15916802
  134. Murdan S, Gregoriadis G, Florence AT. Novel sorbitan monostearate organogels. J Pharm Sci 1999; 88(6): 608-14. doi: 10.1021/js980342r PMID: 10350496
  135. Meng Z, Guo Y, Wang Y, Liu Y. Organogels based on the polyglyceryl fatty acid ester and sunflower oil: Macroscopic property, microstructure, interaction force, and application. Lebensm Wiss Technol 2019; 116: 108590. doi: 10.1016/j.lwt.2019.108590
  136. Suzuki M, Nigawara T, Yumoto M, Kimura M, Shirai H, Hanabusa K. L-lysine based gemini organogelators: Their organogelation properties and thermally stable organogels. Org Biomol Chem 2003; 1(22): 4124-31. doi: 10.1039/b308371c PMID: 14664402
  137. Mitra A, Sarkar V, Mukhopadhyay B. Simple carbohydrate-derived multifunctional gels. ChemistrySelect 2017; 2(31): 9958-61. doi: 10.1002/slct.201701495
  138. Agrawal V, Gupta V, Ramteke S, Trivedi P. Preparation and evaluation of tubular micelles of pluronic lecithin organogel for transdermal delivery of sumatriptan. AAPS PharmSciTech 2010; 11(4): 1718-25. doi: 10.1208/s12249-010-9540-7 PMID: 21128126
  139. Shchipunov YA. Lecithin organogel. Colloids Surf A Physicochem Eng Asp 2001; 183-185(183–185): 541-54. doi: 10.1016/S0927-7757(01)00511-8
  140. Jadhav KR, Kadam VJ, Pisal SS. Formulation and evaluation of lecithin organogel for topical delivery of fluconazole. Curr Drug Deliv 2009; 6(2): 174-83. doi: 10.2174/156720109787846252 PMID: 19450224
  141. Lim PFC, Liu XY, Kang L, Ho PCL, Chan YW, Chan SY. Limonene GP1/PG organogel as a vehicle in transdermal delivery of haloperidol. Int J Pharm 2006; 311(1-2): 157-64. doi: 10.1016/j.ijpharm.2005.12.042 PMID: 16451823
  142. Charoensumran P, Ajiro H. Controlled release of testosterone by polymer-polymer interaction enriched organogel as a novel transdermal drug delivery system: Effect of limonene/PG and carbon-chain length on drug permeability. React Funct Polym 2020; 148: 104461. doi: 10.1016/j.reactfunctpolym.2019.104461
  143. Zahi MR, Wan P, Liang H, Yuan Q. Formation and stability of D-limonene organogel-based nanoemulsion prepared by a high-pressure homogenizer. J Agric Food Chem 2014; 62(52): 12563-9. doi: 10.1021/jf5032108 PMID: 25514199
  144. Liu H, Wang Y, Han F, Yao H, Li S. Gelatin-stabilised microemulsion-based organogels facilitates percutaneous penetration of Cyclosporin A in vitro and dermal pharmacokinetics in vivo. J Pharm Sci 2007; 96(11): 3000-9. doi: 10.1002/jps.20898 PMID: 17705159
  145. Kantaria S, Rees GD, Lawrence MJ. Gelatin-stabilised microemulsion-based organogels: Rheology and application in iontophoretic transdermal drug delivery. J Control Release 1999; 60(2-3): 355-65. doi: 10.1016/S0168-3659(99)00092-9 PMID: 10425340
  146. Sagiri SS, Behera B, Pal K, Basak P. Lanolin-based organogels as a matrix for topical drug delivery. J Appl Polym Sci 2013; 128(6): 3831-9. doi: 10.1002/app.38590
  147. Nazali NNM, Nordin NN, Khalit MI, Manan NFA. Finite element analysis of animal skin under different temperatures. AIP Conference Proceedings. AIP Publishing 2023. doi: 10.1063/5.0118580
  148. Sharma G, Devi N, Thakur K, Jain A, Katare OP. Lanolin-based organogel of salicylic acid: Evidences of better dermatokinetic profile in imiquimod-induced keratolytic therapy in BALB/c mice model. Drug Deliv Transl Res 2018; 8(2): 398-413. doi: 10.1007/s13346-017-0364-9 PMID: 28224375
  149. Kaplan S, Colak M, Hosgoren H, Pirinccioglu N. Design of L-lysine-based organogelators and their applications in drug release processes. ACS Omega 2019; 4(7): 12342-56. doi: 10.1021/acsomega.9b01086 PMID: 31460352
  150. Aguilar-Zárate M, Macias-Rodriguez BA, Toro-Vazquez JF, Marangoni AG. Engineering rheological properties of edible oleogels with ethylcellulose and lecithin. Carbohydr Polym 2019; 205: 98-105. doi: 10.1016/j.carbpol.2018.10.032 PMID: 30446154
  151. Bin Sintang MD, Danthine S, Brown A, et al. Phytosterols-induced viscoelasticity of oleogels prepared by using monoglycerides. Food Res Int 2017; 100(Pt 1): 832-40. doi: 10.1016/j.foodres.2017.07.079 PMID: 28873756
  152. Bin Sintang MD, Danthine S, Patel AR, Rimaux T, Van De Walle D, Dewettinck K. Mixed surfactant systems of sucrose esters and lecithin as a synergistic approach for oil structuring. J Colloid Interface Sci 2017; 504: 387-96. doi: 10.1016/j.jcis.2017.05.114 PMID: 28586736
  153. Tang C, Wan Z, Chen Y, et al. Structure and properties of organogels prepared from rapeseed oil with stigmasterol. Foods 2022; 11(7): 939. doi: 10.3390/foods11070939 PMID: 35407025
  154. Giuri D, Zanna N, Tomasini C. Low molecular weight gelators based on functionalized l-dopa promote organogels formation. Gels 2019; 5(2): 27. doi: 10.3390/gels5020027 PMID: 31091701
  155. Suzuki M, Hanabusa K. Polymer organogelators that make supramolecular organogels through physical cross-linking and self- assembly. Chem Soc Rev 2010; 39(2): 455-63. doi: 10.1039/B910604A PMID: 20111770
  156. Marui Y, Kikuzawa A, Kida T, Akashi M. Unique organogel formation with macroporous materials constructed by the freeze-drying of aqueous cyclodextrin solutions. Langmuir 2010; 26(13): 11441-5. doi: 10.1021/la1009434 PMID: 20524684
  157. Godoi KRR, Basso RC, Ming CC, et al. Physicochemical and rheological properties of soybean organogels: Interactions between different structuring agents. Food Res Int 2019; 124: 108475. doi: 10.1016/j.foodres.2019.05.023 PMID: 31466657
  158. Martins AJ, Cerqueira MA, Cunha RL, Vicente AA. Fortified beeswax oleogels: Effect of β-carotene on the gel structure and oxidative stability. Food Funct 2017; 8(11): 4241-50. doi: 10.1039/C7FO00953D PMID: 29051941
  159. Lu J, Deegan AJ, Cheng Y, et al. Application of OCT-derived attenuation coefficient in acute burn-damaged skin. Lasers Surg Med 2021; 53(9): 1192-200. doi: 10.1002/lsm.23415 PMID: 33998012
  160. Del-Valle M, Lins E, Ana P. Assessment of simulated osteoporosis in alveolar bone using optical coherence tomography. J Biophotonics 2019; 12(12): e201900171. doi: 10.1002/jbio.201900171 PMID: 31483943
  161. Vigato AA, Machado IP, Del Valle M, et al. Monoketonic curcuminoid-lidocaine co-deliver using thermosensitive organogels: From drug synthesis to epidermis structural studies. Pharmaceutics 2022; 14(2): 293. doi: 10.3390/pharmaceutics14020293 PMID: 35214026
  162. Yu Y, Chu N, Pan Q, et al. Solvent effects on gelation behavior of the organogelator based on l-phenylalanine dihydrazide derivatives. Materials 2019; 12(12): 1890. doi: 10.3390/ma12121890 PMID: 31212767
  163. Guenet JM. Physical aspects of organogelation: A point of view. Gels 2021; 7(2): 65. doi: 10.3390/gels7020065 PMID: 34205955
  164. Taylor MJ, Tomlins P, Sahota TS. Thermoresponsive gels. Gels 2017; 3(1): 4. doi: 10.3390/gels3010004 PMID: 30920501
  165. Okesola BO, Smith DK. Applying low-molecular weight supramolecular gelators in an environmental setting - self-assembled gels as smart materials for pollutant removal. Chem Soc Rev 2016; 45(15): 4226-51. doi: 10.1039/C6CS00124F PMID: 27241027
  166. Babu SS, Praveen VK, Ajayaghosh A. Functional π-gelators and their applications. Chem Rev 2014; 114(4): 1973-2129. doi: 10.1021/cr400195e PMID: 24400783
  167. Yang R, Peng S, Hughes TC. Multistimuli responsive organogels based on a reactive azobenzene gelator. Soft Matter 2014; 10(13): 2188-96. doi: 10.1039/C3SM53145G PMID: 24652628
  168. Kumar S, Wu L, Sharma N, et al. Theoretical and experimental studies of an oseltamivir-triazole-based thermoresponsive organogel. RSC Advances 2019; 9(36): 21031-41. doi: 10.1039/C9RA02463H PMID: 35515532
  169. Li JL, Wang RY, Liu XY, Pan HH. Nanoengineering of a biocompatible organogel by thermal processing. J Phys Chem B 2009; 113(15): 5011-5. doi: 10.1021/jp811215t PMID: 19309102
  170. Khuphe M, Mukonoweshuro B, Kazlauciunas A, Thornton PD. A vegetable oil-based organogel for use in pH-mediated drug delivery. Soft Matter 2015; 11(47): 9160-7. doi: 10.1039/C5SM02176F PMID: 26414286
  171. Li Z, Cao J, Hu B, et al. Studies on the in vitro and in vivo degradation behavior of amino acid derivative-based organogels. Drug Dev Ind Pharm 2016; 42(11): 1732-41. doi: 10.3109/03639045.2016.1171333 PMID: 27018332
  172. Raza A, Hayat U, Zhang X, Wang JY. Self-assembled zein organogels as in situ forming implant drug delivery system and 3D printing ink. Int J Pharm 2022; 627: 122206. doi: 10.1016/j.ijpharm.2022.122206 PMID: 36126824
  173. Yetiskin B, Okay O. Silk fibroin cryogel building adaptive organohydrogels with switching mechanics and viscoelasticity. ACS Appl Polym Mater 2022; 4(7): 5234-45. doi: 10.1021/acsapm.2c00741
  174. Sagiri SS, Sethy J, Pal K, Banerjee I, Pramanik K, Maiti TK. Encapsulation of vegetable organogels for controlled delivery applications. Des Monomers Polym 2013; 16(4): 366-76. doi: 10.1080/15685551.2012.747154
  175. Chang CE, Hsieh CM, Chen LC, et al. Novel application of pluronic lecithin organogels (PLOs) for local delivery of synergistic combination of docetaxel and cisplatin to improve therapeutic efficacy against ovarian cancer. Drug Deliv 2018; 25(1): 632-43. doi: 10.1080/10717544.2018.1440444 PMID: 29463123
  176. Fardous J, Omoso Y, Joshi A, et al. Development and characterization of gel-in-water nanoemulsion as a novel drug delivery system. Mater Sci Eng C 2021; 124: 112076. doi: 10.1016/j.msec.2021.112076 PMID: 33947568
  177. Balaguru S, Ramya Devi D, Vedha Hari BN. Organogel: An ideal drug delivery carrier for non steroidal anti-inflammatory drugs through topical route. Int J Pharm Qual Assur 2015; 6: 32-7.
  178. Esposito E, Drechsler M, Huang N, et al. Ethosomes and organogels for cutaneous administration of crocin. Biomed Microdevices 2016; 18(6): 108. doi: 10.1007/s10544-016-0134-3 PMID: 27830454
  179. Yadav E, Khatana AK, Sebastian S, Gupta MK. DAP derived fatty acid amide organogelators as novel carrier for drug incorporation and pH-responsive release. New J Chem 2021; 45(1): 415-22. doi: 10.1039/D0NJ04611F
  180. Iwanaga K, Sumizawa T, Miyazaki M, Kakemi M. Characterization of organogel as a novel oral controlled release formulation for lipophilic compounds. Int J Pharm 2010; 388(1-2): 123-8. doi: 10.1016/j.ijpharm.2009.12.045 PMID: 20045041
  181. Fetih G. Meloxicam formulations for transdermal delivery: Hydrogels versus organogels. J Drug Deliv Sci Technol 2010; 20(6): 451-6. doi: 10.1016/S1773-2247(10)50078-9
  182. Zheng H, Deng L, Que F, Feng F, Zhang H. Physical characterization and antimicrobial evaluation of glycerol monolaurate organogels. Colloids Surf A Physicochem Eng Asp 2016; 502: 19-25. doi: 10.1016/j.colsurfa.2016.05.001
  183. Rowley JV, Wall P, Yu H, et al. Antimicrobial dye-conjugated polyglobalide-based organogels. ACS Appl Polym Mater 2020; 2(7): 2927-33. doi: 10.1021/acsapm.0c00422
  184. Satapathy D, Sagiri SS, Pal K, Pramanik K. Development of mustard oil- and groundnut oil-based span 40 organogels as matrices for controlled drug delivery. Des Monomers Polym 2014; 17(6): 545-56. doi: 10.1080/15685551.2013.869652
  185. Sagiri SS, Behera B, Sudheep T, Pal K. Effect of composition on the properties of tween-80-span-80-based organogels. Des Monomers Polym 2012; 15(3): 253-73. doi: 10.1163/156855511X615669
  186. Behera B, Patil V, Sagiri SS, Pal K, Ray SS. Span-60-based organogels as probable matrices for transdermal/topical delivery systems. J Appl Polym Sci 2012; 125(2): 852-63. doi: 10.1002/app.35674
  187. Satapathy D, Biswas D, Behera B, Sagiri SS, Pal K, Pramanik K. Sunflower-oil-based lecithin organogels as matrices for controlled drug delivery. J Appl Polym Sci 2013; 129(2): 585-94. doi: 10.1002/app.38498
  188. Singh VK, Pal K, Pradhan DK, Pramanik K. Castor oil and sorbitan monopalmitate based organogel as a probable matrix for controlled drug delivery. J Appl Polym Sci 2013; 130(3): 1503-15. doi: 10.1002/app.39315
  189. Shah DK, Sagiri SS, Behera B, Pal K, Pramanik K. Development of olive oil based organogels using sorbitan monopalmitate and sorbitan monostearate: A comparative study. J Appl Polym Sci 2013; 129(2): 793-805. doi: 10.1002/app.38834
  190. Pradhan S, Sagiri SS, Singh VK, Pal K, Ray SS, Pradhan DK. Palm oil-based organogels and microemulsions for delivery of antimicrobial drugs. J Appl Polym Sci 2014; 131(6): app.39979. doi: 10.1002/app.39979
  191. Liu DE, Chen Q, Long YB, Ma J, Gao H. A thermo-responsive polyurethane organogel for norfloxacin delivery. Polym Chem 2018; 9(2): 228-35. doi: 10.1039/C7PY01803G
  192. Mishra M. Handbook of encapsulation and controlled release. CRC Press 2015. doi: 10.1201/b19038
  193. Ribeiro AR, Silva SS, Reis RL. Challenges and opportunities on vegetable oils derived systems for biomedical applications. Biomaterials Advances 2022; 134: 112720. doi: 10.1016/j.msec.2022.112720 PMID: 35589472
  194. Mukherjee S, Majee SB, Biswas GR. Formulation and in vitro characterisation of soybean oil-hpmck4m based bigel matrix for topical drug delivery. Int J Appl Pharm 2019; 7: 33-8.
  195. Sagiri SS, Behera B, Rafanan RR, et al. Organogels as matrices for controlled drug delivery: A review on the current state. Soft Mater 2014; 12(1): 47-72. doi: 10.1080/1539445X.2012.756016
  196. Paquete-Ferreira J, Leisico F, Correia MA, Engrola FS, Santos-Silva T, Santos MF. Using small-angle X-ray scattering to characterize biological systems: A general overview and practical tips. Adv Methods Struct Biol 2023; 381-403.
  197. Braggin G. Effect of Surfactant Architecture on Conformational Transitions of Conjugated Polyelectrolytes. California Polytechnic State University 2015. doi: 10.15368/theses.2015.70
  198. Kirilov P, Le Cong AK, Denis A, Rabehi H, Rum S, Villa C. Organogels for cosmetic and dermocosmetic applications. Evaluation 2015; 6: 30-6.
  199. Newbloom GM, Weigandt KM, Pozzo DC. Structure and property development of poly(3-hexylthiophene) organogels probed with combined rheology, conductivity and small angle neutron scattering. Soft Matter 2012; 8(34): 8854-64. doi: 10.1039/c2sm26114f
  200. Terech P, Friol S. Rheometry of an androstanol steroid derivative paramagnetic organogel. Methodology for a comparison with a fatty acid organogel. Tetrahedron 2007; 63(31): 7366-74. doi: 10.1016/j.tet.2007.02.067
  201. Stojkov G, Niyazov Z, Picchioni F, Bose RK. Relationship between structure and rheology of hydrogels for various applications. Gels 2021; 7(4): 255. doi: 10.3390/gels7040255 PMID: 34940315
  202. Echeverría C, Mijangos C. Rheology applied to microgels: Brief (revision of the) state of the art. Polymers 2022; 14(7): 1279. doi: 10.3390/polym14071279 PMID: 35406152
  203. Larson RG, Wei Y. A review of thixotropy and its rheological modeling. J Rheol 2019; 63(3): 477-501. doi: 10.1122/1.5055031
  204. Rajpoot K. Acyclovir-loaded sorbitan esters-based organogel: Development and rheological characterization. Artif Cells Nanomed Biotechnol 2017; 45(3): 551-9. doi: 10.3109/21691401.2016.1161639 PMID: 27019055
  205. Kandanelli R, Maitra U. Charge-transfer interaction mediated organogels from bile acid appended anthracenes: Rheological and microscopic studies. Photochem Photobiol Sci 2012; 11(11): 1724-9. doi: 10.1039/c2pp25088h PMID: 22895532
  206. Toro-Vazquez JF, Morales-Rueda J, Torres-Martínez A, Charó-Alonso MA, Mallia VA, Weiss RG. Cooling rate effects on the microstructure, solid content, and rheological properties of organogels of amides derived from stearic and (R)-12-hydroxystearic acid in vegetable oil. Langmuir 2013; 29(25): 7642-54. doi: 10.1021/la400809a PMID: 23697446
  207. Fox CH, ter Hurrne GM, Wojtecki RJ, et al. Supramolecular motifs in dynamic covalent PEG-hemiaminal organogels. Nat Commun 2015; 6(1): 7417. doi: 10.1038/ncomms8417 PMID: 26174864
  208. Allen L, Ansel HC. Ansel’s pharmaceutical dosage forms and drug delivery systems. Lippincott Williams & Wilkins 2013.
  209. Dassanayake LSK, Kodali DR, Ueno S, Sato K. Crystallization kinetics of organogels prepared by rice bran wax and vegetable oils. J Oleo Sci 2012; 61(1): 1-9. doi: 10.5650/jos.61.1 PMID: 22188800
  210. Sagiri SS, Kumar U, Champaty B, Singh VK, Pal K. Thermal, electrical, and mechanical properties of tween 80/span 80–based organogels and its application in iontophoretic drug delivery. J Appl Polym Sci 2015; 132(6): app.41419. doi: 10.1002/app.41419
  211. Rocha JCB, Lopes JD, Mascarenhas MCN, Arellano DB, Guerreiro LMR, da Cunha RL. Thermal and rheological properties of organogels formed by sugarcane or candelilla wax in soybean oil. Food Res Int 2013; 50(1): 318-23. doi: 10.1016/j.foodres.2012.10.043
  212. Christ E, Blanc C, Al Ouahabi A, et al. Origin of invariant gel melting temperatures in the C-T phase diagram of an Organogel. Langmuir 2016; 32(19): 4975-82. doi: 10.1021/acs.langmuir.6b00995 PMID: 27088451
  213. Nippe S, General S. Investigation of injectable drospirenone organogels with regard to their rheology and comparison to non-stabilized oil-based drospirenone suspensions. Drug Dev Ind Pharm 2015; 41(4): 681-91. doi: 10.3109/03639045.2014.895375 PMID: 24621345
  214. Lupi FR, Gabriele D, Baldino N, Mijovic P, Parisi OI, Puoci F. Olive oil/policosanol organogels for nutraceutical and drug delivery purposes. Food Funct 2013; 4(10): 1512-20. doi: 10.1039/c3fo60259a PMID: 24056806
  215. Flo A, Calpena AC, Halbaut L, Araya EI, Fernández F, Clares B. Melatonin delivery: Transdermal and transbuccal evaluation in different vehicles. Pharm Res 2016; 33(7): 1615-27. doi: 10.1007/s11095-016-1901-9 PMID: 26956459
  216. Iwanaga K, Kawai M, Miyazaki M, Kakemi M. Application of organogels as oral controlled release formulations of hydrophilic drugs. Int J Pharm 2012; 436(1-2): 869-72. doi: 10.1016/j.ijpharm.2012.06.041 PMID: 22766444
  217. Lee PI. Kinetics of drug release from hydrogel matrices. J Control Release 1985; 2: 277-88. doi: 10.1016/0168-3659(85)90051-3
  218. Abrami M, Marizza P, Zecchin F, et al. Theoretical importance of pvp-alginate hydrogels structure on drug release kinetics. Gels 2019; 5(2): 22. doi: 10.3390/gels5020022 PMID: 31003517
  219. Esposito CL, Tardif V, Sarrazin M, Kirilov P, Roullin VG. Preparation and characterization of 12-HSA-based organogels as injectable implants for the controlled delivery of hydrophilic and lipophilic therapeutic agents. Mater Sci Eng C 2020; 114: 110999. doi: 10.1016/j.msec.2020.110999 PMID: 32993979
  220. Salmon D, Gilbert E, Gioia B, et al. New easy handling and sampling device for bioavailability screening of topical formulations. Eur J Dermatol 2015; 25(S1): 23-9. doi: 10.1684/ejd.2015.2551 PMID: 26083671
  221. Bastiat G, Plourde F, Motulsky A, et al. Tyrosine-based rivastigmine-loaded organogels in the treatment of Alzheimer’s disease. Biomaterials 2010; 31(23): 6031-8. doi: 10.1016/j.biomaterials.2010.04.009 PMID: 20472283
  222. Kim SM, Yang Y, Oh SJ, Hong Y, Seo M, Jang M. Cancer-derived exosomes as a delivery platform of CRISPR/Cas9 confer cancer cell tropism-dependent targeting. J Control Release 2017; 266: 8-16. doi: 10.1016/j.jconrel.2017.09.013 PMID: 28916446
  223. Dai M, Bai L, Zhang H, et al. A novel flunarizine hydrochloride-loaded organogel for intraocular drug delivery in situ: Design, physicochemical characteristics and inspection. Int J Pharm 2020; 576: 119027. doi: 10.1016/j.ijpharm.2020.119027 PMID: 31953090
  224. Guenet JM. Organogels: Thermodynamics, structure, solvent role, and properties. Springer 2016. doi: 10.1007/978-3-319-33178-2
  225. Su X, Wang H, Tian Z, et al. A solvent co-cross-linked organogel with fast self-healing capability and reversible adhesiveness at extreme temperatures. ACS Appl Mater Interfaces 2020; 12(26): 29757-66. doi: 10.1021/acsami.0c04933 PMID: 32515578
  226. Zhang Z, Wang L, Yu H, et al. Highly transparent, self-healable, and adhesive organogels for bio-inspired intelligent ionic skins. ACS Appl Mater Interfaces 2020; 12(13): 15657-66. doi: 10.1021/acsami.9b22707 PMID: 32141727
  227. Fardous J, Omoso Y, Yoshida K, Ono F, Patwary MKA, Ijima H. Gel-in-water nanodispersion for potential application in intravenous delivery of anticancer drugs. J Biosci Bioeng 2022; 133(2): 174-80. doi: 10.1016/j.jbiosc.2021.10.001 PMID: 34789413
  228. Angelico R, Ceglie A, Colafemmina G, et al. Biocompatible lecithin organogels: Structure and phase equilibria. Langmuir 2005; 21(1): 140-8. doi: 10.1021/la047974f PMID: 15620295
  229. Bhasha SA, Khalid SA, Duraivel S, Bhowmik D, Kumar KS. Recent trends in usage of polymers in the formulation of dermatological gels. Indian J Res Pharm Biotechnol 2013; 1(2): 161-8.
  230. Yoshii Y, Hoshino N, Takeda T, et al. The formation of organogels and helical nanofibers from simple organic salts. Chemistry 2014; 20(49): 16279-85. doi: 10.1002/chem.201404043 PMID: 25308219
  231. Zhu L, Li X, Wu S, et al. Chirality control for in situ preparation of gold nanoparticle superstructures directed by a coordinatable organogelator. J Am Chem Soc 2013; 135(24): 9174-80. doi: 10.1021/ja403722t PMID: 23705828
  232. Würthner F, Hanke B, Lysetska M, Lambright G, Harms GS. Gelation of a highly fluorescent urea-functionalized perylene bisimide dye. Org Lett 2005; 7(6): 967-70. doi: 10.1021/ol0475820 PMID: 15760115
  233. Hawk JL. Structure Activity Relationships in the Fracture of Hybrid Covalent/Metallosupramolecular Organogels. Duke University 2014.
  234. Cerqueira MA, Valoppi F, Pal K. Oleogels and organogels: A promising tool for new functionalities. Gels MDPI 2022; 8(6): 349.
  235. Lazrag M, Steiner E, Lemaitre C, et al. Experimental and thermodynamic comparison of the separation of CO2/toluene and CO2/tetralin mixtures in the process of organogel supercritical drying for aerogels production. J Sol-Gel Sci Technol 2017; 84(3): 453-65. doi: 10.1007/s10971-017-4465-1
  236. Mishra M. Handbook of encapsulation and controlled release. CRC Press 2015. doi: 10.1201/b19038
  237. Perez E, Franceschi-messant S, Rico-Lattes I. Absorbent/solubilizing materials based on microporous organogels. Google Patents 2016.
  238. Perez E, Franceschi-messant S, Rico-Lattes I. Microporous organogel absorbing/solubilising materials. Google Patents 2016.
  239. Yang J, Yan H, Niu F, Zhang H. Probing of the magnetic responsive behavior of magnetorheological organogel under step field perturbation. Colloid Polym Sci 2018; 296(2): 309-17. doi: 10.1007/s00396-017-4249-8
  240. Zhang H, Yan H, Hu Z, Yang J, Niu F. Magnetorheological fluid based on thixotropic PTFE-oil organogel. J Magn Magn Mater 2018; 451: 102-9. doi: 10.1016/j.jmmm.2017.11.005
  241. Duncan TT, Berrie BH, Weiss RG. Soft, peelable organogels from partially hydrolyzed poly (vinyl acetate) and benzene-1,4-diboronic acid: Applications to clean works of art. ACS Appl Mater Interfaces 2017; 9(33): 28069-78. doi: 10.1021/acsami.7b09473 PMID: 28787129
  242. Xia H, Liu G, Zhao C, et al. Fluorescence sensing of amine vapours based on ZnS-supramolecular organogel hybrid films. RSC Advances 2017; 7(28): 17264-70. doi: 10.1039/C7RA00556C
  243. Smith NL, Coukouma AE, Wilson DC, Ho B, Gray V, Asher SA. Stimuli-responsive pure protein organogel sensors and biocatalytic materials. ACS Appl Mater Interfaces 2020; 12(1): 238-49. doi: 10.1021/acsami.9b18191 PMID: 31820639
  244. Ávila-Niño JA, Olvera LI. Ionic self-assembled organogel polyelectrolytes for energy storage applications. RSC Advances 2020; 10(20): 11743-9. doi: 10.1039/D0RA00825G PMID: 35496594
  245. Jing T, Xu B, Yang Y, Li M, Gao Y. Organogel electrode enables highly transparent and stretchable triboelectric nanogenerators of high power density for robust and reliable energy harvesting. Nano Energy 2020; 78: 105373. doi: 10.1016/j.nanoen.2020.105373
  246. Zhang W, Feng P, Chen J, Sun Z, Zhao B. Electrically conductive hydrogels for flexible energy storage systems. Prog Polym Sci 2019; 88: 220-40. doi: 10.1016/j.progpolymsci.2018.09.001
  247. Zhang Y, Zhao Y, Peng Z, et al. Ultrastretchable polyaniline-based conductive organogel with high strain sensitivity. ACS Mater Lett 2021; 3(10): 1477-83. doi: 10.1021/acsmaterialslett.1c00368
  248. Gao Y, Shi L, Lu S, et al. Highly stretchable organogel ionic conductors with extreme-temperature tolerance. Chem Mater 2019; 31(9): 3257-64. doi: 10.1021/acs.chemmater.9b00170
  249. Zhang H, Niu W, Zhang S. Extremely stretchable and self-healable electrical skin with mechanical adaptability, an ultrawide linear response range, and excellent temperature tolerance. ACS Appl Mater Interfaces 2019; 11(27): 24639-47. doi: 10.1021/acsami.9b09430 PMID: 31257840
  250. Sun Y, Wu Q, Shi G. Supercapacitors based on self-assembled graphene organogel. Phys Chem Chem Phys 2011; 13(38): 17249-54. doi: 10.1039/c1cp22409c PMID: 21879072
  251. Ahmad MU, Ali SM, Ahmad I. Applications of nanotechnology in pharmaceutical development. Lipids in nanotechnology. Elsevier 2012; pp. 171-90. doi: 10.1016/B978-0-9818936-7-9.50010-X
  252. Ajayaghosh A, Vijayakumar C, Praveen VK. White light emitting organogel and process thereof. Google Patents 2013.
  253. Ma Y, Ma H, Yang Z, et al. Methyl cinnamate-derived fluorescent rigid organogels based on cooperative π-π stacking and C═O···π interactions instead of H-bonding and alkyl chains. Langmuir 2015; 31(17): 4916-23. doi: 10.1021/acs.langmuir.5b00275 PMID: 25876135
  254. Jiao T, Huang Q, Zhang Q, Xiao D, Zhou J, Gao F. Self-assembly of organogels via new luminol imide derivatives: Diverse nanostructures and substituent chain effect. Nanoscale Res Lett 2013; 8(1): 278. doi: 10.1186/1556-276X-8-278 PMID: 23758979

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers