Murraya koenigii (L.) Spreng. as a Natural Intervention for Diabesity: A Review
- 作者: Jachak S.1, Thakur M.1, Ahirrao P.2, Goyal A.3
-
隶属关系:
- Department of Natural Products, National Institute of Pharmaceutical Education and Research
- Department of Pharmaceutical Chemistry, Chandigarh College of Pharmacy, Chandigarh Group of Colleges,
- Natural Products, National Institute of Pharmaceutical Education and Research
- 期: 卷 30, 编号 41 (2024)
- 页面: 3255-3275
- 栏目: Immunology, Inflammation & Allergy
- URL: https://vestnikugrasu.org/1381-6128/article/view/645985
- DOI: https://doi.org/10.2174/0113816128304471240801183021
- ID: 645985
如何引用文章
全文:
详细
Background:Murraya koenigii (L.) Spreng. (family: Rutaceae), commonly known as curry leaf or sweet neem, is a tropical plant native to India and Southeast Asia. It is highly valued in Ayurveda for its medicinal properties. Almost every part (fresh leaves, fruits, bark, and roots) of this plant is used to treat various ailments. Its fresh leaves are considered to have numerous medicinal properties for various diseases, including piles, inflammation, itching, fresh cuts, dysentery, and edema. A combination of curry leaf and buttermilk is used to treat diseases, such as amoebiasis, diabetes, and hepatitis. Its leaves are also believed to possess antioxidant, anti-inflammatory, and antimicrobial properties. The bark has been traditionally used for treating snakebites. Its roots are utilized in Ayurveda for the treatment of body aches. Being a storehouse of carbazole alkaloids, M. koenigii has been reported to show anti-obesity and anti-diabetic activity in in vitro and in vivo studies. The review aimed to appraise the role of M. koenigii leaf in the prevention of diabesity.
Methods:We performed a literature search with the keywords "diabesity", "obesity", "diabetes", "adipose tissue", and "carbazole alkaloids" on Google Scholar, PubMed, and ScienceDirect databases. Several in vitro and in vivo studies conducted on cell lines and animals for anti-diabetic/anti-hyperglycemic and antihyperlipidemic activities have been included and appraised in the article, providing supporting evidence for the ethnomedicinal claims.
Results and Conclusion:This review has been an attempt to summarize comprehensively the overall research done on M. koenigii with regard to obesity and diabetes. The studies on anti-diabetic/anti-hyperglycemic and anti-hyperlipidemic activities of the plant have ranged from studies on crude extracts to isolated compounds. However, some of the studies require further in-depth analysis and validation of obtained results.
作者简介
Sanjay Jachak
Department of Natural Products, National Institute of Pharmaceutical Education and Research
编辑信件的主要联系方式.
Email: info@benthamscience.net
Mridula Thakur
Department of Natural Products, National Institute of Pharmaceutical Education and Research
Email: info@benthamscience.net
Pallavi Ahirrao
Department of Pharmaceutical Chemistry, Chandigarh College of Pharmacy, Chandigarh Group of Colleges,
编辑信件的主要联系方式.
Email: info@benthamscience.net
Alok Goyal
Natural Products, National Institute of Pharmaceutical Education and Research
Email: info@benthamscience.net
参考
- Costantino L, Barlocco D. New perspectives on the development of antiobesity drugs. Future Med Chem 2015; 7(3): 315-36. doi: 10.4155/fmc.14.167 PMID: 25826362
- WHO. Obesity and overweight. 2022. Available From https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight
- Castan-laurell I, Dray C, Knauf C, Kunduzova O, Valet P. Apelin, a promising target for type 2 diabetes treatment? Trends Endocrinol Metab 2012; 23(5): 234-41. doi: 10.1016/j.tem.2012.02.005 PMID: 22445464
- Kusminski CM, Shetty S, Orci L, Unger RH, Scherer PE. Diabetes and apoptosis: Lipotoxicity. Apoptosis 2009; 14(12): 1484-95. doi: 10.1007/s10495-009-0352-8 PMID: 19421860
- Lone S, Lone K, Khan S, Pampori RA. Assessment of metabolic syndrome in Kashmiri population with type 2 diabetes employing the standard criterias given by WHO, NCEPATP III and IDF. J Epidemiol Glob Health 2017; 7(4): 235-9. doi: 10.1016/j.jegh.2017.07.004 PMID: 29110863
- IDF Diabetes Atlas. Diabetes around the world in 2021. 2021. Available from: http://www.diabetesatlas.org
- Echouffo-Tcheugui JB, Selvin E. Prediabetes and what it means: The epidemiological evidence. Annu Rev Public Health 2021; 42(1): 59-77. doi: 10.1146/annurev-publhealth-090419-102644 PMID: 33355476
- Galaviz KI, Weber MB, Straus A, Haw JS, Narayan KMV, Ali MK. Global diabetes prevention interventions: A systematic review and network meta-analysis of the real-world impact on incidence, weight, and glucose. Diab Care 2018; 41(7): 1526-34. doi: 10.2337/dc17-2222 PMID: 29934481
- Tabák AG, Herder C, Rathmann W, Brunner EJ, Kivimäki M. Prediabetes: A high-risk state for diabetes development. Lancet 2012; 379(9833): 2279-90. doi: 10.1016/S0140-6736(12)60283-9 PMID: 22683128
- Dutta D, Mukhopadhyay S. Novel diabetes subgroups. Lancet Diabetes Endocrinol 2018; 6(6): 438. doi: 10.1016/S2213-8587(18)30129-3 PMID: 29803261
- Rastogi S, Pandey N, Sachdev K. Linking Prameha etiology with diabetes mellitus: Inferences from a matched casecontrol study. Ayu 2018; 39(3): 139-45. doi: 10.4103/ayu.AYU_106_18 PMID: 31000990
- Rastogi S, Singh N, Gutch M, Bhattacharya A. Prameha purvaroopa as diabetes risk predictor - trends from a retrospective cohort study of newly diagnosed type 2 diabetes patients. J Ayurveda Integr Med 2023; 14(1): 100671. doi: 10.1016/j.jaim.2022.100671 PMID: 36384710
- Rastogi S, Singh N, Gutch M, Bhattacharya A. Predicting and preventing diabetes: Translational potential of Ayurveda information on pre-diabetes. J Ayurveda Integr Med 2021; 12(4): 733-8. doi: 10.1016/j.jaim.2021.05.009 PMID: 34275702
- Lim WXJ, Gammon CS, von Hurst P, Chepulis L, Page RA. A narrative review of human clinical trials on the impact of phenolic-rich plant extracts on prediabetes and its subgroups. Nutrients 2021; 13(11): 3733. doi: 10.3390/nu13113733
- Knowler WC, Barrett-Connor E, Fowler SE, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 2002; 346(6): 393-403. doi: 10.1056/NEJMoa012512 PMID: 11832527
- Kumar S, Dobos GJ, Rampp T. The significance of ayurvedic medicinal plants. J Evid Based Complementary Altern Med 2017; 22(3): 494-501. doi: 10.1177/2156587216671392 PMID: 27707902
- Scartezzini P, Speroni E. Review on some plants of Indian traditional medicine with antioxidant activity. J Ethnopharmacol 2000; 71(1-2): 23-43. doi: 10.1016/S0378-8741(00)00213-0 PMID: 10904144
- Seth SD, Sharma B. Medicinal plants in India. Indian J Med Res 2004; 120(1): 9-11. PMID: 15299226
- Kobyliak N, Falalyeyeva T, Boyko N, Tsyryuk O, Beregova T, Ostapchenko L. Probiotics and nutraceuticals as a new frontier in obesity prevention and management. Diabetes Res Clin Pract 2018; 141: 190-9. doi: 10.1016/j.diabres.2018.05.005 PMID: 29772287
- Garvey WT, Olefsky JM, Griffin J, Hamman RF, Kolterman OG. The effect of insulin treatment on insulin secretion and insulin action in type II diabetes mellitus. Diabetes 1985; 34(3): 222-34. doi: 10.2337/diab.34.3.222 PMID: 3882489
- Kahn SE, Hull RL, Utzschneider KM. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 2006; 444(7121): 840-6. doi: 10.1038/nature05482 PMID: 17167471
- Qatanani M, Lazar MA. Mechanisms of obesity-associated insulin resistance: Many choices on the menu. Genes Dev 2007; 21(12): 1443-55. doi: 10.1101/gad.1550907 PMID: 17575046
- Rutkowski JM, Stern JH, Scherer PE. The cell biology of fat expansion. J Cell Biol 2015; 208(5): 501-12. doi: 10.1083/jcb.201409063 PMID: 25733711
- Trayhurn P, Beattie JH. Physiological role of adipose tissue: White adipose tissue as an endocrine and secretory organ. Proc Nutr Soc 2001; 60(3): 329-39. doi: 10.1079/PNS200194 PMID: 11681807
- Frayn KN, Karpe F, Fielding BA, Macdonald IA, Coppack SW. Integrative physiology of human adipose tissue. Int J Obes 2003; 27(8): 875-88. doi: 10.1038/sj.ijo.0802326 PMID: 12861227
- Tchkonia T, Thomou T, Zhu Y, et al. Mechanisms and metabolic implications of regional differences among fat depots. Cell Metab 2013; 17(5): 644-56. doi: 10.1016/j.cmet.2013.03.008 PMID: 23583168
- Tchkonia T, Lenburg M, Thomou T, et al. Identification of depot-specific human fat cell progenitors through distinct expression profiles and developmental gene patterns. Am J Physiol Endocrinol Metab 2007; 292(1): E298-307. doi: 10.1152/ajpendo.00202.2006 PMID: 16985259
- Goossens GH, Blaak EE. Adipose tissue dysfunction and impaired metabolic health in human obesity: A matter of oxygen? Front Endocrinol 2015; 6: 55. doi: 10.3389/fendo.2015.00055 PMID: 25964776
- Bray GA, Heisel WE, Afshin A, et al. The science of obesity management: An endocrine society scientific statement. Endocr Rev 2018; 39(2): 79-132. doi: 10.1210/er.2017-00253 PMID: 29518206
- Morrison S, McGee SL. 3T3-L1 adipocytes display phenotypic characteristics of multiple adipocyte lineages. Adipocyte 2015; 4(4): 295-302. doi: 10.1080/21623945.2015.1040612 PMID: 26451286
- Gregoire FM, Smas CM, Sul HS. Understanding adipocyte differentiation. Physiol Rev 1998; 78(3): 783-809. doi: 10.1152/physrev.1998.78.3.783 PMID: 9674695
- Rubin CS, Hirsch A, Fung C, Rosen OM. Development of hormone receptors and hormonal responsiveness in vitro. Insulin receptors and insulin sensitivity in the preadipocyte and adipocyte forms of 3T3-L1 cells. J Biol Chem 1978; 253(20): 7570-8. doi: 10.1016/S0021-9258(17)34541-6 PMID: 81205
- Scott RE, Florine DL, Wille JJ Jr, Yun K. Coupling of growth arrest and differentiation at a distinct state in the G1 phase of the cell cycle: GD. Proc Natl Acad Sci USA 1982; 79(3): 845-9. doi: 10.1073/pnas.79.3.845 PMID: 6174983
- Tang QQ, Otto TC, Lane MD. CCAAT/enhancer-binding protein β is required for mitotic clonal expansion during adipogenesis. Proc Natl Acad Sci USA 2003; 100(3): 850-5. doi: 10.1073/pnas.0337434100 PMID: 12525691
- Mota de Sá P, Richard AJ, Hang H, Stephens JM. Transcriptional regulation of adipogenesis. Compr Physiol 2017; 7(2): 635-74. doi: 10.1002/cphy.c160022 PMID: 28333384
- Di Meo S, Reed TT, Venditti P, Victor VM. Role of ROS and RNS sources in physiological and pathological conditions. Oxid Med Cell Longev 2016; 2016: 1-44. doi: 10.1155/2016/1245049 PMID: 27478531
- Cho KJ, Seo JM, Kim JH. Bioactive lipoxygenase metabolites stimulation of NADPH oxidases and reactive oxygen species. Mol Cells 2011; 32(1): 1-6. doi: 10.1007/s10059-011-1021-7 PMID: 21424583
- Pérez-Torres I, Castrejón-Téllez V, Soto ME, Rubio-Ruiz ME, Manzano-Pech L, Guarner-Lans V. Oxidative stress, plant natural antioxidants, and obesity. Int J Mol Sci 2021; 22(4): 1786. doi: 10.3390/ijms22041786 PMID: 33670130
- Pizzino G, Irrera N, Cucinotta M, et al. Oxidative stress: Harms and benefits for human health. Oxid Med Cell Longev 2017; 2017: 1-13. doi: 10.1155/2017/8416763 PMID: 28819546
- Timper K, Brüning JC. Hypothalamic circuits regulating appetite and energy homeostasis: Pathways to obesity. Dis Model Mech 2017; 10(6): 679-89. doi: 10.1242/dmm.026609 PMID: 28592656
- Yoboue ED, Mougeolle A, Kaiser L, Averet N, Rigoulet M, Devin A. The role of mitochondrial biogenesis and ROS in the control of energy supply in proliferating cells. Biochim Biophys Acta Bioenerg 2014; 1837(7): 1093-8. doi: 10.1016/j.bbabio.2014.02.023 PMID: 24602596
- Nisr RB, Shah DS, Ganley IG, Hundal HS. Proinflammatory NFkB signalling promotes mitochondrial dysfunction in skeletal muscle in response to cellular fuel overloading. Cell Mol Life Sci 2019; 76(24): 4887-904. doi: 10.1007/s00018-019-03148-8 PMID: 31101940
- Masschelin PM, Cox AR, Chernis N, Hartig SM. The impact of oxidative stress on adipose tissue energy balance. Front Physiol 2020; 10: 1638. doi: 10.3389/fphys.2019.01638 PMID: 32038305
- Sun K, Kusminski CM, Scherer PE. Adipose tissue remodeling and obesity. J Clin Invest 2011; 121(6): 2094-101. doi: 10.1172/JCI45887 PMID: 21633177
- Lackey DE, Olefsky JM. Regulation of metabolism by the innate immune system. Nat Rev Endocrinol 2016; 12(1): 15-28. doi: 10.1038/nrendo.2015.189 PMID: 26553134
- Xu H, Barnes GT, Yang Q, et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 2003; 112(12): 1821-30. doi: 10.1172/JCI200319451 PMID: 14679177
- Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 2003; 112(12): 1796-808. doi: 10.1172/JCI200319246 PMID: 14679176
- Patsouris D, Li PP, Thapar D, Chapman J, Olefsky JM, Neels JG. Ablation of CD11c-positive cells normalizes insulin sensitivity in obese insulin resistant animals. Cell Metab 2008; 8(4): 301-9. doi: 10.1016/j.cmet.2008.08.015 PMID: 18840360
- Cinti S, Mitchell G, Barbatelli G, et al. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J Lipid Res 2005; 46(11): 2347-55. doi: 10.1194/jlr.M500294-JLR200 PMID: 16150820
- Kanda H, Tateya S, Tamori Y, et al. MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Invest 2006; 116(6): 1494-505. doi: 10.1172/JCI26498 PMID: 16691291
- Sartipy P, Loskutoff DJ. Monocyte chemoattractant protein 1 in obesity and insulin resistance. Proc Natl Acad Sci USA 2003; 100(12): 7265-70. doi: 10.1073/pnas.1133870100 PMID: 12756299
- Dupuis J, Langenberg C, Prokopenko I, et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet 2010; 42(2): 105-16. doi: 10.1038/ng.520 PMID: 20081858
- Voight BF, Scott LJ, Steinthorsdottir V, et al. Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat Genet 2010; 42(7): 579-89. doi: 10.1038/ng.609 PMID: 20581827
- Zhao YF, Feng DD, Chen C. Contribution of adipocyte-derived factors to beta-cell dysfunction in diabetes. Int J Biochem Cell Biol 2006; 38(5-6): 804-19. doi: 10.1016/j.biocel.2005.11.008 PMID: 16378747
- Ross R. Effects of diet- and exercise-induced weight loss on visceral adipose tissue in men and women. Sports Med 1997; 24(1): 55-64. doi: 10.2165/00007256-199724010-00005 PMID: 9257410
- Borges JH, Carter SJ, Bryan DR, Hunter GR. Exercise training and/or diet on reduction of intra-abdominal adipose tissue and risk factors for cardiovascular disease. Eur J Clin Nutr 2019; 73(7): 1063-8. doi: 10.1038/s41430-018-0318-4 PMID: 30250134
- Gregg EW, Jakicic JM, Blackburn G, et al. Association of the magnitude of weight loss and changes in physical fitness with long-term cardiovascular disease outcomes in overweight or obese people with type 2 diabetes: A post-hoc analysis of the Look AHEAD randomised clinical trial. Lancet Diabetes Endocrinol 2016; 4(11): 913-21. doi: 10.1016/S2213-8587(16)30162-0 PMID: 27595918
- Lee S, Norheim F, Langleite TM, Gulseth HL, Birkeland KI, Drevon CA. Effects of long-term exercise on plasma adipokine levels and inflammation-related gene expression in subcutaneous adipose tissue in sedentary dysglycaemic, overweight men and sedentary normoglycaemic men of healthy weight. Diabetologia 2019; 62(6): 1048-64. doi: 10.1007/s00125-019-4866-5 PMID: 31011777
- Smith BR, Schauer P, Nguyen NT. Surgical approaches to the treatment of obesity: Bariatric surgery. Endocrinol Metab Clin North Am 2008; 37(4): 943-64. doi: 10.1016/j.ecl.2008.08.001 PMID: 19026941
- Angrisani L, Santonicola A, Iovino P, Formisano G, Buchwald H, Scopinaro N. Bariatric surgery worldwide 2013. Obes Surg 2015; 25(10): 1822-32. doi: 10.1007/s11695-015-1657-z PMID: 25835983
- Bult MJF, van Dalen T, Muller AF. Surgical treatment of obesity. Eur J Endocrinol 2008; 158(2): 135-45. doi: 10.1530/EJE-07-0145 PMID: 18230819
- Fujioka K. Follow-up of nutritional and metabolic problems after bariatric surgery. Diabetes Care 2005; 28(2): 481-4. doi: 10.2337/diacare.28.2.481 PMID: 15677821
- Backman O, Stockeld D, Rasmussen F, Näslund E, Marsk R. Alcohol and substance abuse, depression and suicide attempts after Roux-en-Y gastric bypass surgery. Br J Surg 2016; 103(10): 1336-42. doi: 10.1002/bjs.10258 PMID: 27467694
- American Diabetes Association. 8. Obesity management for the treatment of type 2 diabetes: Standards of medical care in diabetes-2021. Diabetes Care 2021; 44 (Suppl. 1): S100-10. doi: 10.2337/dc21-S008 PMID: 33298419
- Hui X, Gu P, Zhang J, et al. Adiponectin enhances cold-induced browning of subcutaneous adipose tissue via promoting M2 macrophage proliferation. Cell Metab 2015; 22(2): 279-90. doi: 10.1016/j.cmet.2015.06.004 PMID: 26166748
- Colagiuri S. Diabesity: Therapeutic options. Diabetes Obes Metab 2010; 12(6): 463-73. doi: 10.1111/j.1463-1326.2009.01182.x PMID: 20518802
- Yun JW. Possible anti-obesity therapeutics from nature A review. Phytochemistry 2010; 71(14-15): 1625-41. doi: 10.1016/j.phytochem.2010.07.011 PMID: 20732701
- Stohs SJ, Preuss HG, Shara M. The safety of Citrus aurantium (bitter orange) and its primary protoalkaloid p-synephrine. Phytother Res 2011; 25(10): 1421-8. doi: 10.1002/ptr.3490 PMID: 21480414
- Park J, Kim HL, Jung Y, Ahn KS, Kwak HJ, Um JY. Bitter orange (Citrus aurantium Linné) improves obesity by regulating adipogenesis and thermogenesis through AMPK activation. Nutrients 2019; 11(9): 1988. doi: 10.3390/nu11091988 PMID: 31443565
- Fredholm BB, Hedqvist P, Vernet L. Effect of theophylline and other drugs on rabbit renal cyclic nucleotide phosphodiesterase, 5′-nucleotidase and adenosine deaminase. Biochem Pharmacol 1978; 27(24): 2845-50. doi: 10.1016/0006-2952(78)90199-5 PMID: 216371
- Santos RMM, Lima DRA. Coffee consumption, obesity and type 2 diabetes: A mini-review. Eur J Nutr 2016; 55(4): 1345-58. doi: 10.1007/s00394-016-1206-0 PMID: 27026242
- Rustenbeck I, Lier-Glaubitz V, Willenborg M, Eggert F, Engelhardt U, Jörns A. Effect of chronic coffee consumption on weight gain and glycaemia in a mouse model of obesity and type 2 diabetes. Nutr Diabetes 2014; 4(6): e123. doi: 10.1038/nutd.2014.19 PMID: 24979152
- Kim CY, Le TT, Chen C, Cheng JX, Kim KH. Curcumin inhibits adipocyte differentiation through modulation of mitotic clonal expansion. J Nutr Biochem 2011; 22(10): 910-20. doi: 10.1016/j.jnutbio.2010.08.003 PMID: 21189228
- Lee YK, Lee WS, Hwang JT, Kwon DY, Surh YJ, Park OJ. Curcumin exerts antidifferentiation effect through AMPKalpha-PPAR-gamma in 3T3-L1 adipocytes and antiproliferatory effect through AMPKalpha-COX-2 in cancer cells. J Agric Food Chem 2009; 57(1): 305-10. doi: 10.1021/jf802737z PMID: 19093868
- Hwang JT, Kim S, Choi SY. Inhibitory effect of (E)-1,2-di(3,5-dimethoxyphenyl)ethene on 3T3-L1 adiopocyte differentiation. Pharmazie 2010; 65(12): 903-5. PMID: 21284260
- Rayalam S, Yang JY, Ambati S, Della-Fera MA, Baile CA. Resveratrol induces apoptosis and inhibits adipogenesis in 3T3‐L1 adipocytes. Phytother Res 2008; 22(10): 1367-71. doi: 10.1002/ptr.2503 PMID: 18688788
- Mun JM, Ok HM, Kwon O. Corn gluten hydrolysate and capsaicin have complimentary actions on body weight reduction and lipid-related genes in diet-induced obese rats. Nutr Res 2014; 34(5): 458-65. doi: 10.1016/j.nutres.2014.04.009 PMID: 24916560
- Kang JH, Kim CS, Han IS, Kawada T, Yu R. Capsaicin, a spicy component of hot peppers, modulates adipokine gene expression and protein release from obese‐mouse adipose tissues and isolated adipocytes, and suppresses the inflammatory responses of adipose tissue macrophages. FEBS Lett 2007; 581(23): 4389-96. doi: 10.1016/j.febslet.2007.07.082 PMID: 17719033
- Arafa ESA, Hassan W, Murtaza G, Buabeid MA. Ficus carica and Syzygium cumini regulate glucose and lipid parameters in high‐fat diet and streptozocin‐induced rats. J Diabetes Res 2020; 2020(1): 1-9. doi: 10.1155/2020/6745873 PMID: 33178838
- Salma B, Janhavi P, Muthaiah S, et al. Ameliorative efficacy of the Cassia auriculata root against high-fat-diet+ STZ-induced type-2 diabetes in C57BL/6 mice. ACS Omega 2021; 6(1): 492-504. doi: 10.1021/acsomega.0c04940 PMID: 33458501
- Veerapur VP, Prabhakar KR, Kandadi MR, Srinivasan KK, Unnikrishnan MK. Antidiabetic effect of Dodonaea viscosa aerial parts in high fat diet and low dose streptozotocin-induced type 2 diabetic rats: A mechanistic approach. Pharm Biol 2010; 48(10): 1137-48. doi: 10.3109/13880200903527736 PMID: 20815701
- Liu S, Li D, Huang B, Chen Y, Lu X, Wang Y. Inhibition of pancreatic lipase, α-glucosidase, α-amylase, and hypolipidemic effects of the total flavonoids from Nelumbo nucifera leaves. J Ethnopharmacol 2013; 149(1): 263-9. doi: 10.1016/j.jep.2013.06.034 PMID: 23811214
- Belwal T, Bisht A, Devkota HP, et al. Phytopharmacology and clinical updates of Berberis species against diabetes and other metabolic diseases. Front Pharmacol 2020; 11: 41. doi: 10.3389/fphar.2020.00041 PMID: 32132921
- Sharma R, Sharma B, Jindal M, et al. Evaluation of hypolipidemic effect of stem part of Berberis aristata in Type 2 diabetes mellitus patients as add on therapy. Natl J Physiol Pharm Pharmacol 2017; 7(11): 1159-9. doi: 10.5455/njppp.2017.7.0517510062017
- Kang MH, Lee MS, Choi MK, Min KS, Shibamoto T. Hypoglycemic activity of Gymnema sylvestre extracts on oxidative stress and antioxidant status in diabetic rats. J Agric Food Chem 2012; 60(10): 2517-24. doi: 10.1021/jf205086b PMID: 22360666
- Iheagwam FN, Iheagwam OT, Onuoha MK, Ogunlana OO, Chinedu SN. Terminalia catappa aqueous leaf extract reverses insulin resistance, improves glucose transport and activates PI3K/AKT signalling in high fat/streptozotocin-induced diabetic rats. Sci Rep 2022; 12(1): 10711. doi: 10.1038/s41598-022-15114-9 PMID: 35739183
- Behl T, Kotwani A. Proposed mechanisms of Terminalia catappa in hyperglycaemia and associated diabetic complications. J Pharm Pharmacol 2017; 69(2): 123-34. doi: 10.1111/jphp.12676 PMID: 28000229
- Das G, Kim DY, Fan C, et al. Plants of the genus Terminalia: An insight on its biological potentials, pre-clinical and clinical studies. Front Pharmacol 2020; 11: 561248. doi: 10.3389/fphar.2020.561248 PMID: 33132909
- Zhao Q, Hou D, Fu Y, Xue Y, Guan X, Shen Q. Adzuki bean alleviates obesity and insulin resistance induced by a high-fat diet and modulates gut microbiota in mice. Nutrients 2021; 13(9): 3240. doi: 10.3390/nu13093240 PMID: 34579118
- Sunil V, Shree N, Venkataranganna MV, Bhonde RR, Majumdar M. The anti diabetic and anti obesity effect of Memecylon umbellatum extract in high fat diet induced obese mice. Biomed Pharmacother 2017; 89: 880-6. doi: 10.1016/j.biopha.2017.01.182 PMID: 28282790
- Khare P, Maurya R, Bhatia R, et al. Polyphenol rich extracts of finger millet and kodo millet ameliorate high fat diet-induced metabolic alterations. Food Funct 2020; 11(11): 9833-47. doi: 10.1039/D0FO01643H PMID: 33089852
- Thirumalai T, Therasa SV, Elumalai EK, David E. Hypoglycemic effect of Brassica juncea (seeds) on streptozotocin induced diabetic male albino rat. Asian Pac J Trop Biomed 2011; 1(4): 323-5. doi: 10.1016/S2221-1691(11)60052-X PMID: 23569784
- Yadav SP, Vats V, Ammini AC, Grover JK. Brassica juncea (Rai) significantly prevented the development of insulin resistance in rats fed fructose-enriched diet. J Ethnopharmacol 2004; 93(1): 113-6. doi: 10.1016/j.jep.2004.03.034 PMID: 15182915
- El-Hadary AE, Ramadan MF. Phenolic profiles, antihyperglycemic, antihyperlipidemic, and antioxidant properties of pomegranate (Punica granatum) peel extract. J Food Biochem 2019; 43(4): e12803. doi: 10.1111/jfbc.12803 PMID: 31353600
- Wang S, Chen L, Yang H, Gu J, Wang J, Ren F. Regular intake of white kidney beans extract (Phaseolus vulgaris L.) induces weight loss compared to placebo in obese human subjects. Food Sci Nutr 2020; 8(3): 1315-24. doi: 10.1002/fsn3.1299 PMID: 32180941
- Bharathi V, Rengarajan RL, Radhakrishnan R, et al. Effects of a medicinal plant Macrotyloma uniflorum (Lam.) Verdc.formulation (MUF) on obesity-associated oxidative stress-induced liver injury. Saudi J Biol Sci 2018; 25(6): 1115-21. doi: 10.1016/j.sjbs.2018.03.010 PMID: 30174510
- Yoshikawa M, Shimoda H, Matsuda H, Nishida N, Takada M. Salacia reticulata and its polyphenolic constituents with lipase inhibitory and lipolytic activities have mild antiobesity effects in rats. J Nutr 2002; 132(7): 1819-24. doi: 10.1093/jn/132.7.1819 PMID: 12097653
- Nissankara Rao LS, Kilari EK, Kola PK. Protective effect of Curcuma amada acetone extract against high-fat and high-sugar diet-induced obesity and memory impairment. Nutr Neurosci 2021; 24(3): 212-25. doi: 10.1080/1028415X.2019.1616436 PMID: 31149894
- Subramanian G, Shanmugamprema D, Subramani R, et al. Anti‐obesity effect of T. Chebula fruit extract on high fat diet induced obese mice: A possible alternative therapy. Mol Nutr Food Res 2021; 65(10): 2001224. doi: 10.1002/mnfr.202001224 PMID: 33754444
- Ann JY, Eo H, Lim Y. Mulberry leaves (Morus alba L.) ameliorate obesity-induced hepatic lipogenesis, fibrosis, and oxidative stress in high-fat diet-fed mice. Genes Nutr 2015; 10(6): 46. doi: 10.1007/s12263-015-0495-x PMID: 26463593
- Kameswara Rao B, Giri R, Kesavulu MM, Apparao C. Effect of oral administration of bark extracts of Pterocarpus santalinus L. on blood glucose level in experimental animals. J Ethnopharmacol 2001; 74(1): 69-74. doi: 10.1016/S0378-8741(00)00344-5 PMID: 11137350
- Wang L, Ye X, Hua Y, Song Y. Berberine alleviates adipose tissue fibrosis by inducing AMP-activated kinase signaling in high-fat diet-induced obese mice. Biomed Pharmacother 2018; 105: 121-9. doi: 10.1016/j.biopha.2018.05.110 PMID: 29852389
- Xu JH, Liu XZ, Pan W, Zou DJ. Berberine protects against diet-induced obesity through regulating metabolic endotoxemia and gut hormone levels. Mol Med Rep 2017; 15(5): 2765-87. doi: 10.3892/mmr.2017.6321 PMID: 28447763
- Mi J, He W, Lv J, Zhuang K, Huang H, Quan S. Effect of berberine on the HPA-axis pathway and skeletal muscle GLUT4 in type 2 diabetes mellitus rats. Diabetes Metab Syndr Obes 2019; 12: 1717-25. doi: 10.2147/DMSO.S211188 PMID: 31564939
- Yoshinari O, Sato H, Igarashi K. Anti-diabetic effects of pumpkin and its components, trigonelline and nicotinic acid, on Goto-Kakizaki rats. Biosci Biotechnol Biochem 2009; 73(5): 1033-41. doi: 10.1271/bbb.80805 PMID: 19420712
- Ilavenil S, Arasu MV, Lee JC, et al. Trigonelline attenuates the adipocyte differentiation and lipid accumulation in 3T3-L1 cells. Phytomedicine 2014; 21(5): 758-65. doi: 10.1016/j.phymed.2013.11.007 PMID: 24369814
- Aldakinah AAA, Al-Shorbagy MY, Abdallah DM, El-Abhar HS. Trigonelline and vildagliptin antidiabetic effect: Improvement of insulin signalling pathway. J Pharm Pharmacol 2017; 69(7): 856-64. doi: 10.1111/jphp.12713 PMID: 28271502
- Colitti M, Grasso S. Nutraceuticals and regulation of adipocyte life: Premises or promises. Biofactors 2014; 40(4): 398-418. doi: 10.1002/biof.1164 PMID: 24692086
- Shang A, Gan RY, Xu XY, Mao QQ, Zhang PZ, Li HB. Effects and mechanisms of edible and medicinal plants on obesity: An updated review. Crit Rev Food Sci Nutr 2021; 61(12): 2061-77. doi: 10.1080/10408398.2020.1769548 PMID: 32462901
- Kesari AN, Kesari S, Singh SK, Gupta RK, Watal G. Studies on the glycemic and lipidemic effect of Murraya koenigii in experimental animals. J Ethnopharmacol 2007; 112(2): 305-11. doi: 10.1016/j.jep.2007.03.023 PMID: 17467937
- Sethiya NK, Nahata A, Dixit VK. An update on Murraya koenigii Spreng: A multifunctional Ayurvedic herb. J Chin Integr Med 2011; 9(8): 824-33. doi: 10.3736/jcim20110803 PMID: 21849142
- Raghunāthan K, Mitra R. Pharmacognosy of indigenous drugs. India: Central Council for Research in Ayurveda and Siddha 1999.
- Chakraborty DP, Barman BK, Bose PK. On the constitution of murrayanine, a carbazole derivative isolated from Murraya koenigii Spreng. Tetrahedron 1965; 21(2): 681-5. doi: 10.1016/S0040-4020(01)82240-7
- Choudhury BK, Chakraborty DP. Mukoeic acid, the first carbazole carboxylic acid from a plant source. Phytochemistry 1971; 10(8): 1967-70. doi: 10.1016/S0031-9422(00)86484-5
- Fiebig M, Pezzuto JM, Soejarto DD, Kinghorn AD. Koenoline, a further cytotoxic carbazole alkaloid from Murraya koenigii. Phytochemistry 1985; 24(12): 3041-3. doi: 10.1016/0031-9422(85)80052-2
- Ito C, Thoyama Y, Omura M, Kajiura I, Furukawa H. Alkaloidal constituents of Murraya koenigii. isolation and structural elucidation of novel binary carbazolequinones and carbazole alkaloids. Chem Pharm Bull (Tokyo) 1993; 41(12): 2096-100. doi: 10.1248/cpb.41.2096
- Ramsewak RS, Nair MG, Strasburg GM, DeWitt DL, Nitiss JL. Biologically active carbazole alkaloids from Murraya koenigii. J Agric Food Chem 1999; 47(2): 444-7. doi: 10.1021/jf9805808 PMID: 10563914
- Sim KM, Teh HM. A new carbazole alkaloid from the leaves of Malayan Murraya koenigii. J Asian Nat Prod Res 2011; 13(10): 972-5. doi: 10.1080/10286020.2011.602970 PMID: 21972815
- Uvarani C, Sankaran M, Jaivel N, Chandraprakash K, Ata A, Mohan PS. Bioactive dimeric carbazole alkaloids from Murraya koenigii. J Nat Prod 2013; 76(6): 993-1000. doi: 10.1021/np300464t PMID: 23691929
- Tan SP, Ali AM, Nafiah MA, Awang K, Ahmad K. Isolation and cytotoxic investigation of new carbazole alkaloids from Murraya koenigii (Linn.). Spreng Tetrahedron 2015; 71(23): 3946-53. doi: 10.1016/j.tet.2015.04.037
- Balakrishnan R, Vijayraja D, Jo SH, Ganesan P, Su-Kim I, Choi DK. Medicinal profile, phytochemistry, and pharmacological activities of Murraya koenigii and its primary bioactive compounds. Antioxidants 2020; 9(2): 101. doi: 10.3390/antiox9020101 PMID: 31991665
- Palaniswany UR, Caporuscio C, Stuart JD. A chemical analysis of antioxidant vitamins in fresh curry leaf (Murraya koenigii) by reversed phase HPLC with UV detection International Society for Horticultural Science. Leuven, Belgium: ISHS 2003.
- Joseph S, Peter KV. Curry leaf (Murraya koenigii), perennial, nutritious, leafy vegetable. Econ Bot 1985; 39(1): 68-73. doi: 10.1007/BF02861176
- Saha A, Mazumder S. An aqueous extract of Murraya koenigii leaves induces paraoxonase 1 activity in streptozotocin induced diabetic mice. Food Funct 2013; 4(3): 420-5. doi: 10.1039/C2FO30193H PMID: 23207871
- Khan BA, Abraham A, Leelamma S. Role of Murraya koenigii (curry leaf) and Brassica juncea (Mustard) in lipid peroxidation. Indian J Physiol Pharmacol 1996; 40(2): 155-8. PMID: 9062811
- Iyer UM, Mani UV. Studies on the effect of curry leaves supplementation (Murraya koenigi) on lipid profile, glycated proteins and amino acids in non-insulin-dependent diabetic patients. Plant Foods Hum Nutr 1990; 40(4): 275-82. doi: 10.1007/BF02193851 PMID: 2174154
- Xie JT, Chang WT, Wang CZ, et al. Curry leaf (Murraya koenigii Spreng.) reduces blood cholesterol and glucose levels in ob/ob mice. Am J Chin Med 2006; 34(2): 279-84. doi: 10.1142/S0192415X06003825 PMID: 16552838
- Kumar BD, Krishnakumar K, Jaganathan S, Mandal M. Effect of mangiferin and mahanimbine on glucose utilization in 3T3-L1 cells. Pharmacogn Mag 2013; 9(33): 72-5. doi: 10.4103/0973-1296.108145 PMID: 23661997
- Gupta S, Singh N, Jaggi AS. Evaluation of in vitro aldose reductase inhibitory potential of alkaloidal fractions of Piper nigrum, Murraya koenigii, Argemone mexicana, and Nelumbo nucifera. J Basic Clin Physiol Pharmacol 2014; 25(2): 255-65. doi: 10.1515/jbcpp-2013-0071 PMID: 24127538
- Kesari AN, Gupta RK, Watal G. Hypoglycemic effects of Murraya koenigii on normal and alloxan-diabetic rabbits. J Ethnopharmacol 2005; 97(2): 247-51. doi: 10.1016/j.jep.2004.11.006 PMID: 15707761
- Sangilimuthu AY, Sivaraman T, Chandrasekaran R, Sundaram KM, Ekambaram G. Screening chemical inhibitors for alpha-amylase from leaves extracts of Murraya koenigii (Linn.) and Aegle marmelos L. J Complement Integr Med 2021; 18(1): 51-7. doi: 10.1515/jcim-2019-0345 PMID: 32745070
- Pandey J, Maurya R, Raykhera R, Srivastava MN, Yadav PP, Tamrakar AK. Murraya koenigii (L.) Spreng. ameliorates insulin resistance in dexamethasone-treated mice by enhancing peripheral insulin sensitivity. J Sci Food Agric 2014; 94(11): 2282-8. doi: 10.1002/jsfa.6555 PMID: 24395372
- Bakhru HK. Herbs that Heal: Natural Remedies for Good Health. Pakistan: Orient Publication 2013.
- Dusane MB, Joshi BN. Islet protective and insulin secretion property of Murraya koenigii and Ocimum tenuflorum in streptozotocin-induced diabetic mice. Can J Physiol Pharmacol 2012; 90(3): 371-8. doi: 10.1139/y11-133 PMID: 22397690
- Lawal HA, Atiku MK, Khelpai DG, Wannang NN. Hypoglycaemic and hypolipidaemic effect of aqueous leaf extract of Murraya koenigii in normal and alloxan-diabetic rats. Niger J Physiol Sci 2008; 23(1-2): 37-40. PMID: 19434212
- Liyanagamage DSNK, Jayasinghe S, Attanayake AP, Karunaratne V. Dual mechanisms of a Sri Lankan traditional polyherbal mixture in the improvement of pancreatic beta cell functions and restoration of lipoprotein alterations in streptozotocin induced diabetic rats. J Ethnopharmacol 2021; 267: 113613. doi: 10.1016/j.jep.2020.113613 PMID: 33242620
- El-Amin M, Virk P, Elobeid MA, et al. Anti-diabetic effect of Murraya koenigii (L) and Olea europaea (L) leaf extracts on streptozotocin induced diabetic rats. Pak J Pharm Sci 2013; 26(2): 359-65. PMID: 23455208
- Husna F, Suyatna F, Arozal W, Poerwaningsih E. Anti-diabetic potential of Murraya koenigii (L.) and its antioxidant capacity in nicotinamide-streptozotocin induced diabetic rats. Drug Res (Stuttg) 2018; 68(11): 631-6. doi: 10.1055/a-0620-8210 PMID: 29801176
- Dineshkumar B, Mitra A, Mahadevappa M. Antidiabetic and hypolipidemic effects of mahanimbine (carbazole alkaloid) from Murraya koenigii (rutaceae) leaves. Int J Phytomed 2010; 2: 22-30.
- Nooron N, Athipornchai A, Suksamrarn A, Chiabchalard A. Mahanine enhances the glucose-lowering mechanisms in skeletal muscle and adipocyte cells. Biochem Biophys Res Commun 2017; 494(1-2): 101-6. doi: 10.1016/j.bbrc.2017.10.075 PMID: 29050941
- Birari R, Roy SK, Singh A, Bhutani KK. Pancreatic lipase inhibitory alkaloids of Murraya koenigii leaves. Nat Prod Commun 2009; 4(8): 1934578X0900400. doi: 10.1177/1934578X0900400814 PMID: 19768989
- Tembhurne SV, Sakarkar DM. Anti-obesity and hypoglycemic effect of ethanolic extract of Murraya koenigii (L) leaves in high fatty diet rats. Asian Pac J Trop Dis 2012; 2: S166-8. doi: 10.1016/S2222-1808(12)60145-5
- Birari R, Javia V, Bhutani KK. Antiobesity and lipid lowering effects of Murraya koenigii (L.) Spreng leaves extracts and mahanimbine on high fat diet induced obese rats. Fitoterapia 2010; 81(8): 1129-33. doi: 10.1016/j.fitote.2010.07.013 PMID: 20655993
- Jagtap S, Khare P, Mangal P, Kondepudi KK, Bishnoi M, Bhutani KK. Effect of mahanimbine, an alkaloid from curry leaves, on high‐fat diet‐induced adiposity, insulin resistance, and inflammatory alterations. Biofactors 2017; 43(2): 220-31. doi: 10.1002/biof.1333 PMID: 27663177
- Kumar P, Singh S, Ahmad MI. Synergistic effect of Cinnamomum zeylanicum and Murraya koenigii formulation for antiobesity and hypolipidemic activity on wistar albino rats. Adv Trad Med 2021; 21(3): 553-63. doi: 10.1007/s13596-020-00460-8
- BMS Glucophage. prescribing information 2017. Available from: https://packageinserts.bms.com/pi/pi_glucophage_xr.pdf
- Parthasarathy PR. Hydroalcoholic and alkaloidal extracts of Murraya koenigii (L.) Spreng augments glucose uptake potential against insulin resistance condition in L6 myotubes and inhibits adipogenesis in 3T3L1 adipocytes. Pharmacogn J 2018; 10(4): 633-9.
- Phatak RS, Khanwelkar CC, Matule SM, Datkhile KD, Hendre AS, Panchatcharam TS. Antihyperlipidemic activity of Murraya koenigii leaves methanolic and aqueous extracts on serum lipid profile of high fat-fructose fed rats. Pharmacogn J 2019; 11(4): 836-41. doi: 10.5530/pj.2019.11.134
- Kundimi S, Kavungala KC, Sinha S, et al. Combined extracts of Moringa oleifera, Murraya koeingii leaves, and Curcuma longa rhizome increases energy expenditure and controls obesity in high-fat diet-fed rats. Lipids Health Dis 2020; 19(1): 198. doi: 10.1186/s12944-020-01376-7 PMID: 32859217
- Choi HJ, Kim HY, Park KS. Antiobesity effect of a novel herbal formulation LI85008F in high-fat diet-induced obese mice. Evid Based Complement Alternat Med 2021; 2021: 1-8. doi: 10.1155/2021/6612996 PMID: 33628302
- Farooq M, Ul Ain I, Aysha Iftikhar Z, et al. Investigating the therapeutic potential of aqueous extraction of curry plant (Murraya koenigi) leaves supplementation for the regulation of blood glucose level in type 2 diabetes mellitus in female human subjects. Pak J Pharm Sci 2023; 36(2(Special)): 601-5. PMID: 37548196
- Abdullah R, Zaheer S, Kaleem A, Iqtedar M, Aftab M, Saleem F. Formulation of herbal tea using Cymbopogon citratus, Foeniculum vulgare and Murraya koenigii and its anti-obesity potential. J King Saud Univ Sci 2023; 35(6): 102734. doi: 10.1016/j.jksus.2023.102734
- Khattak MMAK, Mohd-Shukri NA, Mahmood T, et al. Antidiabetic activity evaluation of polyherbal formulation in type 2 diabetes mellitus patients. J King Saud Univ Sci 2024; 36(1): 103010. doi: 10.1016/j.jksus.2023.103010
- Anuruddhika Subhashinie Senadheera SP, Ekanayake S. Green leafy porridges: How good are they in controlling glycaemic response? Int J Food Sci Nutr 2013; 64(2): 169-74. doi: 10.3109/09637486.2012.710895 PMID: 22849311
- Sengupta K, Golakoti T, Chirravuri VR, Marasetti AK. An herbal formula LI85008F inhibits lipogenesis in 3T3-L1 adipocytes. Food Nutr Sci 2011; 2(8): 809-17. doi: 10.4236/fns.2011.28111
- Sengupta K, Mishra AT, Rao MK, Sarma KVS, Krishnaraju AV, Trimurtulu G. Efficacy and tolerability of a novel herbal formulation for weight management in obese subjects: A randomized double blind placebo controlled clinical study. Lipids Health Dis 2012; 11(1): 122. doi: 10.1186/1476-511X-11-122 PMID: 22995673
- Dixit K, Kamath DV, Alluri KV, Davis BA. Efficacy of a novel herbal formulation for weight loss demonstrated in a 16‐week randomized, double‐blind, placebo‐controlled clinical trial with healthy overweight adults. Diabetes Obes Metab 2018; 20(11): 2633-41. doi: 10.1111/dom.13443 PMID: 29923305
- Tao Z, Shi A, Zhao J. Epidemiological perspectives of diabetes. Cell Biochem Biophys 2015; 73(1): 181-5. doi: 10.1007/s12013-015-0598-4 PMID: 25711186
补充文件
