Recent Updates on the Therapeutics Benefits, Clinical Trials, and Novel Delivery Systems of Chlorogenic Acid for the Management of Diseases with a Special Emphasis on Ulcerative Colitis


Cite item

Full Text

Abstract

Ulcerative colitis (UC) is a multifactorial disorder of the large intestine, especially the colon, and has become a challenge globally. Allopathic medicines are primarily available for the treatment and prevention of UC. However, their uses are limited due to several side effects. Hence, an alternative therapy is of utmost importance in this regard. Herbal medicines are considered safe and effective for managing human health problems. Chlorogenic acid (CGA), the herbal-derived bioactive, has been reported for pharmacological effects like antiinflammatory, immunomodulatory, antimicrobial, hepatoprotective, antioxidant, anticancer, etc. This review aims to understand the antiinflammatory and chemopreventive potential of CGA against UC. Apart from its excellent therapeutic potential, it has been associated with low absorption and poor oral bioavailability. In this context, colon-specific novel drug delivery systems (NDDS)are pioneering to overcome these problems. The pertinent literature was compiled from a thorough search on various databases such as ScienceDirect, PubMed, Google Scholar, etc., utilizing numerous keywords, including ulcerative colitis, herbal drugs, CGA, pharmacological activities, mechanism of actions, nanoformulations, clinical updates, and many others. Relevant publications accessed till now were chosen, whereas non-relevant papers, unpublished data, and non-original articles were excluded. The present review comprises recent studies on pharmacological activities and novel drug delivery systems of CGA for managing UC. In addition, the clinical trials of CGA against UC have been discussed.

About the authors

Ranjit K. Harwansh

Institute of Pharmaceutical Research, GLA University

Author for correspondence.
Email: info@benthamscience.net

Hemant Bhati

Institute of Pharmaceutical Research, GLA University

Email: info@benthamscience.net

Rohitas Deshmukh

Institute of Pharmaceutical Research, GLA University

Email: info@benthamscience.net

References

  1. Zhang YZ, Li YY. Inflammatory bowel disease: Pathogenesis. World J Gastroenterol 2014; 20(1): 91-9. doi: 10.3748/wjg.v20.i1.91 PMID: 24415861
  2. Ferretti F, Cannatelli R, Monico MC, Maconi G, Ardizzone S. An update on current pharmacotherapeutic options for the treatment of ulcerative colitis. J Clin Med 2022; 11(9): 2302. doi: 10.3390/jcm11092302 PMID: 35566428
  3. Lian S, Xia Y, Khoi PN, et al. Cadmium induces matrix metalloproteinase-9 expression via ROS-dependent EGFR, NF-кB, and AP-1 pathways in human endothelial cells. Toxicology 2015; 338: 104-16. doi: 10.1016/j.tox.2015.10.008 PMID: 26514923
  4. Gajendran M, Loganathan P, Jimenez G, et al. A comprehensive review and update on ulcerative colitis. Dis Mon 2019; 65(12): 100851. doi: 10.1016/j.disamonth.2019.02.004 PMID: 30837080
  5. Ungaro R, Mehandru S, Allen PB, Peyrin-Biroulet L, Colombel JF. Ulcerative colitis. Lancet 2017; 389(10080): 1756-70. doi: 10.1016/S0140-6736(16)32126-2 PMID: 27914657
  6. Kaplan GG, Ng SC. Globalisation of inflammatory bowel disease: Perspectives from the evolution of inflammatory bowel disease in the UK and China. Lancet Gastroenterol Hepatol 2016; 1(4): 307-16. doi: 10.1016/S2468-1253(16)30077-2 PMID: 28404201
  7. Palou-Redorta J, Solsona E, Angulo J, et al. Retrospective study of various conservative treatment options with bacille Calmette-Guérin in bladder urothelial carcinoma T1G3: Maintenance therapy. Actas Urol Esp 2016; 40(6): 370-7. doi: 10.1016/j.acuro.2015.12.009 PMID: 26922518
  8. Chandra D, Yadav IK, Jaiswal D, et al. Formulation and evaluation of satranidazole microspheres for colon targeted drug delivery. J Pharm Res. 2015; pp. 1230-3.
  9. Recinella L, Gorica E, Chiavaroli A, et al. Anti-inflammatory and antioxidant effects induced by Allium sativum L. Extracts on an ex vivo experimental model of ulcerative colitis. Foods 2022; 11.
  10. Ordás I, Eckmann L, Talamini M, Baumgart DC, Sandborn WJ. Ulcerative colitis. Lancet 2012; 380(9853): 1606-19. doi: 10.1016/S0140-6736(12)60150-0 PMID: 22914296
  11. Sajadinejad MS, Asgari K, Molavi H, Kalantari M, Adibi P. Psychological issues in inflammatory bowel disease: An overview. Gastroenterol Res Pract 2012; 2012: 1-11. doi: 10.1155/2012/106502 PMID: 22778720
  12. Mukherjee PK, Harwansh RK, Bahadur S, Chanda J, Biswas S, Banerjee S. Chapter 31 - Enzyme inhibition assay for metabolic disorders-exploring leads from medicinal plants. Animal Biotechnology . (Second Edition.). Verma AS, Singh A Academic Press: Boston 2020; pp. 631-53.
  13. Deshmukh R, Kumari S, Harwansh RK. Inflammatory bowel disease: A snapshot of current knowledge. Res J Pharm Technol 2020; 13: 956-62.
  14. Caban M, Lewandowska U. Polyphenols and the potential mechanisms of their therapeutic benefits against inflammatory bowel diseases. J Funct Foods 2022; 95: 105181. doi: 10.1016/j.jff.2022.105181
  15. Tariq A, Mussarat S, Adnan M. Review on ethnomedicinal, phytochemical and pharmacological evidence of Himalayan anticancer plants. J Ethnopharmacol 2015; 164: 96-119. doi: 10.1016/j.jep.2015.02.003 PMID: 25680842
  16. Harwansh RK, Bahadur S. Herbal medicines to fight against COVID-19: New battle with an old weapon. Curr Pharm Biotechnol 2022; 23(2): 235-60. doi: 10.2174/1389201022666210322124348 PMID: 33749558
  17. Tillisch K. Complementary and alternative medicine for gastrointestinal disorders. Clin Med 2007; 7(3): 224-7. doi: 10.7861/clinmedicine.7-3-224 PMID: 17633940
  18. Comar KM, Kirby DF. Herbal remedies in gastroenterology. J Clin Gastroenterol 2005; 39(6): 457-68. doi: 10.1097/01.mcg.0000165650.09500.3a PMID: 15942431
  19. Mukherjee PK, Harwansh RK, Bahadur S, Banerjee S, Kar A. Evidence-based validation of Indian traditional medicine: Way forward. From Ayurveda To Chinese Medicine World Scientific. 2017; pp. 137-67.
  20. Auxtero MD, Chalante S, Abade MR, Jorge R, Fernandes AI. Potential herb–drug interactions in the management of age-related cognitive dysfunction. Pharmaceutics 2021; 13(1): 124. doi: 10.3390/pharmaceutics13010124 PMID: 33478035
  21. Triantafyllidi A, Xanthos T, Papalois A, Triantafillidis JK. Herbal and plant therapy in patients with inflammatory bowel disease. Ann Gastroenterol 2015; 28(2): 210-20. PMID: 25830661
  22. Lee Y, Bae CS, Ahn T. Chlorogenic acid attenuates pro-inflammatory response in the blood of streptozotocin-induced diabetic rats. Lab Anim Res 2022; 38(1): 37. doi: 10.1186/s42826-022-00148-x PMID: 36461118
  23. Reena G, Kumar GM, Anil B, Jitendra G, Imran P. Preparation and standardization of polyherbomineral formulation. Int J Drug Dev Res 2014; 6: 0975-9344.
  24. Pimpley V, Patil S, Srinivasan K, Desai N, Murthy PS. The chemistry of chlorogenic acid from green coffee and its role in attenuation of obesity and diabetes. Prep Biochem Biotechnol 2020; 50(10): 969-78. doi: 10.1080/10826068.2020.1786699 PMID: 32633686
  25. Maslin LA, Weeks BR, Carroll RJ, Byrne DH, Turner ND. Chlorogenic acid and quercetin in a diet with fermentable fiber influence multiple processes involved in dss-induced ulcerative colitis but do not reduce injury. Nutrients 2022; 14(18): 3706. doi: 10.3390/nu14183706 PMID: 36145086
  26. Patel AR, Nijsse J, Velikov KP. Novel polymer–polyphenol beads for encapsulation and microreactor applications. Soft Matter 2011; 7(9): 4294-301. doi: 10.1039/c1sm05135k
  27. Heller F, Fromm A, Gitter AH, Mankertz J, Schulzke J-D. Epithelial apoptosis is a prominent feature of the epithelial barrier disturbance in intestinal inflammation: Effect of pro-inflammatory interleukin-13 on epithelial cell function. Mucosal Immunol 2008; 1 (Suppl. 1): S58-61. doi: 10.1038/mi.2008.46 PMID: 19079233
  28. Harwansh RK, Deshmukh R, Barkat MA, Rahman MA. Bioinspired polymeric-based core-shell smart nano-systems. Pharm Nanotechnol 2019; 7(3): 181-205. doi: 10.2174/2211738507666190429104550 PMID: 31486750
  29. Du L, Ha C. Epidemiology and pathogenesis of ulcerative colitis. Gastroenterol Clin North Am 2020; 49(4): 643-54. doi: 10.1016/j.gtc.2020.07.005 PMID: 33121686
  30. Sands BE, Kaplan GG. The role of TNFalpha in ulcerative colitis. J Clin Pharmacol 2007; 47(8): 930-41. doi: 10.1177/0091270007301623 PMID: 17567930
  31. Fukuda T, Naganuma M, Kanai T. Current new challenges in the management of ulcerative colitis. Intest Res 2019; 17(1): 36-44. doi: 10.5217/ir.2018.00126 PMID: 30678445
  32. Tatiya-aphiradee N, Chatuphonprasert W, Jarukamjorn K. Immune response and inflammatory pathway of ulcerative colitis. J Basic Clin Physiol Pharmacol 2018; 30(1): 1-10. doi: 10.1515/jbcpp-2018-0036 PMID: 30063466
  33. Yekefallah M, Raofie F. Preparation of stable nanosuspensions from Asplenium scolopendrium leaves via rapid expansion of supercritical solution into aqueous solutions (RESSAS). J Drug Deliv Sci Technol 2021; 64: 102566. doi: 10.1016/j.jddst.2021.102566
  34. Kaser A, Zeissig S, Blumberg RS. Inflammatory bowel disease. Annu Rev Immunol 2010; 28(1): 573-621. doi: 10.1146/annurev-immunol-030409-101225 PMID: 20192811
  35. Lee YM, Shin DW, Lim BO. Chlorogenic acid improves symptoms of inflammatory bowel disease in interleukin-10 knockout mice. J Med Food 2020; 23(10): 1043-53. doi: 10.1089/jmf.2019.4621 PMID: 33054539
  36. Gill SR, Pop M, DeBoy RT, et al. Metagenomic analysis of the human distal gut microbiome. Science 2006; 312(5778): 1355-9. doi: 10.1126/science.1124234 PMID: 16741115
  37. MacDonald TT. Breakdown of tolerance to the intestinal bacterial flora in inflammatory bowel disease (IBD). Clin Exp Immunol 2008; 102(3): 445-7. doi: 10.1111/j.1365-2249.1995.tb03835.x PMID: 8536355
  38. Sartor RB. Microbial influences in inflammatory bowel diseases. Gastroenterology 2008; 134(2): 577-94. doi: 10.1053/j.gastro.2007.11.059 PMID: 18242222
  39. Hampe J, Franke A, Rosenstiel P, et al. A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat Genet 2007; 39(2): 207-11. doi: 10.1038/ng1954 PMID: 17200669
  40. Mosser DM, Zhang X. Interleukin-10: New perspectives on an old cytokine. Immunol Rev 2008; 226(1): 205-18. doi: 10.1111/j.1600-065X.2008.00706.x PMID: 19161426
  41. Guazelli CFS, Fattori V, Ferraz CR, et al. Antioxidant and anti-inflammatory effects of hesperidin methyl chalcone in experimental ulcerative colitis. Chem Biol Interact 2021; 333: 109315. doi: 10.1016/j.cbi.2020.109315 PMID: 33171134
  42. Parkes M, Barrett JC, Prescott NJ, et al. Sequence variants in the autophagy gene IRGM and multiple other replicating loci contribute to Crohn’s disease susceptibility. Nat Genet 2007; 39(7): 830-2. doi: 10.1038/ng2061 PMID: 17554261
  43. Strober W, Fuss IJ. Proinflammatory cytokines in the pathogenesis of inflammatory bowel diseases. Gastroenterology 2011; 140(6): 1756-1767.e1. doi: 10.1053/j.gastro.2011.02.016 PMID: 21530742
  44. Nakase H, Sato N, Mizuno N, Ikawa Y. The influence of cytokines on the complex pathology of ulcerative colitis. Autoimmun Rev 2022; 21(3): 103017. doi: 10.1016/j.autrev.2021.103017 PMID: 34902606
  45. Silva FAR, Rodrigues BL, Ayrizono MLS, Leal RF. The immunological basis of inflammatory bowel disease. Gastroenterol Res Pract 2016; 2016: 1-11. doi: 10.1155/2016/2097274 PMID: 28070181
  46. Hundorfean G, Pereira SP, Karstensen JG, Vilmann P, Saftoiu A. Modern endoscopic imaging in diagnosis and surveillance of inflammatory bowel disease patients. Gastroenterol Res Pract 2018; 2018: 1-10. doi: 10.1155/2018/5738068 PMID: 29955228
  47. Kucharzik T, Koletzko S, Kannengiesser K, Dignass A. Ulcerative colitis-diagnostic and therapeutic algorithms. Dtsch Arztebl Int 2020; 117(33-34): 564-74. PMID: 33148393
  48. Gautam S, Mutha R, Sahu AK. Ayurvedic approach for management of ulcerative colitis-A case report. Healer 2022; 3(1) doi: 10.51649/healer.102
  49. Radziszewska M, Smarkusz-Zarzecka J, Ostrowska L, Pogodziński D. Nutrition and supplementation in ulcerative colitis. Nutrients 2022; 14(12): 2469. doi: 10.3390/nu14122469 PMID: 35745199
  50. Jadhav P, Jiang Y, Jarr K, Layton C, Ashouri JF, Sinha SR. Efficacy of dietary supplements in inflammatory bowel disease and related autoimmune diseases. Nutrients 2020; 12(7): 2156. doi: 10.3390/nu12072156 PMID: 32698454
  51. Mukherjee PK, Bahadur S, Harwansh RK, Biswas S, Banerjee S. Paradigm shift in natural product research: Traditional medicine inspired approaches. Phytochem Rev 2017; 16(5): 803-26. doi: 10.1007/s11101-016-9489-6
  52. Bahadur S, Sachan N, Harwansh RK, Deshmukh R. Nanoparticlized system: Promising approach for the management of Alzheimer’s disease through intranasal delivery. Curr Pharm Des 2020; 26(12): 1331-44. doi: 10.2174/1381612826666200311131658 PMID: 32160843
  53. Mukherjee PK, Harwansh RK, Bhattacharyya S. Chapter 10 - Bioavailability of herbal products: Approach toward improved pharmacokinetics. Evidence-Based Validation of Herbal Medicine. Mukherjee PK Elsevier: Boston 2015; pp. 217-45.
  54. Ernst E. The efficacy of herbal medicine – An overview. Fundam Clin Pharmacol 2005; 19(4): 405-9. doi: 10.1111/j.1472-8206.2005.00335.x PMID: 16011726
  55. Riegsecker S, Wiczynski D, Kaplan MJ, Ahmed S. Potential benefits of green tea polyphenol EGCG in the prevention and treatment of vascular inflammation in rheumatoid arthritis. Life Sci 2013; 93(8): 307-12. doi: 10.1016/j.lfs.2013.07.006 PMID: 23871988
  56. Harwansh RK, Deshmukh R, Rahman MA. Nanoemulsion: Promising nanocarrier system for delivery of herbal bioactives. J Drug Deliv Sci Technol 2019; 51: 224-33. doi: 10.1016/j.jddst.2019.03.006
  57. Zhang Z, Wu X, Cao S, et al. Chlorogenic acid ameliorates experimental colitis by promoting growth of akkermansia in mice. Nutrients 2017; 9(7): 677. doi: 10.3390/nu9070677 PMID: 28661454
  58. Król K, Gantner M, Tatarak A, Hallmann E. The content of polyphenols in coffee beans as roasting, origin and storage effect. Eur Food Res Technol 2020; 246(1): 33-9. doi: 10.1007/s00217-019-03388-9
  59. Refolo M, Lippolis C, Carella N, Cavallini A, Messa C, D’Alessandro R. Chlorogenic acid improves the regorafenib effects in human hepatocellular carcinoma cells. Int J Mol Sci 2018; 19(5): 1518. doi: 10.3390/ijms19051518 PMID: 29783729
  60. Zhang Y, Zhu C, Zhao H, Sun Z, Wang X. Anti-inflammatory effect of chlorogenic acid in Klebsiella pneumoniae-induced pneumonia by inactivating the p38MAPK pathway. Int J Med Microbiol 2023; 313(2): 151576. doi: 10.1016/j.ijmm.2023.151576 PMID: 36812841
  61. Malekipour MH, Shirani F, Moradi S, Taherkhani A. Cinnamic acid derivatives as potential matrix metalloproteinase-9 inhibitors: Molecular docking and dynamics simulations. Genomics Inform 2023; 21(1): e9. doi: 10.5808/gi.22077 PMID: 37037467
  62. Chen WP, Tang JL, Bao JP, Hu PF, Shi ZL, Wu LD. Anti-arthritic effects of chlorogenic acid in interleukin-1β-induced rabbit chondrocytes and a rabbit osteoarthritis model. Int Immunopharmacol 2011; 11(1): 23-8. doi: 10.1016/j.intimp.2010.09.021 PMID: 20951230
  63. Medina C, Radomski MW. Role of matrix metalloproteinases in intestinal inflammation. J Pharmacol Exp Ther 2006; 318(3): 933-8. doi: 10.1124/jpet.106.103465 PMID: 16644899
  64. Hemrajani C, Negi P, Parashar A, et al. Overcoming drug delivery barriers and challenges in topical therapy of atopic dermatitis: A nanotechnological perspective. Biomed Pharmacother 2022; 147: 112633. doi: 10.1016/j.biopha.2022.112633 PMID: 35030434
  65. Nwafor EO, Lu P, Zhang Y, et al. Chlorogenic acid: Potential source of natural drugs for the therapeutics of fibrosis and cancer. Transl Oncol 2022; 15(1): 101294. doi: 10.1016/j.tranon.2021.101294 PMID: 34861551
  66. Dybkowska E, Sadowska A, Rakowska R, Dębowska M, Świderski F, Świąder K. Assessing polyphenols content and antioxidant activity in coffee beans according to origin and the degree of roasting. Rocz Panstw Zakl Hig 2017; 68(4): 347-53. PMID: 29265388
  67. Kanchanasurakit S, Saokaew S, Phisalprapa P, Duangjai A. Chlorogenic acid in green bean coffee on body weight: A systematic review and meta-analysis of randomized controlled trials. Syst Rev 2023; 12(1): 163. doi: 10.1186/s13643-023-02311-4 PMID: 37710316
  68. Campa C, Noirot M, Bourgeois M, et al. Genetic mapping of a caffeoyl-coenzyme A 3-O-methyltransferase gene in coffee trees. Impact on chlorogenic acid content. Theor Appl Genet 2003; 107(4): 751-6. doi: 10.1007/s00122-003-1310-4 PMID: 12861362
  69. Kumar G, Paliwal P, Mukherjee S, Patnaik N, Krishnamurthy S, Patnaik R. Pharmacokinetics and brain penetration study of chlorogenic acid in rats. Xenobiotica 2019; 49(3): 339-45. doi: 10.1080/00498254.2018.1445882 PMID: 29480050
  70. Miao M, Xiang L. Pharmacological action and potential targets of chlorogenic acid. Adv Pharmacol 2020; 87: 71-88. doi: 10.1016/bs.apha.2019.12.002 PMID: 32089239
  71. Singla S, Kumar V, Jena G. 3-aminobenzamide protects against colitis associated diabetes mellitus in male BALB/c mice: Role of PARP-1, NLRP3, SIRT-1, AMPK. Biochimie 2023; 211: 96-109. doi: 10.1016/j.biochi.2023.03.009 PMID: 36934779
  72. Kang EA, Han K, Chun J, et al. Increased risk of diabetes in inflammatory bowel disease patients: A nationwide population-based study in Korea. J Clin Med 2019; 8(3): 343. doi: 10.3390/jcm8030343 PMID: 30862129
  73. Mansour A, Mohajeri-Tehrani MR, Samadi M, et al. Effects of supplementation with main coffee components including caffeine and/or chlorogenic acid on hepatic, metabolic, and inflammatory indices in patients with non-alcoholic fatty liver disease and type 2 diabetes: A randomized, double-blind, placebo-controlled, clinical trial. Nutr J 2021; 20(1): 35. doi: 10.1186/s12937-021-00694-5 PMID: 33838673
  74. Chauhan PS, Satti NK, Sharma P, Sharma VK, Suri KA, Bani S. Differential effects of chlorogenic acid on various immunological parameters relevant to rheumatoid arthritis. Phytother Res 2012; 26(8): 1156-65. doi: 10.1002/ptr.3684 PMID: 22180146
  75. Fu X, Lyu X, Liu H, et al. Chlorogenic acid inhibits BAFF expression in collagen-induced arthritis and human synoviocyte MH7A cells by modulating the activation of the NF-κB signaling pathway. J Immunol Res 2019; 2019: 1-10. doi: 10.1155/2019/8042097 PMID: 31240234
  76. Lukitasari M, Saifur Rohman M, Nugroho DA, Widodo N, Nugrahini NIP. Cardiovascular protection effect of chlorogenic acid: Focus on the molecular mechanism. F1000 Res 2020; 9: 1462. doi: 10.12688/f1000research.26236.1 PMID: 33708382
  77. Cicek B, Hacimuftuoglu A, Yeni Y, et al. Chlorogenic acid attenuates doxorubicin-induced oxidative stress and markers of apoptosis in cardiomyocytes via Nrf2/HO-1 and dityrosine signaling. J Pers Med 2023; 13(4): 649. doi: 10.3390/jpm13040649 PMID: 37109035
  78. Tian L, Su CP, Wang Q, et al. Chlorogenic acid: A potent molecule that protects cardiomyocytes from TNF-α-induced injury via inhibiting NF-κB and JNK signals. J Cell Mol Med 2019; 23(7): 4666-78. doi: 10.1111/jcmm.14351 PMID: 31033175
  79. Kitchens BP, Snyder RJ, Cuffy CA. A literature review of pharmacological agents to improve venous leg ulcer healing. Wounds 2020; 32(7): 195-207. PMID: 33166265
  80. Maver T, Maver U, Stana Kleinschek K, Smrke DM, Kreft S. A review of herbal medicines in wound healing. Int J Dermatol 2015; 54(7): 740-51. doi: 10.1111/ijd.12766 PMID: 25808157
  81. Zhang Y, Zhang W, Wang H, et al. The combination treatment of chlorogenic acid and sodium alginate coating could accelerate the wound healing of pear fruit by promoting the metabolic pathway of phenylpropane. Food Chem 2023; 414: 135689. doi: 10.1016/j.foodchem.2023.135689 PMID: 36809727
  82. Deo SVS, Sharma J, Kumar S. GLOBOCAN 2020 report on global cancer burden: Challenges and opportunities for surgical oncologists. Ann Surg Oncol 2022; 29(11): 6497-500. doi: 10.1245/s10434-022-12151-6 PMID: 35838905
  83. Sun J, Wei Q, Zhou Y, Wang J, Liu Q, Xu H. A systematic analysis of FDA-approved anticancer drugs. BMC Syst Biol 2017; 11(S5) (Suppl. 5): 87. doi: 10.1186/s12918-017-0464-7 PMID: 28984210
  84. Yamagata K, Izawa Y, Onodera D, Tagami M. Chlorogenic acid regulates apoptosis and stem cell marker-related gene expression in A549 human lung cancer cells. Mol Cell Biochem 2018; 441(1-2): 9-19. doi: 10.1007/s11010-017-3171-1 PMID: 28875417
  85. Li C, Liu J, Lin J, Shang H. COVID-19 and risk of neurodegenerative disorders: A Mendelian randomization study. Transl Psychiatry 2022; 12(1): 283. doi: 10.1038/s41398-022-02052-3 PMID: 35835752
  86. Lamptey RNL, Chaulagain B, Trivedi R, Gothwal A, Layek B, Singh J. A review of the common neurodegenerative disorders: Current therapeutic approaches and the potential role of nanotherapeutics. Int J Mol Sci 2022; 23(3): 1851. doi: 10.3390/ijms23031851 PMID: 35163773
  87. Metwally DM, Alajmi RA, El-Khadragy MF, et al. Chlorogenic acid confers robust neuroprotection against arsenite toxicity in mice by reversing oxidative stress, inflammation, and apoptosis. J Funct Foods 2020; 75: 104202. doi: 10.1016/j.jff.2020.104202
  88. Saha P, Talukdar AD, Nath R, et al. Role of natural phenolics in hepatoprotection: A mechanistic review and analysis of regulatory network of associated genes. Front Pharmacol 2019; 10: 509. doi: 10.3389/fphar.2019.00509 PMID: 31178720
  89. Domitrović R, Potočnjak I. A comprehensive overview of hepatoprotective natural compounds: Mechanism of action and clinical perspectives. Arch Toxicol 2016; 90(1): 39-79. doi: 10.1007/s00204-015-1580-z PMID: 26377694
  90. Dkhil MA, Abdel Moneim AE, Bauomy AA, Khalil M, Al-Shaebi EM, Al-Quraishy S. Chlorogenic acid prevents hepatotoxicity in arsenic-treated mice: Role of oxidative stress and apoptosis. Mol Biol Rep 2020; 47(2): 1161-71. doi: 10.1007/s11033-019-05217-4 PMID: 31820315
  91. Anbarasan B, Anitha TG, Jayapriya S, Anbu N, Kanakavalli K. Anti-ulcer activity of medicinal herbs-A review. Int J Curr Res Chem Pharm Sci 2017; 4(6): 37-43.
  92. Loftus EV Jr, Sandborn WJ. Epidemiology of inflammatory bowel disease. Gastroenterol Clin North Am 2002; 31(1): 1-20. doi: 10.1016/S0889-8553(01)00002-4 PMID: 12122726
  93. Narayan DC, Kumar A. Immunomodulatory role of chlorogenic acid in urethane activated peritoneal macrophage reduces the risk of cancer in vitro. Conference: 39th Annual Conference of Indian Immunology Society. 39: 49.
  94. Wang L, Pan X, Jiang L, et al. The biological activity mechanism of chlorogenic acid and its applications in food industry: A review. Front Nutr 2022; 9: 943911. doi: 10.3389/fnut.2022.943911 PMID: 35845802
  95. Sun Z, Zhang X, Wu H, et al. Antibacterial activity and action mode of chlorogenic acid against Salmonella enteritidis, a foodborne pathogen in chilled fresh chicken. World J Microbiol Biotechnol 2020; 36(2): 24. doi: 10.1007/s11274-020-2799-2 PMID: 31965331
  96. Ding Y, Cao Z, Cao L, Ding G, Wang Z, Xiao W. Antiviral activity of chlorogenic acid against influenza A (H1N1/H3N2) virus and its inhibition of neuraminidase. Sci Rep 2017; 7(1): 45723. doi: 10.1038/srep45723 PMID: 28393840
  97. Zhang Z, Shi C, Wang Z. Therapeutic effects and molecular mechanism of chlorogenic acid on polycystic ovarian syndrome: Role of HIF-1alpha. Nutrients 2023; 15(13): 2833. doi: 10.3390/nu15132833 PMID: 37447160
  98. Gao W, Wang C, Yu L, et al. Chlorogenic acid attenuates dextran sodium sulfate-induced ulcerative colitis in mice through MAPK/ERK/JNK pathway. BioMed Res Int 2019; 2019: 1-13. doi: 10.1155/2019/6769789 PMID: 31139644
  99. Kulyar MF-A, Mo Q, Yao W, et al. Chlorogenic acid suppresses miR-460a in the regulation of Bcl-2, causing interleukin-1β reduction in thiram exposed chondrocytes via caspase-3/caspase-7 pathway. Phytomedicine 2022; 104: 154296. doi: 10.1016/j.phymed.2022.154296
  100. Zhang J, Sun S, Chen H, Feng Y, Li Y, Dong Z. Advances in natural compound-based nanomedicine and the interaction with gut microbiota in ulcerative colitis therapy. Front Pharmacol 2023; 14: 1197144. doi: 10.3389/fphar.2023.1197144 PMID: 37521480
  101. Barani M, Rahdar A, Sargazi S, Amiri MS, Sharma PK, Bhalla N. Nanotechnology for inflammatory bowel disease management: Detection, imaging and treatment. Sens Biosensing Res 2021; 32: 100417. doi: 10.1016/j.sbsr.2021.100417
  102. Chen M, Lan H, Jin K, Chen Y. Responsive nanosystems for targeted therapy of ulcerative colitis: Current practices and future perspectives. Drug Deliv 2023; 30(1): 2219427. doi: 10.1080/10717544.2023.2219427 PMID: 37288799
  103. Agrawal S, Garg A, Varshney V. Recent updates on applications of lipid-based nanoparticles for site-specific drug delivery. Pharm Nanotechnol 2022; 10(1): 24-41. doi: 10.2174/2211738510666220304111848 PMID: 35249522
  104. Lee SH, Bajracharya R, Min JY, Han JW, Park BJ, Han HK. Strategic approaches for colon targeted drug delivery: An overview of recent advancements. Pharmaceutics 2020; 12(1): 68. doi: 10.3390/pharmaceutics12010068 PMID: 31952340
  105. Hua S, Marks E, Schneider JJ, Keely S. Advances in oral nano-delivery systems for colon targeted drug delivery in inflammatory bowel disease: Selective targeting to diseased versus healthy tissue. Nanomedicine 2015; 11(5): 1117-32. doi: 10.1016/j.nano.2015.02.018 PMID: 25784453
  106. Shi A, Li T, Zheng Y, et al. Chlorogenic acid improves nafld by regulating gut microbiota and GLP-1. Front Pharmacol 2021; 12: 693048. doi: 10.3389/fphar.2021.693048 PMID: 34276380
  107. Ray PC, Yu H, Fu PP. Toxicity and environmental risks of nanomaterials: Challenges and future needs. J Environ Sci Health Part C Environ Carcinog Ecotoxicol Rev 2009; 27(1): 1-35. doi: 10.1080/10590500802708267 PMID: 19204862
  108. Arévalo-Pérez R, Maderuelo C, Lanao JM. Recent advances in colon drug delivery systems. J Control Release 2020; 327: 703-24. doi: 10.1016/j.jconrel.2020.09.026 PMID: 32941930
  109. Rahim MA, Jan N, Khan S, et al. Recent advancements in stimuli responsive drug delivery platforms for active and passive cancer targeting. Cancers 2021; 13(4): 670. doi: 10.3390/cancers13040670 PMID: 33562376
  110. Palaniraj S, Murugesan R, Narayan S. Chlorogenic acid-loaded calcium phosphate chitosan nanogel as biofilm degradative materials. Int J Biochem Cell Biol 2019; 114: 105566. doi: 10.1016/j.biocel.2019.105566 PMID: 31283996
  111. Nallamuthu I, Devi A, Khanum F. Chlorogenic acid loaded chitosan nanoparticles with sustained release property, retained antioxidant activity and enhanced bioavailability. Asian J Pharm Sci 2015; 10(3): 203-11. doi: 10.1016/j.ajps.2014.09.005
  112. Zhu H, Zhang L, Kou F, Zhao J, Lei J, He J. Targeted therapeutic effects of oral magnetically driven pectin nanoparticles containing chlorogenic acid on colon cancer. Particuology 2024; 84: 53-9. doi: 10.1016/j.partic.2023.02.021
  113. Fan Y, Yi J, Zhang Y, Yokoyama W. Improved chemical stability and antiproliferative activities of curcumin-loaded nanoparticles with a chitosan chlorogenic acid conjugate. J Agric Food Chem 2017; 65(49): 10812-9. doi: 10.1021/acs.jafc.7b04451 PMID: 29155582
  114. Gómez-Mascaraque LG, Martínez-Sanz M, Fabra MJ, López-Rubio A. Development of gelatin-coated ι-carrageenan hydrogel capsules by electric field-aided extrusion. Impact of phenolic compounds on their performance. Food Hydrocoll 2019; 90: 523-33. doi: 10.1016/j.foodhyd.2018.12.017
  115. Bullo S, Buskaran K, Baby R, Dorniani D, Fakurazi S, Hussein MZ. Dual drugs anticancer nanoformulation using graphene oxide-PEG as nanocarrier for protocatechuic acid and chlorogenic acid. Pharm Res 2019; 36(6): 91. doi: 10.1007/s11095-019-2621-8 PMID: 31020429
  116. Zeng C, Zheng R, Jiang W, He C, Li J, Xing J. Chitosan coated chlorogenic acid and rutincomposite phospholipid liposomes: Preparation, characterizations, permeability and pharmacokinetic. Pak J Pharm Sci 2018; 31(5(Supplementary)): 2095-102. PMID: 30393218
  117. Barahuie F, Saifullah B, Dorniani D, et al. Graphene oxide as a nanocarrier for controlled release and targeted delivery of an anticancer active agent, chlorogenic acid. Mater Sci Eng C 2017; 74: 177-85. doi: 10.1016/j.msec.2016.11.114 PMID: 28254283
  118. Li H, Xu J, Hu JF, et al. Sustained release of chlorogenic acid-loaded nanomicelles alleviates bone loss in mouse periodontitis. Biomater Sci 2022; 10(19): 5583-95. doi: 10.1039/D2BM01099B PMID: 35975567
  119. Budin AC, Takano LV, Alvim ID, de Moura SCSR. Stability of yerba mate extract, evaluation of its microencapsulation by ionic gelation and fluidized bed drying. Heliyon 2023; 9(6): e16611. doi: 10.1016/j.heliyon.2023.e16611 PMID: 37287610
  120. Wu SH, Sun NN, Chau CF. Microspheres as carriers for lipase inhibitory substances to reduce dietary triglyceride absorption in mice. Yao Wu Shi Pin Fen Xi 2016; 24(1): 129-35. PMID: 28911395
  121. Chahardoli F, Pourmoslemi S, Soleimani Asl S, Tamri P, Haddadi R. Preparation of polyvinyl alcohol hydrogel containing chlorogenic acid microspheres and its evaluation for use in skin wound healing. J Biomater Appl 2023; 37(9): 1667-75. doi: 10.1177/08853282221150845 PMID: 36601681
  122. Alemán A, Marín-Peñalver D, de Palencia PF, Gómez-Guillén MC, Montero P. Anti-inflammatory properties, bioaccessibility and intestinal absorption of sea fennel (Crithmum maritimum) extract encapsulated in soy phosphatidylcholine liposomes. Nutrients 2022; 14(1): 210. doi: 10.3390/nu14010210 PMID: 35011085
  123. Krajewska JB, Pietruszka P, Tomczyk D, et al. Evaluation of the effect of liposomes loaded with chlorogenic acid in treatment of 2,4,6-trinitrobenzenesulfonic acid-induced murine colitis. J Physiol Pharmacol 2019; 70(2): 70. PMID: 31443089
  124. Zhu S, Li X, Luo Z, Ding M, Shi S, Zhang T. Combined immunochemotherapy achieving targeted co-delivery of chlorogenic acid and doxorubicin by sialic acid-modified liposomes enhances anti-cancer efficacy. Drug Deliv Transl Res 2023. doi: 10.1007/s13346-023-01426-4 PMID: 37679600
  125. Li X, Zhu S, Yin P, et al. Combination immunotherapy of chlorogenic acid liposomes modified with sialic acid and PD-1 blockers effectively enhances the anti-tumor immune response and therapeutic effects. Drug Deliv 2021; 28(1): 1849-60. doi: 10.1080/10717544.2021.1971797 PMID: 34515617
  126. Ye J, Yang Y, Jin J, et al. Targeted delivery of chlorogenic acid by mannosylated liposomes to effectively promote the polarization of TAMs for the treatment of glioblastoma. Bioact Mater 2020; 5(3): 694-708. doi: 10.1016/j.bioactmat.2020.05.001 PMID: 32478203
  127. Batool S, Asad MJ, Arshad M, et al. In silico validation, fabrication and evaluation of nano-liposomes of bistorta amplexicaulis extract for improved anticancer activity against hepatoma cell line (HepG2). Curr Drug Deliv 2021; 18(7): 922-34. doi: 10.2174/1567201818666210316113640 PMID: 33726649
  128. Chittasupho C, Chaobankrang K, Sarawungkad A, et al. Antioxidant, anti-inflammatory and attenuating intracellular reactive oxygen species activities of Nicotiana tabacum var. virginia leaf extract phytosomes and shape memory gel formulation. Gels 2023; 9(2): 78. doi: 10.3390/gels9020078 PMID: 36826248
  129. Zhang Y, Zhang T, Dong C, Zhao R, Zhang X, Wang C. Lycopene-loaded emulsions stabilized by whey protein covalently modified with pectin or/and chlorogenic acid: Enhanced physicochemical stability and reduced bio-accessibility. Food Chem 2023; 417: 135879. doi: 10.1016/j.foodchem.2023.135879 PMID: 36933434
  130. Niu B, Chen H, Wu W, et al. Co-encapsulation of chlorogenic acid and cinnamaldehyde essential oil in Pickering emulsion stablized by chitosan nanoparticles. Food Chem X 2022; 14: 100312. doi: 10.1016/j.fochx.2022.100312 PMID: 35492257
  131. Sorour HK, Hosny RA, Elmasry DMA. Effect of peppermint oil and its microemulsion on necrotic enteritis in broiler chickens. Vet World 2021; 14(2): 483-91. doi: 10.14202/vetworld.2021.483-491 PMID: 33776315
  132. Catauro M, Šiler P, Másilko J, Risoluti R, Vecchio Ciprioti S. Synthesis, structural, morphological and thermal characterization of five different silica-polyethylene glycol-chlorogenic acid hybrid materials. Polymers 2021; 13(10): 1586. doi: 10.3390/polym13101586 PMID: 34069126
  133. Yao L, Zhao MM, Luo QW, et al. Carbon quantum dots-based nanozyme from coffee induces cancer cell ferroptosis to activate antitumor immunity. ACS Nano 2022; 16(6): 9228-39. doi: 10.1021/acsnano.2c01619 PMID: 35622408
  134. Holleran G, Scaldaferri F, Gasbarrini A, Currò D. Herbal medicinal products for inflammatory bowel disease: A focus on those assessed in double-blind randomised controlled trials. Phytother Res 2020; 34(1): 77-93. doi: 10.1002/ptr.6517 PMID: 31701598
  135. Guo BJ, Bian ZX, Qiu HC, Wang YT, Wang Y. Biological and clinical implications of herbal medicine and natural products for the treatment of inflammatory bowel disease. Ann N Y Acad Sci 2017; 1401(1): 37-48. doi: 10.1111/nyas.13414 PMID: 28891095
  136. Arya H, Dass R, Chopra B, et al. An update on herbal products for the management of inflammatory bowel disease. Antiinflamm Antiallergy Agents Med Chem 2023; 22(1): 1-9. doi: 10.2174/1871523022666230727094250 PMID: 37497699
  137. Sebepos-Rogers GM, Rampton DS. Herbs and inflammatory bowel disease. Gastroenterol Clin North Am 2017; 46(4): 809-24. doi: 10.1016/j.gtc.2017.08.009 PMID: 29173523
  138. Harwansh RK, Deshmukh R. Recent insight into uv-induced oxidative stress and role of herbal bioactives in the management of skin aging. Curr Pharm Biotechnol 2023. PMID: 37102487
  139. Zhang X, Zhang L, Chan JCP, et al. Chinese herbal medicines in the treatment of ulcerative colitis: A review. Chin Med 2022; 17(1): 43. doi: 10.1186/s13020-022-00591-x PMID: 35379276
  140. Olén O, Askling J, Sachs MC, et al. Mortality in adult-onset and elderly-onset IBD: A nationwide register-based cohort study 1964–2014. Gut 2020; 69(3): 453-61. doi: 10.1136/gutjnl-2018-317572 PMID: 31092591
  141. Lasa JS, Olivera PA, Danese S, Peyrin-Biroulet L. Efficacy and safety of biologics and small molecule drugs for patients with moderate-to-severe ulcerative colitis: A systematic review and network meta-analysis. Lancet Gastroenterol Hepatol 2022; 7(2): 161-70. doi: 10.1016/S2468-1253(21)00377-0 PMID: 34856198
  142. Bourgonje AR, van Goor H, Faber KN, Dijkstra G. Clinical value of multiomics-based biomarker signatures in inflammatory bowel diseases: Challenges and opportunities. Clin Transl Gastroenterol 2023; 14(7): e00579. doi: 10.14309/ctg.0000000000000579 PMID: 36881831
  143. Axelrad J, Kriplani A, Ozbek U, et al. Chemotherapy tolerance and oncologic outcomes in patients with colorectal cancer with and without inflammatory bowel disease. Clin Colorectal Cancer 2017; 16(3): e205-10. doi: 10.1016/j.clcc.2016.09.005 PMID: 27742264
  144. Yasmin F, Najeeb H, Shaikh S, et al. Novel drug delivery systems for inflammatory bowel disease. World J Gastroenterol 2022; 28(18): 1922-33. doi: 10.3748/wjg.v28.i18.1922 PMID: 35664964
  145. Park JH, Moon JH, Kim HJ, Kong MH, Oh YH. Sedentary lifestyle: Overview of updated evidence of potential health risks. Korean J Fam Med 2020; 41(6): 365-73. doi: 10.4082/kjfm.20.0165 PMID: 33242381
  146. Gao C, Zhou Y, Chen Z, et al. Turmeric-derived nanovesicles as novel nanobiologics for targeted therapy of ulcerative colitis. Theranostics 2022; 12(12): 5596-614. doi: 10.7150/thno.73650 PMID: 35910802
  147. Luo H, Cao G, Luo C, et al. Emerging pharmacotherapy for inflammatory bowel diseases. Pharmacol Res 2022; 178: 106146. doi: 10.1016/j.phrs.2022.106146 PMID: 35227890
  148. Gupta M, Mishra V, Gulati M, et al. Natural compounds as safe therapeutic options for ulcerative colitis. Inflammopharmacology 2022; 30(2): 397-434. doi: 10.1007/s10787-022-00931-1 PMID: 35212849
  149. Ju LZ, Ke F, Yadav PK. Herbal medicine in the treatment of ulcerative colitis. Saudi J Gastroenterol 2012; 18(1): 3-10. doi: 10.4103/1319-3767.91726 PMID: 22249085

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers