Applications of Pyrrole and Pyridine-based Heterocycles in Cancer Diagnosis and Treatment


Cite item

Full Text

Abstract

Background::The escalation of cancer worldwide is one of the major causes of economy burden and loss of human resources. According to the American Cancer Society, there will be 1,958,310 new cancer cases and 609,820 projected cancer deaths in 2023 in the United States. It is projected that by 2040, the burden of global cancer is expected to rise to 29.5 million per year, causing a death toll of 16.4 million. The hemostasis regulation by cellular protein synthesis and their targeted degradation is required for normal cell growth. The imbalance in hemostasis causes unbridled growth in cells and results in cancer. The DNA of cells needs to be targeted by chemotherapeutic agents for cancer treatment, but at the same time, their efficacy and toxicity also need to be considered for successful treatment.

Objective::The objective of this study is to review the published work on pyrrole and pyridine, which have been prominent in the diagnosis and possess anticancer activity, to obtain some novel lead molecules of improved cancer therapeutic.

Methods::A literature search was carried out using different search engines, like Sci-finder, Elsevier, ScienceDirect, RSC etc., for small molecules based on pyrrole and pyridine helpful in diagnosis and inducing apoptosis in cancer cells. The research findings on the application of these compounds from 2018-2023 were reviewed on a variety of cell lines, such as breast cancer, liver cancer, epithelial cancer, etc.

Results::In this review, the published small molecules, pyrrole and pyridine and their derivatives, which have roles in the diagnosis and treatment of cancers, were discussed to provide some insight into the structural features responsible for diagnosis and treatment. The analogues with the chromeno-furo-pyridine skeleton showed the highest anticancer activity against breast cancer. The compound 5-amino-N-(1-(pyridin-4- yl)ethylidene)-1H-pyrazole-4-carbohydrazides was highly potent against HEPG2 cancer cell. Redaporfin is used for the treatment of cholangiocarcinoma, biliary tract cancer, cisplatin-resistant head and neck squamous cell carcinoma, and pigmentation melanoma, and it is in clinical trials for phase II. These structural features present a high potential for designing novel anticancer agents for diagnosis and drug development.

Conclusion::Therefore, the N- and C-substituted pyrrole and pyridine-based novel privileged small Nheterocyclic scaffolds are potential molecules used in the diagnosis and treatment of cancer. This review discusses the reports on the synthesis of such molecules during 2018-2023. The review mainly discusses various diagnostic techniques for cancer, which employ pyrrole and pyridine heterocyclic scaffolds. Furthermore, the anticancer activity of N- and C-substituted pyrrole and pyridine-based scaffolds has been described, which works against different cancer cell lines, such as MCF-7, A549, A2780, HepG2, MDA-MB-231, K562, HT- 29, Caco-2 cells, Hela, Huh-7, WSU-DLCL2, HCT-116, HBL-100, H23, HCC827, SKOV3, etc. This review will help the researchers to obtain a critical insight into the structural aspects of pyrrole and pyridine-based scaffolds useful in cancer diagnosis as well as treatment and design pathways to develop novel drugs in the future.

About the authors

Rajdeep Tyagi

Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University

Email: info@benthamscience.net

Kanchan Yadav

Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University

Email: info@benthamscience.net

Nitin Srivastava

Department of Chemistry,, Amity University Lucknow Campus

Author for correspondence.
Email: info@benthamscience.net

Ram Sagar

Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Zhang B, Liu B, Chen G, Tang D. Redox and catalysis ‘all-in-one’ infinite coordination polymer for electrochemical immunosensor of tumor markers. Biosens Bioelectron 2015; 64: 6-12. doi: 10.1016/j.bios.2014.08.024 PMID: 25173732
  2. Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin 2023; 73(1): 17-48. doi: 10.3322/caac.21763 PMID: 36633525
  3. a) Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71(3): 209-49.; b) Albratty M, Alhazmi HA. Novel pyridine and pyrimidine derivatives as promising anticancer agents: A review. Arabian J Chem 2022; 15: 103846.
  4. Dynlacht BD. Regulation of transcription by proteins that control the cell cycle. Nature 1997; 389(6647): 149-52. doi: 10.1038/38225 PMID: 9296491
  5. Elledge SJ. Cell cycle checkpoints: Preventing an identity crisis. Science 1996; 274(5293): 1664-72. doi: 10.1126/science.274.5293.1664 PMID: 8939848
  6. Nitin Srivastava AK. Caspase-3 activators as anticancer agents. Curr Protein Pept Sci 2023. doi: 10.2174/1389203724666230227115305
  7. a) Mousa S, Mousa SA. Biosensors: The new wave in cancer diagnosis. Nanotechnol Sci Appl 2010; 4: 1-10. doi: 10.2147/NSA.S13465 PMID: 24198482; b) Mateev E, Georgieva M, Zlatkov A. Pyrrole as an important scaffold of anticancer drugs: Recent advances. J Pharm Pharm Sci 2022; 25: 24-40. doi: 10.18433/jpps32417 PMID: 34995473
  8. Tothill IE. Biosensors for cancer markers diagnosis. Semin Cell Dev Biol 2009; 20(1): 55-62. doi: 10.1016/j.semcdb.2009.01.015 PMID: 19429492
  9. Wu G, Datar RH, Hansen KM, Thundat T, Cote RJ, Majumdar A. Bioassay of prostate-specific antigen (PSA) using microcantilevers. Nat Biotechnol 2001; 19(9): 856-60. doi: 10.1038/nbt0901-856 PMID: 11533645
  10. Kim DJ, Lee NE, Park JS, Park IJ, Kim JG, Cho HJ. Organic electrochemical transistor based immunosensor for prostate specific antigen (PSA) detection using gold nanoparticles for signal amplification. Biosens Bioelectron 2010; 25(11): 2477-82. doi: 10.1016/j.bios.2010.04.013 PMID: 20435461
  11. Jeong S, Barman SC, Yoon H, Park JY. A prostate cancer detection immunosensor based on nafion/reduced graphene oxide/aldehyde functionalized methyl pyridine composite electrode. J Electrochem Soc 2019; 166(12): B920-6. doi: 10.1149/2.0361912jes
  12. Zahed MA, Barman SC, Toyabur RM, et al. Ex situ hybridized hexagonal cobalt oxide nanosheets and RGO@MWCNT based nanocomposite for ultra-selective electrochemical detection of ascorbic acid, dopamine, and uric acid. J Electrochem Soc 2019; 166(6): B304-11. doi: 10.1149/2.0131906jes
  13. Sharifuzzaman M, Barman SC, Zahed MA, San NJ, Park JY. Green synthesis of reduced graphene oxide decorated with few-layered MoS2-nanoroses and Au/Pd/Ag trimetallic nanoparticles for ultrasensitive label-free immunosensing platforms. J Electrochem Soc 2019; 166(4): B249-57. doi: 10.1149/2.0861904jes
  14. Saha S, De A, Ghosh A, et al. Pyridine-pyrazole based Al(iii) ‘turn on’ sensor for MCF7 cancer cell imaging and detection of picric acid. RSC Advances 2021; 11(17): 10094-109. doi: 10.1039/D1RA00082A PMID: 35423527
  15. Turrens JF. Mitochondrial formation of reactive oxygen species. J Physiol 2003; 552(2): 335-44. doi: 10.1113/jphysiol.2003.049478 PMID: 14561818
  16. Sheng Y, Abreu IA, Cabelli DE, et al. Superoxide dismutases and superoxide reductases. Chem Rev 2014; 114(7): 3854-918. doi: 10.1021/cr4005296 PMID: 24684599
  17. Gao X, Feng G, Manghnani PN, et al. A two-channel responsive fluorescent probe with AIE characteristics and its application for selective imaging of superoxide anions in living cells. Chem Commun 2017; 53(10): 1653-6. doi: 10.1039/C6CC09307H PMID: 28098271
  18. Samnick S, Maier P, Riehl G, Israel I. Synthesis and preliminary evaluations of 18Ffluorinated pyridine-2-carboxamide derivatives for targeting PD-L1 in cancer. Curr Cancer Drug Targets 2023; 23(5): 412-24. doi: 10.2174/1568009623666221021121014 PMID: 36281866
  19. MacDonald RS. The role of zinc in growth and cell proliferation. J Nutr 2000; 130(5): 1500S-8S. doi: 10.1093/jn/130.5.1500S PMID: 10801966
  20. John E, Laskow TC, Buchser WJ, et al. Zinc in innate and adaptive tumor immunity. J Transl Med 2010; 8(1): 118. doi: 10.1186/1479-5876-8-118 PMID: 21087493
  21. Shukla AK, Hazra R, Sharma P, et al. Pyrrole-pyridine chelating motif on the β-carboline skeleton: Selective Zn2+ sensing via inhibition of ESIPT. Dyes Pigments 2022; 202: 110238. doi: 10.1016/j.dyepig.2022.110238
  22. Musikavanhu B, Huang Z, Ma Q, et al. A pyridine modified naphthol hydrazone Schiff base chemosensor for Al3+ via intramolecular charge transfer process. Spectrochim Acta A Mol Biomol Spectrosc 2023; 301: 122961. doi: 10.1016/j.saa.2023.122961 PMID: 37290147
  23. dos Santos APA, da Silva JK, Neri JM, Neves ACO, de Lima DF, Menezes FG. Nucleophilicity of cysteine and related biothiols and the development of fluorogenic probes and other applications. Org Biomol Chem 2020; 18(46): 9398-427. doi: 10.1039/D0OB01754J PMID: 33200155
  24. Zhang H, Forman HJ. Glutathione synthesis and its role in redox signaling. Semin Cell Dev Biol 2012; 23(7): 722-8. doi: 10.1016/j.semcdb.2012.03.017 PMID: 22504020
  25. Clemente Plaza N, Reig García-Galbis M, Martínez-Espinosa R. Effects of the usage of l-cysteine (l-Cys) on human health. Molecules 2018; 23(3): 575. doi: 10.3390/molecules23030575 PMID: 29510494
  26. Smith AD, Refsum H. Homocysteine, B vitamins, and cognitive impairment. Annu Rev Nutr 2016; 36(1): 211-39. doi: 10.1146/annurev-nutr-071715-050947 PMID: 27431367
  27. Chen YJ, Lu CT, Lee TY, Chen YJ. dbGSH: A database of S-glutathionylation. Bioinformatics 2014; 30(16): 2386-8. doi: 10.1093/bioinformatics/btu301 PMID: 24790154
  28. Chen S, Li H, Hou P. A large stokes shift fluorescent probe for sensing of thiophenols based on imidazo1,5-αpyridine in both aqueous medium and living cells. Anal Chim Acta 2017; 993: 63-70. doi: 10.1016/j.aca.2017.09.016 PMID: 29078956
  29. Chen S, Hou P, Sun J, Wang H, Liu L. Recognition of thiols in living cells and zebrafish using an imidazo1,5-αpyridine-derivative indicator. Molecules 2019; 24(18): 3328. doi: 10.3390/molecules24183328 PMID: 31547406
  30. Chen S, Li H, Hou P. A novel imidazo1,5-αpyridine-based fluorescent probe with a large stokes shift for imaging hydrogen sulfide. Sens Actuators B Chem 2018; 256: 1086-92. doi: 10.1016/j.snb.2017.10.052
  31. Hou P, Wang J, Fu S, Liu L, Chen S. A new turn-on fluorescent probe with ultra-large fluorescence enhancement for detection of hydrogen polysulfides based on dual quenching strategy. Spectrochim Acta A Mol Biomol Spectrosc 2019; 213: 342-6. doi: 10.1016/j.saa.2019.01.081 PMID: 30716645
  32. Chen S, Hou P, Wang J, Fu S, Liu L. A rapid and selective fluorescent probe with a large Stokes shift for the detection of hydrogen sulfide. Spectrochim Acta A Mol Biomol Spectrosc 2018; 203: 258-62. doi: 10.1016/j.saa.2018.05.108 PMID: 29874636
  33. Nair RR, An JM, Kim J, Kim D. Review: Recent progress in fluorescent molecular systems for the detection of disease-related biomarkers in biofluids. Coord Chem Rev 2023; 494: 215336. doi: 10.1016/j.ccr.2023.215336
  34. Ueland PM, Refsum H, Stabler SP, Malinow MR, Andersson A, Allen RH. Total homocysteine in plasma or serum: Methods and clinical applications. Clin Chem 1993; 39(9): 1764-79. doi: 10.1093/clinchem/39.9.1764 PMID: 8375046
  35. Hasan T, Arora R, Bansal AK, Bhattacharya R, Sharma GS, Singh LR. Disturbed homocysteine metabolism is associated with cancer. Exp Mol Med 2019; 51(2): 1-13. doi: 10.1038/s12276-019-0216-4 PMID: 30804341
  36. Hortin GL. clinical significance and laboratory measurement. Lab Med 2006; 37(9): 551-3. doi: 10.1309/93G5JG1BF44N65BQ
  37. Wang W, Rusin O, Xu X, et al. Detection of homocysteine and cysteine. J Am Chem Soc 2005; 127(45): 15949-58. doi: 10.1021/ja054962n PMID: 16277539
  38. Chen T, Liang L, Zhang H, et al. Value of amniotic fluid homocysteine assay in prenatal diagnosis of combined methylmalonic acidemia and homocystinuria, cobalamin C type. Orphanet J Rare Dis 2021; 16(1): 125. doi: 10.1186/s13023-021-01762-z PMID: 33691766
  39. Han HH, Tian H, Zang Y, et al. Small-molecule fluorescence-based probes for interrogating major organ diseases. Chem Soc Rev 2021; 50(17): 9391-429. doi: 10.1039/D0CS01183E PMID: 34232230
  40. Guo Z, Park S, Yoon J, Shin I. Recent progress in the development of near-infrared fluorescent probes for bioimaging applications. Chem Soc Rev 2014; 43(1): 16-29. doi: 10.1039/C3CS60271K PMID: 24052190
  41. Yang L, Gu P, Li B, et al. A homocysteine-selective fluorescent probe for cell imaging based on substitution-rearrangement process. Dyes Pigments 2022; 207: 110802. doi: 10.1016/j.dyepig.2022.110802
  42. Zhou J, Jangili P, Son S, Ji MS, Won M, Kim JS. Fluorescent diagnostic probes in neurodegenerative diseases. Adv Mater 2020; 32(51): 2001945. doi: 10.1002/adma.202001945 PMID: 32902000
  43. Kulasingam V, Diamandis EP. Strategies for discovering novel cancer biomarkers through utilization of emerging technologies. Nat Clin Pract Oncol 2008; 5(10): 588-99. doi: 10.1038/ncponc1187 PMID: 18695711
  44. Kim Y, An JM, Kim J, et al. Pyridine-NBD: A homocysteine-selective fluorescent probe for glioblastoma (GBM) diagnosis based on a blood test. Anal Chim Acta 2022; 1202: 339678. doi: 10.1016/j.aca.2022.339678 PMID: 35341522
  45. Zhang S, Ong CN, Shen HM. Critical roles of intracellular thiols and calcium in parthenolide-induced apoptosis in human colorectal cancer cells. Cancer Lett 2004; 208(2): 143-53. doi: 10.1016/j.canlet.2003.11.028 PMID: 15142672
  46. Ma T, Ding H, Xu H, et al. Dual-functional probes for sequential thiol and redox homeostasis sensing in live cells. Analyst 2015; 140(1): 322-9. doi: 10.1039/C4AN01441C PMID: 25406724
  47. Townsend DM, Tew KD, Tapiero H. The importance of glutathione in human disease. Biomed Pharmacother 2003; 57(3-4): 145-55. doi: 10.1016/S0753-3322(03)00043-X PMID: 12818476
  48. Voehringer DW, McConkey DJ, McDonnell TJ, Brisbay S, Meyn RE. Bcl-2 expression causes redistribution of glutathione to the nucleus. Proc Natl Acad Sci USA 1998; 95(6): 2956-60. doi: 10.1073/pnas.95.6.2956 PMID: 9501197
  49. Yin C, Huo F, Zhang J, et al. Thiol-addition reactions and their applications in thiol recognition. Chem Soc Rev 2013; 42(14): 6032-59. doi: 10.1039/c3cs60055f PMID: 23703585
  50. Forman HJ, Zhang H, Rinna A. Glutathione: Overview of its protective roles, measurement, and biosynthesis. Mol Aspects Med 2009; 30(1-2): 1-12. doi: 10.1016/j.mam.2008.08.006 PMID: 18796312
  51. Atkuri KR, Mantovani JJ, Herzenberg LA, Herzenberg LA. N-Acetylcysteine-a safe antidote for cysteine/glutathione deficiency. Curr Opin Pharmacol 2007; 7(4): 355-9. doi: 10.1016/j.coph.2007.04.005 PMID: 17602868
  52. Nekrassova O, Lawrence NS, Compton RG. Analytical determination of homocysteine: A review. Talanta 2003; 60(6): 1085-95. doi: 10.1016/S0039-9140(03)00173-5 PMID: 18969134
  53. Seshadri S, Beiser A, Selhub J, et al. Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. N Engl J Med 2002; 346(7): 476-83. doi: 10.1056/NEJMoa011613 PMID: 11844848
  54. Pastore A, Federici G, Bertini E, Piemonte F. Analysis of glutathione: Implication in redox and detoxification. Clin Chim Acta 2003; 333(1): 19-39. doi: 10.1016/S0009-8981(03)00200-6 PMID: 12809732
  55. Davis W Jr, Ronai Z, Tew KD. Cellular thiols and reactive oxygen species in drug-induced apoptosis. J Pharmacol Exp Ther 2001; 296(1): 1-6. PMID: 11123355
  56. Hampton MB, Orrenius S. Redox regulation of apoptotic cell death. Biofactors 1998; 8(1-2): 1-5. doi: 10.1002/biof.5520080101 PMID: 9699000
  57. Ghibelli L, Coppola S, Rotilio G, Lafavia E, Maresca V, Ciriolo MR. Non-oxidative loss of glutathione in apoptosis via GSH extrusion. Biochem Biophys Res Commun 1995; 216(1): 313-20. doi: 10.1006/bbrc.1995.2626 PMID: 7488106
  58. Sandau KB, Brüne B. Up-regulation of Bcl-2 by redox signals in glomerular mesangial cells. Cell Death Differ 2000; 7(1): 118-25. doi: 10.1038/sj.cdd.4400615 PMID: 10713727
  59. Hou P, Sun J, Wang H, Liu L, Zou L, Chen S. TCF-imidazo1,5-αpyridine: A potential robust ratiometric fluorescent probe for glutathione detection with high selectivity. Sens Actuators B Chem 2020; 304: 127244. doi: 10.1016/j.snb.2019.127244
  60. Zhang Y, Chen S, Zhu J, et al. Overexpression of CBS/H2S inhibits proliferation and metastasis of colon cancer cells through downregulation of CD44. Cancer Cell Int 2022; 22(1): 85. doi: 10.1186/s12935-022-02512-2 PMID: 35172821
  61. Gupta VK, Singh AK, Kumawat LK, Mergu N. An easily accessible switch-on optical chemosensor for the detection of noxious metal ions Ni(II), Zn(II), Fe(III) and UO2(II). Sens Actuators B Chem 2016; 222: 468-82. doi: 10.1016/j.snb.2015.08.063
  62. Guo B, Nie H, Yang W, Tian Y, Jing J, Zhang X. A highly sensitive and rapidly responding fluorescent probe with a large Stokes shift for imaging intracellular hypochlorite. Sens Actuators B Chem 2016; 236: 459-65. doi: 10.1016/j.snb.2016.06.004
  63. Chen W, Yue X, Li W, et al. A phenothiazine coumarin-based red emitting fluorescent probe for nanomolar detection of thiophenol with a large Stokes shift. Sens Actuators B Chem 2017; 245: 702-10. doi: 10.1016/j.snb.2017.01.167
  64. Li Z, Zhang W, Liu C, et al. A colorimetric and ratiometric fluorescent probe for hydrazine and its application in living cells with low dark toxicity. Sens Actuators B Chem 2017; 241: 665-71. doi: 10.1016/j.snb.2016.10.141
  65. Cheng D, Pan Y, Wang L, et al. Selective visualization of the endogenous peroxynitrite in an inflamed mouse model by a mitochondria-targetable two-photon ratiometric fluorescent probe. J Am Chem Soc 2017; 139(1): 285-92. doi: 10.1021/jacs.6b10508 PMID: 27996249
  66. Xu W, Zeng Z, Jiang JH, Chang YT, Yuan L. Discerning the chemistry in individual organelles with small‐molecule fluorescent probes. Angew Chem Int Ed 2016; 55(44): 13658-99. doi: 10.1002/anie.201510721 PMID: 27571316
  67. Yin CX, Xiong KM, Huo FJ, Salamanca JC, Strongin RM. Fluorescent probes with multiple binding sites for the discrimination of Cys, Hcy, and GSH. Angew Chem Int Ed 2017; 56(43): 13188-98. doi: 10.1002/anie.201704084 PMID: 28703457
  68. Jia MY, Niu LY, Zhang Y, et al. BODIPY-based fluorometric sensor for the simultaneous determination of Cys, Hcy, and GSH in human serum. ACS Appl Mater Interfaces 2015; 7(10): 5907-14. doi: 10.1021/acsami.5b00122 PMID: 25699658
  69. Yin G, Niu T, Yu T, et al. Simultaneous visualization of endogenous homocysteine, cysteine, glutathione, and their transformation through different fluorescence channels. Angew Chem Int Ed 2019; 58(14): 4557-61. doi: 10.1002/anie.201813935 PMID: 30742366
  70. Xiong K, Huo F, Chao J, Zhang Y, Yin C. Colorimetric and NIR fluorescence probe with multiple binding sites for distinguishing detection of Cys/Hcy and GSH in vivo. Anal Chem 2019; 91(2): 1472-8. doi: 10.1021/acs.analchem.8b04485 PMID: 30482012
  71. Chan J, Dodani SC, Chang CJ. Reaction-based small-molecule fluorescent probes for chemoselective bioimaging. Nat Chem 2012; 4(12): 973-84. doi: 10.1038/nchem.1500 PMID: 23174976
  72. Go YM, Jones DP. Cysteine/cystine redox signaling in cardiovascular disease. Free Radic Biol Med 2011; 50(4): 495-509. doi: 10.1016/j.freeradbiomed.2010.11.029 PMID: 21130865
  73. Yang YZ, Xu ZY, Han L, et al. A simple fluorescent probe with two different fluorescence signals for rapid sequence distinguishing of Cys/Hcy/GSH and intracellular imaging. Dyes Pigments 2021; 184: 108722. doi: 10.1016/j.dyepig.2020.108722
  74. Debreceni B, Debreceni L. The role of homocysteine-lowering B-vitamins in the primary prevention of cardiovascular disease. Cardiovasc Ther 2014; 32(3): 130-8. doi: 10.1111/1755-5922.12064 PMID: 24571382
  75. Wang J, Shao X, Wang J, Shao S. An NBD-based fluorescent turn-on probe for the detection of homocysteine over cysteine and its imaging applications. Chem Lett 2017; 46(4): 442-5. doi: 10.1246/cl.161123
  76. Ren A, Zhu D, Luo Y. A novel Boranil-based turn-on fluorescent probe for imaging of biothiols in living cells. J Mol Struct 2020; 1209: 127914. doi: 10.1016/j.molstruc.2020.127914
  77. Hong R, Han G, Fernández JM, Kim B, Forbes NS, Rotello VM. Glutathione-mediated delivery and release using monolayer protected nanoparticle carriers. J Am Chem Soc 2006; 128(4): 1078-9. doi: 10.1021/ja056726i PMID: 16433515
  78. Xiao H, Zhang W, Li P, Zhang W, Wang X, Tang B. Versatile fluorescent probes for imaging the superoxide anion in living cells and in vivo. Angew Chem Int Ed 2020; 59(11): 4216-30. doi: 10.1002/anie.201906793 PMID: 31254369
  79. Huang Y, Zhang Y, Huo F, Liu Y, Yin C. Dual-channel red fluorescent probe for detection of Cys/Hcy and GSH in plants. Sens Actuators B Chem 2019; 301: 127123. doi: 10.1016/j.snb.2019.127123
  80. Yue Y, Huo F, Li X, et al. pH-dependent fluorescent probe that can be tuned for cysteine or homocysteine. Org Lett 2017; 19(1): 82-5. doi: 10.1021/acs.orglett.6b03357 PMID: 27995792
  81. Chen G, Xu J, Zhan Z, et al. A bright two-photon fluorescence probe with large stokes shift for deep tissue imaging of H2S during metabolism. Dyes Pigments 2020; 172: 107850. doi: 10.1016/j.dyepig.2019.107850
  82. Li Z, Askim JR, Suslick KS. The optoelectronic nose: Colorimetric and fluorometric sensor arrays. Chem Rev 2019; 119(1): 231-92. doi: 10.1021/acs.chemrev.8b00226 PMID: 30207700
  83. Yuan L, Lin W, Zheng K, He L, Huang W. Far-red to near infrared analyte-responsive fluorescent probes based on organic fluorophore platforms for fluorescence imaging. Chem Soc Rev 2013; 42(2): 622-61. doi: 10.1039/C2CS35313J PMID: 23093107
  84. Li Y, Zhang G, Ma C, Chen F, Dong J, Ge Y. A simple dual-channel imidazo1,5-apyridine-based fluorescent probe for the discrimination between Cys/Hcy and GSH. Dyes Pigments 2021; 191: 109381. doi: 10.1016/j.dyepig.2021.109381
  85. Wu Y, Wang Q, Wu T, et al. Detection and imaging of hydrogen sulfide in lysosomes of living cells with activatable fluorescent quantum dots. ACS Appl Mater Interfaces 2018; 10(50): 43472-81. doi: 10.1021/acsami.8b16971 PMID: 30480991
  86. Mitruka M, Gore CR, Kumar A, Sarode SC, Sharma NK. Undetectable free aromatic amino acids in nails of breast carcinoma: Biomarker discovery by a novel metabolite purification VTGE system. Front Oncol 2020; 10: 908. doi: 10.3389/fonc.2020.00908 PMID: 32695662
  87. Contorno S, Darienzo RE, Tannenbaum R. Evaluation of aromatic amino acids as potential biomarkers in breast cancer by Raman spectroscopy analysis. Sci Rep 2021; 11(1): 1698. doi: 10.1038/s41598-021-81296-3 PMID: 33462309
  88. Prendergast GC. Why tumours eat tryptophan. Nature 2011; 478(7368): 192-4. doi: 10.1038/478192a PMID: 21993754
  89. Peyraud F, Guegan JP, Bodet D, Cousin S, Bessede A, Italiano A. Targeting tryptophan catabolism in cancer immunotherapy era: Challenges and perspectives. Front Immunol 2022; 13: 807271. doi: 10.3389/fimmu.2022.807271 PMID: 35173722
  90. Juhász C, Nahleh Z, Zitron I, et al. Tryptophan metabolism in breast cancers: Molecular imaging and immunohistochemistry studies. Nucl Med Biol 2012; 39(7): 926-32. doi: 10.1016/j.nucmedbio.2012.01.010 PMID: 22444239
  91. Lyon DE, Walter JM, Starkweather AR, Schubert CM, McCain NL. Tryptophan degradation in women with breast cancer: A pilot study. BMC Res Notes 2011; 4(1): 156. doi: 10.1186/1756-0500-4-156 PMID: 21615916
  92. Puccetti P, Fallarino F, Italiano A, et al. Accumulation of an endogenous tryptophan-derived metabolite in colorectal and breast cancers. PLoS One 2015; 10(4): e0122046. doi: 10.1371/journal.pone.0122046 PMID: 25881064
  93. Onesti CE, Boemer F, Josse C, Leduc S, Bours V, Jerusalem G. Tryptophan catabolism increases in breast cancer patients compared to healthy controls without affecting the cancer outcome or response to chemotherapy. J Transl Med 2019; 17(1): 239. doi: 10.1186/s12967-019-1984-2 PMID: 31337401
  94. Abdel-aal FAM, Kamel RM, Abdeltawab AA, Mohamed FA, Mohamed AMI. Polypyrrole/carbon dot nanocomposite as an electrochemical biosensor for liquid biopsy analysis of tryptophan in the human serum of normal and breast cancer women. Anal Bioanal Chem 2023; 415(20): 4985-5001. doi: 10.1007/s00216-023-04784-7 PMID: 37401962
  95. Roointan A, Ahmad Mir T, Ibrahim Wani S, et al. Early detection of lung cancer biomarkers through biosensor technology: A review. J Pharm Biomed Anal 2019; 164: 93-103. doi: 10.1016/j.jpba.2018.10.017 PMID: 30366148
  96. Aydın EB, Aydın M, Sezgintürk MK. Electrochemical immunosensor based on chitosan/conductive carbon black composite modified disposable ITO electrode: An analytical platform for p53 detection. Biosens Bioelectron 2018; 121: 80-9. doi: 10.1016/j.bios.2018.09.008 PMID: 30199712
  97. Yang G, Xiao Z, Tang C, Deng Y, Huang H, He Z. Recent advances in biosensor for detection of lung cancer biomarkers. Biosens Bioelectron 2019; 141: 111416. doi: 10.1016/j.bios.2019.111416 PMID: 31279179
  98. Aydın EB, Aydın M, Sezgintürk MK. Selective and ultrasensitive electrochemical immunosensing of NSE cancer biomarker in human serum using epoxy-substituted poly(pyrrole) polymer modified disposable ITO electrode. Sens Actuators B Chem 2020; 306: 127613. doi: 10.1016/j.snb.2019.127613
  99. Remer M, Al-Shamkhani A, Glennie M, Johnson P. Mogamulizumab and the treatment of CCR4-positive T-cell lymphomas. Immunotherapy 2014; 6(11): 1187-206. doi: 10.2217/imt.14.94 PMID: 25496334
  100. Liu Q, Rexiati M, Yang Y, et al. Expression of chemokine receptor 4 was associated with poor survival in renal cell carcinoma. Med Oncol 2014; 31(4): 882. doi: 10.1007/s12032-014-0882-y PMID: 24554520
  101. Ishida T, Ueda R. CCR4 as a novel molecular target for immunotherapy of cancer. Cancer Sci 2006; 97(11): 1139-46. doi: 10.1111/j.1349-7006.2006.00307.x PMID: 16952304
  102. Solari R, Pease JE. Targeting chemokine receptors in disease-A case study of CCR4. Eur J Pharmacol 2015; 763(Pt B): 169-77. doi: 10.1016/j.ejphar.2015.05.018
  103. Locati M, Murphy PM. Chemokines and chemokine receptors: Biology and clinical relevance in inflammation and AIDS. Annu Rev Med 1999; 50: 425-40. doi: 10.1146/annurev.med.50.1.425 PMID: 10073287
  104. Vela M, Aris M, Llorente M, Garcia-Sanz JA, Kremer L. Chemokine receptor-specific antibodies in cancer immunotherapy: Achievements and challenges. Front Immunol 2015; 6: 12. doi: 10.3389/fimmu.2015.00012 PMID: 25688243
  105. Ben-Baruch A. Organ selectivity in metastasis: Regulation by chemokines and their receptors. Clin Exp Metastasis 2008; 25(4): 345-56. doi: 10.1007/s10585-007-9097-3 PMID: 17891505
  106. Wakugawa M, Nakamura K, Kakinuma T, Tamaki K, Onai N, Matsushima K. CC chemokine receptor 4 expression on peripheral blood CD4+ T cells reflects disease activity of atopic dermatitis. J Invest Dermatol 2001; 117(2): 188-96. doi: 10.1046/j.0022-202x.2001.01430.x PMID: 11511293
  107. Maolake A, Izumi K, Shigehara K, et al. Tumor-associated macrophages promote prostate cancer migration through activation of the CCL22-CCR4 axis. Oncotarget 2017; 8(6): 9739-51. doi: 10.18632/oncotarget.14185 PMID: 28039457
  108. Aydın M, Aydın EB, Sezgintürk MK. A disposable immunosensor using ITO based electrode modified by a star-shaped polymer for analysis of tumor suppressor protein p53 in human serum. Biosens Bioelectron 2018; 107: 1-9. doi: 10.1016/j.bios.2018.02.017 PMID: 29425857
  109. Aydın M. A sensitive and selective approach for detection of IL 1α cancer biomarker using disposable ITO electrode modified with epoxy-substituted polythiophene polymer. Biosens Bioelectron 2019; 144: 111675. doi: 10.1016/j.bios.2019.111675 PMID: 31518789
  110. Ramanaviciene A, Ramanavicius A. Application of polypyrrole for the creation of immunosensors. Crit Rev Anal Chem 2002; 32(3): 245-52. doi: 10.1080/10408340290765542
  111. Gao M, Dai L, Wallace GG. Glucose sensors based on glucose-oxidase-containing polypyrrole/aligned carbon nanotube coaxial nanowire electrodes. Synth Met 2003; 137(1-3): 1393-4. doi: 10.1016/S0379-6779(02)01156-6
  112. Tamiya E, Karube I, Hattori S, Suzuki M, Yokoyama K. Micro glucose using electron mediators immobilized on a polypyrrole-modified electrode. Sens Actuators 1989; 18(3-4): 297-307. doi: 10.1016/0250-6874(89)87037-4
  113. Yasuzawa M, Nieda T, Hirano T, Kunugi A. Properties of glucose sensors based on the immobilization of glucose oxidase in N-substituted polypyrrole film. Sens Actuators B Chem 2000; 66(1-3): 77-9. doi: 10.1016/S0925-4005(99)00453-0
  114. Lawal AT, Adeloju SB. Polypyrrole based amperometric and potentiometric phosphate biosensors: A comparative study B. Biosens Bioelectron 2013; 40(1): 377-84. doi: 10.1016/j.bios.2012.08.012 PMID: 23021852
  115. Apetrei IM, Apetrei C. Amperometric biosensor based on polypyrrole and tyrosinase for the detection of tyramine in food samples. Sens Actuators B Chem 2013; 178: 40-6. doi: 10.1016/j.snb.2012.12.064
  116. Erdogan ZO, Akin I, Kucukkolbasi S. A new non-enzymatic sensor based on TiO2-Ag/polypyrrole for electrochemical detection of tyramine. Synth Met 2018; 246: 96-100. doi: 10.1016/j.synthmet.2018.10.006
  117. Karimi-Maleh H, Tahernejad-Javazmi F, Atar N, Yola ML, Gupta VK, Ensafi AA. A novel DNA biosensor based on a pencil graphite electrode modified with polypyrrole/functionalized multiwalled carbon nanotubes for determination of 6-mercaptopurine anticancer drug. Ind Eng Chem Res 2015; 54(14): 3634-9. doi: 10.1021/ie504438z
  118. Cesarino I, Galesco HV, Moraes FC, Lanza MRV, Machado SAS. Biosensor based on electrocodeposition of carbon nanotubes/polypyrrole/laccase for neurotransmitter detection. Electroanalysis 2013; 25(2): 394-400. doi: 10.1002/elan.201200542
  119. Ramya R, Sangaranarayanan MV. Polypyrrole microfibres synthesized with Quillaja Saponin for sensing of catechol. Sens Actuators B Chem 2012; 173: 40-51. doi: 10.1016/j.snb.2012.05.034
  120. Aydın EB, Aydın M, Sezgintürk MK. Fabrication of electrochemical immunosensor based on acid-substituted poly(pyrrole) polymer modified disposable ITO electrode for sensitive detection of CCR4 cancer biomarker in human serum. Talanta 2021; 222: 121487. doi: 10.1016/j.talanta.2020.121487 PMID: 33167207
  121. Vora M, Dey S, Kongor A, et al. An oxacalix4arene-derived dual-sensing fluorescent probe for the relay recognition of Hg2+ and S2− ions. New J Chem 2021; 45(38): 17902-8. doi: 10.1039/D1NJ03953A
  122. Kongor A, Athar M, Vora M, Bhatt K, Irfan A, Jain V. Cytotoxicity profile of Calix4pyrrole derivatives on HeLa and MCF-7 human cancer cell lines viain vitro study and molecular modelling. Biointerface Res Appl Chem 2021; 12(5): 6991-7000. doi: 10.33263/BRIAC125.69917000
  123. Wu F, Su H, Cai Y, Wong WK, Jiang W, Zhu X. Porphyrin-implanted carbon nanodots for photoacoustic imaging and in vivo breast cancer ablation. ACS Appl Bio Mater 2018; 1(1): 110-7. doi: 10.1021/acsabm.8b00029
  124. Wu F, Chen L, Yue L, et al. Small-molecule porphyrin-based organic nanoparticles with remarkable photothermal conversion efficiency for in vivo photoacoustic imaging and photothermal therapy. ACS Appl Mater Interfaces 2019; 11(24): 21408-16. doi: 10.1021/acsami.9b06866 PMID: 31120723
  125. Wang D, Zhang Z, Lin L, et al. Porphyrin-based covalent organic framework nanoparticles for photoacoustic imaging-guided photodynamic and photothermal combination cancer therapy. Biomaterials 2019; 223: 119459. doi: 10.1016/j.biomaterials.2019.119459 PMID: 31499253
  126. Shan L, Fan W, Wang W, et al. Organosilica-based hollow mesoporous bilirubin nanoparticles for antioxidation-activated self-protection and tumor-specific deoxygenation-driven synergistic therapy. ACS Nano 2019; 13(8): 8903-16. doi: 10.1021/acsnano.9b02477 PMID: 31374171
  127. World Health Organization. International Agency for Research on Cancer, Globocan Cancer Fact Sheets. Available from: http://globocan.iarc.fr/old/FactSheets/cancers/breast-new.asp
  128. Banin Hirata BK, Oda JMM, Losi Guembarovski R, Ariza CB, Oliveira CEC, Watanabe MAE. Molecular markers for breast cancer: prediction on tumor behavior. Dis Markers 2014; 2014: 1-12. doi: 10.1155/2014/513158 PMID: 24591761
  129. Seabra ZT, Lourenço J. Imaging in breast carcinoma. Rev Port Cir 2013; 27: 59-70.
  130. Cardoso MJ, Braga S, Eds. National Recommendations for Diagnosis and Treatment of Breast Cancer. Lisboa, Portugal: Direção Geral da Saúde 2009.
  131. Santos A, Moreira F, Helguero L, Sales M. Antibody biomimetic material made of pyrrole for CA 15-3 and its application as sensing material in ion-selective electrodes for potentiometric detection. Biosensors 2018; 8(1): 8. doi: 10.3390/bios8010008 PMID: 29351206
  132. Leung F, Bernardini MQ, Brown MD, et al. Validation of a novel biomarker panel for the detection of ovarian cancer. Cancer Epidemiol Biomarkers Prev 2016; 25(9): 1333-40. doi: 10.1158/1055-9965.EPI-15-1299 PMID: 27448593
  133. Rebelo TSCR, Costa R, Brandão ATSC, Silva AF, Sales MGF, Pereira CM. Molecularly imprinted polymer SPE sensor for analysis of CA-125 on serum. Anal Chim Acta 2019; 1082: 126-35. doi: 10.1016/j.aca.2019.07.050 PMID: 31472701
  134. Ertürk G, Hedström M, Tümer MA, Denizli A, Mattiasson B. Real-time prostate-specific antigen detection with prostate-specific antigen imprinted capacitive biosensors. Anal Chim Acta 2015; 891: 120-9. doi: 10.1016/j.aca.2015.07.055 PMID: 26388370
  135. Yazdani Z, Yadegari H, Heli H. A molecularly imprinted electrochemical nanobiosensor for prostate specific antigen determination. Anal Biochem 2019; 566: 116-25. doi: 10.1016/j.ab.2018.11.020 PMID: 30472220
  136. Schieving JH, de Vries M, van Vugt JMG, et al. Alpha-fetoprotein, a fascinating protein and biomarker in neurology. Eur J Paediatr Neurol 2014; 18(3): 243-8. doi: 10.1016/j.ejpn.2013.09.003 PMID: 24120489
  137. Debruyne EN, Delanghe JR. Diagnosing and monitoring hepatocellular carcinoma with alpha-fetoprotein: New aspects and applications. Clin Chim Acta 2008; 395(1-2): 19-26. doi: 10.1016/j.cca.2008.05.010 PMID: 18538135
  138. Wang Y, Wu D, Zhang Y, et al. Layer-by-layer self-assembly of 2D graphene nanosheets, 3D copper oxide nanoflowers and 0D gold nanoparticles for ultrasensitive electrochemical detection of alpha fetoprotein. RSC Advances 2015; 5(70): 56583-9. doi: 10.1039/C5RA07547E
  139. Liu L, Tian L, Zhao G, Huang Y, Wei Q, Cao W. Ultrasensitive electrochemical immunosensor for alpha fetoprotein detection based on platinum nanoparticles anchored on cobalt oxide/graphene nanosheets for signal amplification. Anal Chim Acta 2017; 986: 138-44. doi: 10.1016/j.aca.2017.07.025 PMID: 28870319
  140. Li L, Zhang L, Yu J, Ge S, Song X. All-graphene composite materials for signal amplification toward ultrasensitive electrochemical immunosensing of tumor marker. Biosens Bioelectron 2015; 71: 108-14. doi: 10.1016/j.bios.2015.04.032 PMID: 25897879
  141. Burcu Bahadır E, Kemal Sezgintürk M. Applications of electrochemical immunosensors for early clinical diagnostics. Talanta 2015; 132: 162-74. doi: 10.1016/j.talanta.2014.08.063 PMID: 25476294
  142. Wei Y, Li Y, Li N, et al. Sandwich-type electrochemical immunosensor for the detection of AFP based on Pd octahedral and APTES-M-CeO2-GS as signal labels. Biosens Bioelectron 2016; 79: 482-7. doi: 10.1016/j.bios.2015.12.082 PMID: 26745795
  143. Kirsch J, Siltanen C, Zhou Q, Revzin A, Simonian A. Biosensor technology: Recent advances in threat agent detection and medicine. Chem Soc Rev 2013; 42(22): 8733-68. doi: 10.1039/c3cs60141b PMID: 23852443
  144. Sharma S, Raghav R, O’Kennedy R, Srivastava S. Advances in ovarian cancer diagnosis: A journey from immunoassays to immunosensors. Enzyme Microb Technol 2016; 89: 15-30. doi: 10.1016/j.enzmictec.2016.03.002 PMID: 27233124
  145. Tan X, Zhang L, Li H, et al. Enzyme-free ultrasensitive electrochemical immunoassay based on the strategy of converting titanium phosphate nanospheres into redox active molybdophosphate. J Biomed Nanotechnol 2017; 13(8): 973-9. doi: 10.1166/jbn.2017.2412
  146. Zhao F, Cao L, Liang Y, Wu Z, Chen Z, Zeng R. Label-free amperometric immunosensor based on graphene oxide and ferrocene-chitosan nanocomposites for detection of Hepatis B Virus Antigen. J Biomed Nanotechnol 2017; 13(10): 1300-8. doi: 10.1166/jbn.2017.2415
  147. Khan S, Ansari ZA, Alothman OY, Fouad H, Ansari SG. Application of amine and copper doped magnesium oxide nanoparticles in electrochemical immunosensors for detecting Brucella abortus. Nanosci Nanotechnol Lett 2017; 9(11): 1656-64. doi: 10.1166/nnl.2017.2544
  148. Song TT, Wang W, Meng LL, Liu Y, Jia X-B, Mao X. Electrochemical detection of human ferritin based on gold nanorod reporter probe and cotton thread immunoassay device. Chin Chem Lett 2017; 28(2): 226-30. doi: 10.1016/j.cclet.2016.07.021
  149. Zou J, Huang L, Jiang X, Jiao F, Yu J. Enhanced chiral electrochemical recognition of tryptophan enantiomers using a novel triple-layered GO/BSA/CS modified glassy carbon electrode. Nanosci Nanotechnol Lett 2017; 9(11): 1700-7. doi: 10.1166/nnl.2017.2525
  150. Ma Y, Yu Y, Xu M, Yan X, Chen D, Ma M. Facile synthesis of ag nanoparticles functionalized carbon nanospheres and application in direct electrochemistry of hemoglobin. Nanosci Nanotechnol Lett 2016; 8(7): 592-8. doi: 10.1166/nnl.2016.2037
  151. Taheri N, Khoshsafar H, Ghanei M, Ghazvini A, Bagheri H. Dual-template rectangular nanotube molecularly imprinted polypyrrole for label-free impedimetric sensing of AFP and CEA as lung cancer biomarkers. Talanta 2022; 239: 123146. doi: 10.1016/j.talanta.2021.123146 PMID: 34942484
  152. Lai Y, Zhang C, Deng Y, et al. A novel α-fetoprotein-MIP immunosensor based on AuNPs/PTh modified glass carbon electrode. Chin Chem Lett 2019; 30(1): 160-2. doi: 10.1016/j.cclet.2018.07.011
  153. Mah WL, Jun Tan X, Choo KB, et al. Microwave‐assisted synthesis of bioactive pyridine‐functionalized N‐alkyl‐substituted (Benz) Imidazolium Salts. ChemistrySelect 2022; 7(46): e202203864. doi: 10.1002/slct.202203864
  154. Hamblett CL, Methot JL, Mampreian DM, et al. The discovery of 6-amino nicotinamides as potent and selective histone deacetylase inhibitors. Bioorg Med Chem Lett 2007; 17(19): 5300-9. doi: 10.1016/j.bmcl.2007.08.023 PMID: 17761416
  155. Kumar TU, Bobde Y, Pulya S, Rangan K, Ghosh B, Bhattacharya A. Fused chromeno‐thieno/furo‐pyridines as potential analogs of lamellarin D and their anticancer activity evaluation. ChemistrySelect 2019; 4(36): 10726-30. doi: 10.1002/slct.201902946
  156. Yakkala PA, Panda SR, Naidu VGM, Shafi S, Kamal A. Pyridine-based 1,2,4-triazolo-tethered indole conjugates potentially affecting TNKS and PI3K in colorectal cancer. ACS Med Chem Lett 2023; 14(3): 260-9. doi: 10.1021/acsmedchemlett.2c00475
  157. Alharthy RD, Rashid F, Ashraf A, et al. Pyrazole derivatives of pyridine and naphthyridine as proapoptotic agents in cervical and breast cancer cells. Sci Rep 2023; 13(1): 5370. doi: 10.1038/s41598-023-32489-5 PMID: 37005457
  158. Altaher A, Adris M, Aliwaini S, Awadallah A, Morjan R. The anticancer effects of novel Imidazo1,2-aPyridine compounds against HCC1937 breast cancer cells. Asian Pac J Cancer Prev 2022; 23(9): 2943-51. doi: 10.31557/APJCP.2022.23.9.2943 PMID: 36172656
  159. Hamd AH, Al-Lami N, Wadi JS. Synthesis, anti-cancer, and molecular docking studies of alkyne derivatives bearing imidazo pyridine moiety. J Med Chem Sci 2023; 6(6): 1310-22. doi: 10.26655/JMCHEMSCI.2023.6.11
  160. Zhang J, Xi J, He R, et al. Discovery of 3-(thiophen/thiazole-2-ylthio)pyridine derivatives as multitarget anticancer agents. Med Chem Res 2019; 28(10): 1633-47. doi: 10.1007/s00044-019-02400-x
  161. Rahnamay M, Mahdavi M, Shekarchi AA, Zare P, Hosseinpour Feizi MA. Cytotoxic and apoptosis inducing effect of some pyrano3,2-cpyridine derivatives against MCF-7 breast cancer cells. Acta Biochim Pol 2018; 65(3): 397-402. doi: 10.18388/abp.2017_1629 PMID: 30148505
  162. Zaher NH, Elhazek RMM, Gouda AE, Khalil A, Elgazzar MG. Challenging breast cancer through novel sulfonamide–pyridine hybrids: Design, synthesis, carbonic anhydrase IX inhibition and induction of apoptosis. Future Med Chem 2023; 15(2): 147-66. doi: 10.4155/fmc-2022-0197 PMID: 36762576
  163. Gomha SM, Abdelrazek FM, Abdelrahman AH, Metz P. Synthesis of some new pyridine-based heterocyclic compounds with anticipated antitumor activity. J Heterocycl Chem 2018; 55(7): 1729-37. doi: 10.1002/jhet.3210
  164. Fayed EA, Sabour R, Harras MF, Mehany ABM. Design, synthesis, biological evaluation and molecular modeling of new coumarin derivatives as potent anticancer agents. Med Chem Res 2019; 28(8): 1284-97. doi: 10.1007/s00044-019-02373-x
  165. El-Naggar M, Almahli H, Ibrahim H, Eldehna W, Abdel-Aziz H. Pyridine-ureas as potential anticancer agents: Synthesis and in vitro biological evaluation. Molecules 2018; 23(6): 1459. doi: 10.3390/molecules23061459 PMID: 29914120
  166. El-Gohary NS, Gabr MT, Shaaban MI. Synthesis, molecular modeling and biological evaluation of new pyrazolo3,4-bpyridine analogs as potential antimicrobial, antiquorum-sensing and anticancer agents. Bioorg Chem 2019; 89: 102976. doi: 10.1016/j.bioorg.2019.102976 PMID: 31103494
  167. Ivasechko I, Yushyn I, Roszczenko P, et al. Development of novel pyridine-thiazole hybrid molecules as potential anticancer agents. Molecules 2022; 27(19): 6219. doi: 10.3390/molecules27196219 PMID: 36234755
  168. Radomska D, Czarnomysy R, Radomski D, Bielawski K. Selenium compounds as novel potential anticancer agents. Int J Mol Sci 2021; 22(3): 1009. doi: 10.3390/ijms22031009 PMID: 33498364
  169. Kuršvietienė L, Mongirdienė A, Bernatonienė J, Šulinskienė J, Stanevičienė I. Selenium anticancer properties and impact on cellular redox status. Antioxidants 2020; 9(1): 80. doi: 10.3390/antiox9010080 PMID: 31963404
  170. Rodrigues OED, de Souza D, Soares LC, et al. Stereoselective synthesis of selenosteroids. Tetrahedron Lett 2010; 51(17): 2237-40. doi: 10.1016/j.tetlet.2010.02.090
  171. Indira Priyadarsini K, Singh BG, Kunwar A. Current developments on synthesis, redox reactions and biochemical studies of selenium antioxidants. Curr Chem Biol 2013; 7: 37-46. doi: 10.2174/2212796811307010004
  172. Frizon TEA, Cararo JH, Saba S, et al. Synthesis of novel selenocyanates and evaluation of their effect in cultured mouse neurons submitted to oxidative stress. Oxid Med Cell Longev 2020; 2020: 1-10. doi: 10.1155/2020/5417024 PMID: 33093936
  173. He J, Wu Z, Pan D, Guo Y, Zeng X. Effect of selenylation modification on antitumor activity of peptidoglycan from Lactobacillus acidophilus. Carbohydr Polym 2017; 165: 344-50. doi: 10.1016/j.carbpol.2017.02.031 PMID: 28363558
  174. Sharma AK, Kline CL, Berg A, Amin S, Irby RB. The Akt inhibitor ISC-4 activates prostate apoptosis response protein-4 and reduces colon tumor growth in a nude mouse model. Clin Cancer Res 2011; 17(13): 4474-83. doi: 10.1158/1078-0432.CCR-10-2370 PMID: 21555373
  175. Burkner GT, Dias DA, Souza KFS, et al. Selenylated imidazo1,2-apyridine induces cell senescence and oxidative stress in chronic myeloid leukemia cells. Molecules 2023; 28(2): 893. doi: 10.3390/molecules28020893 PMID: 36677949
  176. dos Santos DC, Rafique J, Saba S, et al. Apoptosis oxidative damage‐mediated and antiproliferative effect of selenylated imidazo1,2‐apyridines on hepatocellular carcinoma HepG2 cells and in vivo. J Biochem Mol Toxicol 2021; 35(3): e22663. doi: 10.1002/jbt.22663 PMID: 33125183
  177. dos Santos DC, Rafique J, Saba S, et al. IP-Se-06, a selenylated imidazo1,2-apyridine, modulates intracellular redox state and causes Akt/mTOR/HIF-1α and MAPK signaling inhibition, promoting antiproliferative effect and apoptosis in glioblastoma cells. Oxid Med Cell Longev 2022; 2022: 1-18. doi: 10.1155/2022/3710449 PMID: 35360199
  178. Almeida GM, Rafique J, Saba S, et al. Novel selenylated imidazo1,2-apyridines for breast cancer chemotherapy: Inhibition of cell proliferation by Akt-mediated regulation, DNA cleavage and apoptosis. Biochem Biophys Res Commun 2018; 503(3): 1291-7. doi: 10.1016/j.bbrc.2018.07.039 PMID: 30017191
  179. Domínguez-Álvarez E, Plano D, Font M, et al. Synthesis and antiproliferative activity of novel selenoester derivatives. Eur J Med Chem 2014; 73: 153-66. doi: 10.1016/j.ejmech.2013.11.034 PMID: 24389510
  180. Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 2006; 160(1): 1-40. doi: 10.1016/j.cbi.2005.12.009 PMID: 16430879
  181. Hariharan S, Dharmaraj S. Selenium and selenoproteins: It’s role in regulation of inflammation. Inflammopharmacology 2020; 28(3): 667-95. doi: 10.1007/s10787-020-00690-x PMID: 32144521
  182. Boulahjar R, Rincon Arias A, Bolteau R, et al. Design and synthesis of 2,6-disubstituted-8-amino imidazo1,2apyridines, a promising privileged structure. Bioorg Med Chem 2018; 26(12): 3296-307. doi: 10.1016/j.bmc.2018.04.057 PMID: 29753566
  183. Gomes GB, Zubieta CS, Guilhermi JS, et al. Selenylated imidazo1,2-apyridine induces apoptosis and oxidative stress in 2D and 3D models of colon cancer cells. Pharmaceuticals 2023; 16(6): 814. doi: 10.3390/ph16060814 PMID: 37375763
  184. Elmorsy MR, Mahmoud SE, Fadda AA, Abdel-Latif E, Abdelmoaz MA. Synthesis, biological evaluation and molecular docking of new triphenylamine-linked pyridine, thiazole and pyrazole analogues as anticancer agents. BMC Chem 2022; 16(1): 88. doi: 10.1186/s13065-022-00879-x PMID: 36345024
  185. Abdelshaheed MM, El Subbagh HI, Tantawy MA, Attia RT, Youssef KM, Fawzy IM. Discovery of new pyridine heterocyclic hybrids; design, synthesis, dynamic simulations, and in vitro and in vivo breast cancer biological assays. RSC Advances 2023; 13(23): 15689-703. doi: 10.1039/D3RA02875E PMID: 37235111
  186. Si L, Lai T, Zhao J, et al. Identification of a novel pyridine derivative with inhibitory activity against ovarian cancer progression in vivo and in vitro. Front Pharmacol 2022; 13: 1064485. doi: 10.3389/fphar.2022.1064485 PMID: 36467091
  187. Abdolmaleki S, Ghadermazi M, Aliabadi A. Novel Tl(III) complexes containing pyridine-2,6-dicarboxylate derivatives with selective anticancer activity through inducing mitochondria-mediated apoptosis in A375 cells. Sci Rep 2021; 11(1): 15699. doi: 10.1038/s41598-021-95278-y PMID: 34344980
  188. Yao J, Takenaga K, Koshikawa N, et al. Anticancer effect of a pyrrole‐imidazole polyamide‐triphenylphosphonium conjugate selectively targeting a common mitochondrial DNA cancer risk variant in cervical cancer cells. Int J Cancer 2023; 152(5): 962-76. doi: 10.1002/ijc.34319 PMID: 36214789
  189. Koshikawa N, Kida Y, Yasui N, et al. A linear five-ring pyrrole-imidazole polyamide-triphenylphosphonium conjugate targeting a mitochondrial DNA mutation efficiently induces apoptosis of HeLa cybrid cells carrying the mutation. Biochem Biophys Res Commun 2021; 576: 93-9. doi: 10.1016/j.bbrc.2021.08.088 PMID: 34482029
  190. Tsuji K, Kida Y, Koshikawa N, et al. Suppression of non‐small‐cell lung cancer A549 tumor growth by an mtDNA mutation‐targeting pyrrole‐imidazole polyamide‐triphenylphosphonium and a senolytic drug. Cancer Sci 2022; 113(4): 1321-37. doi: 10.1111/cas.15290 PMID: 35112436
  191. Gao Y, Yu T, Zhang Y, Dang G. Anti-VEGF monotherapy versus photodynamic therapy and anti-VEGF combination treatment for neovascular age-related macular degeneration: A meta-analysis. Invest Ophthalmol Vis Sci 2018; 59(10): 4307-17. doi: 10.1167/iovs.17-23747 PMID: 30372759
  192. Karwicka M, Pucelik B, Gonet M, Elas M. Dąbrowski JM. Effects of photodynamic therapy with redaporfin on tumor oxygenation and blood flow in a lung cancer mouse model. Sci Rep 2019; 9(1): 12655. doi: 10.1038/s41598-019-49064-6 PMID: 31477749

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers