Immune-mediated Bowel Disease: Role of Intestinal Parasites and Gut Microbiome


如何引用文章

全文:

详细


Immune-mediated bowel diseases (IMBD), notably ulcerative colitis and Crohn's disease, impose a substantial global health burden due to their intricate etiology and escalating prevalence. The nexus between intestinal parasites and the gut microbiome in IMBD is a dynamic and complex field of study. Several studies have evidenced the capacity of intestinal parasites to modulate the gut microbiome, inducing alterations in microbial diversity, abundance, and metabolic activity. These changes are crucial in influencing the immune response and contributing to the development of IMBDs. Simultaneously, the gut microbiome functions as a linchpin in sustaining intestinal homeostasis and immune regulation. Dysbiosis, marked by shifts in gut microbial composition, is intricately linked to IMBD pathogenesis. Imbalances in the gut microbiota contribute to hallmark features of IMBDs, such as heightened gut permeability, chronic inflammation, and aberrant immune responses. The bidirectional interaction between intestinal parasites and the gut microbiome adds a layer of complexity to understanding IMBDs. Specific parasites, including hookworms and Necator americanus, exhibit immune downregulation and potential therapeutic applications in celiac disease. Conversely, infections with Strongyloides stercoralis and Blastocystis mirror IBD symptoms, underscoring the intricate relationship between parasites and disease pathogenesis. Further investigation is imperative to comprehensively unravel the mechanisms linking intestinal parasites and the gut microbiome in IMBD. This understanding holds the potential to pave the way for targeted therapeutic strategies aiming to restore gut microbiota homeostasis and alleviate the debilitating symptoms of these conditions. Harnessing the intricate interplay among parasites, the gut microbiome, and the host immune system may unveil novel approaches for managing and treating IMBDs.

作者简介

Sejuti Chowdhury

Department of Pharmaceutical Technology, School of Medical Sciences, Adamas University

Email: info@benthamscience.net

Arup Dey

Department of Pharmaceutical Technology, School of Medical Sciences, Adamas University

Email: info@benthamscience.net

Manish Gautam

Faculty of Pharmaceutical Science, Assam Down Town University

编辑信件的主要联系方式.
Email: info@benthamscience.net

Sandip Mondal

Amity Institute of Pharmacy, Amity University

Email: info@benthamscience.net

Sharad Pawar

Department of Pharmacology,, Central Ayurveda Research Institute

Email: info@benthamscience.net

Anagha Ranade

Central Council for Research in Ayurvedic Sciences, Ministry of AYUSH, Government of India

Email: info@benthamscience.net

Manajit Bora

Department of Pharmacology, Central Ayurveda Research Institute

Email: info@benthamscience.net

Mayank Gangwar

Department of Health Research, Clinical Studies and Trials Unit, Division of Development Research,, Indian Council of Medical Research, Ministry of Health & Family Welfare, Government of India

Email: info@benthamscience.net

Aniya Teli

Faculty of Pharmaceutical Science, Assam Down Town University

Email: info@benthamscience.net

Nur Mondal

Faculty of Pharmaceutical Science, Assam Down Town University

Email: info@benthamscience.net

参考

  1. Rogler G, Singh A, Kavanaugh A, Rubin DT. Extraintestinal manifestations of inflammatory bowel disease: Current concepts, treatment, and implications for disease management. Gastroenterology 2021; 161(4): 1118-32. doi: 10.1053/j.gastro.2021.07.042 PMID: 34358489
  2. Seyedian SS, Nokhostin F, Malamir MD. A review of the diagnosis, prevention, and treatment methods of inflammatory bowel disease. J Med Life 2019; 12(2): 113-22. PMID: 31406511
  3. de Silva NR, Brooker S, Hotez PJ, Montresor A, Engels D, Savioli L. Soil-transmitted helminth infections: Updating the global picture. Trends Parasitol 2003; 19(12): 547-51. doi: 10.1016/j.pt.2003.10.002 PMID: 14642761
  4. Hotez PJ, Bethony J, Bottazzi ME, Brooker S, Diemert D, Loukas A. New technologies for the control of human hookworm infection. Trends Parasitol 2006; 22(7): 327-31. doi: 10.1016/j.pt.2006.05.004 PMID: 16709466
  5. Dave M, Purohit T, Razonable R, Loftus EV Jr. Opportunistic infections due to inflammatory bowel disease therapy. Inflamm Bowel Dis 2014; 20(1): 196-212. doi: 10.1097/MIB.0b013e3182a827d2 PMID: 24051931
  6. Ruyssers NE, De Winter BY, De Man JG, et al. Therapeutic potential of helminth soluble proteins in TNBS-induced colitis in mice. Inflamm Bowel Dis 2009; 15(4): 491-500. doi: 10.1002/ibd.20787 PMID: 19023900
  7. Elliott DE, Li J, Blum A, et al. Exposure to schistosome eggs protects mice from TNBS-induced colitis. Am J Physiol Gastrointest Liver Physiol 2003; 284(3): G385-91. doi: 10.1152/ajpgi.00049.2002 PMID: 12431903
  8. Elliott DE, Weinstock JV. Helminth-host immunological interactions: Prevention and control of immune-mediated diseases. Ann N Y Acad Sci 2012; 1247(1): 83-96. doi: 10.1111/j.1749-6632.2011.06292.x PMID: 22239614
  9. Riffkin M, Seow HF, Jackson D, Brown L, Wood P. Defence against the immune barrage: Helminth survival strategies. Immunol Cell Biol 1996; 74(6): 564-74. doi: 10.1038/icb.1996.90 PMID: 8989595
  10. Maizels RM, Bundy DAP, Selkirk ME, Smith DF, Anderson RM. Immunological modulation and evasion by helminth parasites in human populations. Nature 1993; 365(6449): 797-805. doi: 10.1038/365797a0 PMID: 8413664
  11. Raddatz D, Bockemühl M, Ramadori G. Quantitative measurement of cytokine mRNA in inflammatory bowel disease: Relation to clinical and endoscopic activity and outcome. Eur J Gastroenterol Hepatol 2005; 17(5): 547-57. doi: 10.1097/00042737-200505000-00012 PMID: 15827446
  12. Targan SR, Murphy LK. Clarifying the causes of Crohn’s. Nat Med 1995; 1(12): 1241-3. PMID: 7489397
  13. Zeitz M. Pathogenesis of inflammatory bowel disease. Digestion 1997; 58(1): 59-61. doi: 10.1159/000201529 PMID: 9225095
  14. Hanauer SB, Feagan BG, Lichtenstein GR, et al. Maintenance infliximab for Crohn’s disease: The ACCENT I randomised trial. Lancet 2002; 359(9317): 1541-9. doi: 10.1016/S0140-6736(02)08512-4 PMID: 12047962
  15. Sands BE, Anderson FH, Bernstein CN, et al. Infliximab maintenance therapy for fistulizing Crohn’s disease. N Engl J Med 2004; 350(9): 876-85. doi: 10.1056/NEJMoa030815 PMID: 14985485
  16. Ince MN, Elliott DE, Setiawan T, et al. Role of T cell TGF-beta signaling in intestinal cytokine responses and helminthic immune modulation. Eur J Immunol 2009; 39(7): 1870-8. PMID: 19544487
  17. Schnoeller C, Rausch S, Pillai S, et al. A helminth immunomodulator reduces allergic and inflammatory responses by induction of IL-10-producing macrophages. J Immunol 2008; 180(6): 4265-72. PMID: 18322239
  18. Cekin AH, Cekin Y, Adakan Y, Tasdemir E, Koclar FG, Yolcular BO. Blastocystosis in patients with gastrointestinal symptoms: A case–control study. BMC Gastroenterol 2012; 12(1): 122. doi: 10.1186/1471-230X-12-122 PMID: 22963003
  19. Satoskar AR, Bozza M, Rodriguez Sosa M, Lin G, David JR. Migration-inhibitory factor gene-deficient mice are susceptible to Cutaneous Leishmania major infection. Infect Immun 2001; 69(2): 906-11. PMID: 11159984
  20. Terrazas CA, Juarez I, Terrazas LI, Saavedra R, Calleja EA, Rodriguez-Sosa M. Toxoplasma gondii: Impaired maturation and pro-inflammatory response of dendritic cells in MIF-deficient mice favors susceptibility to infection. Exp Parasitol 2010; 126(3): 348-58. doi: 10.1016/j.exppara.2010.03.009 PMID: 20331989
  21. Cavalcanti MG, Mesquita JS, Madi K, et al. MIF participates in Toxoplasma gondii-induced pathology following oral infection. PLoS One 2011; 6(9): e25259. doi: 10.1371/journal.pone.0025259 PMID: 21977228
  22. Moreels TG, Pelckmans PA. Gastrointestinal parasites. Inflamm Bowel Dis 2005; 11(2): 178-84. doi: 10.1097/00054725-200502000-00012 PMID: 15677912
  23. Elliott DE, Summers RW, Weinstock JV. Helminths as governors of immune-mediated inflammation. Int J Parasitol 2007; 37(5): 457-64. doi: 10.1016/j.ijpara.2006.12.009 PMID: 17313951
  24. Brunet LR, Dunne DW, Pearce EJ. Cytokine interaction and immune responses during Schistosoma mansoni infection. Parasitol Today 1998; 14(10): 422-7. doi: 10.1016/S0169-4758(98)01317-9 PMID: 17040834
  25. Motomura Y, Wang H, Deng Y, El-Sharkawy RT, Verdu EF, Khan WI. Helminth antigen-based strategy to ameliorate inflammation in an experimental model of colitis. Clin Exp Immunol 2008; 155(1): 88-95. doi: 10.1111/j.1365-2249.2008.03805.x PMID: 19016806
  26. Summers RW, Elliott DE, Qadir K, Urban JF Jr, Thompson R, Weinstock JV. Trichuris suis seems to be safe and possibly effective in the treatment of inflammatory bowel disease. Am J Gastroenterol 2003; 98(9): 2034-41. doi: 10.1111/j.1572-0241.2003.07660.x PMID: 14499784
  27. Dogruman-Al F, Simsek Z, Boorom K, et al. Comparison of methods for detection of Blastocystis infection in routinely submitted stool samples, and also in IBS/IBD patients in Ankara, Turkey. PLoS One 2010; 5(11): e15484. doi: 10.1371/journal.pone.0015484 PMID: 21124983
  28. Stark D, van Hal S, Marriott D, Ellis J, Harkness J. Irritable bowel syndrome: A review on the role of intestinal protozoa and the importance of their detection and diagnosis. Int J Parasitol 2007; 37(1): 11-20. PMID: 17070814
  29. Spiller R, Garsed K. Postinfectious irritable bowel syndrome. Gastroenterology 2009; 136(6): 1979-88. PMID: 19457422
  30. Morgan DR, Benshoff M, Cáceres M, et al. Irritable bowel syndrome and gastrointestinal parasite infection in a developing nation environment. Gastroenterol Res Pract 2012; 2012: 1-6. doi: 10.1155/2012/343812 PMID: 22474433
  31. Dizdar V, Spiller R, Singh G, et al. Relative importance of abnormalities of CCK and 5-HT (serotonin) in Giardia-induced post-infectious irritable bowel syndrome and functional dyspepsia. Aliment Pharmacol Ther 2010; 31(8): 883-91. doi: 10.1111/j.1365-2036.2010.04251.x PMID: 20132151
  32. Borody T, Warren E, Wettstein A, et al. Eradication of Dientamoeba fragilis can resolve IBS-like symptoms. J Gastroenterol Hepatol 2002; 17: A103.
  33. Yakoob J, Jafri W, Beg MA, et al. Blastocystis hominis and Dientamoeba fragilis in patients fulfilling irritable bowel syndrome criteria. Parasitol Res 2010; 107(3): 679-84. doi: 10.1007/s00436-010-1918-7 PMID: 20532564
  34. Jimenez-Gonzalez DE, Martinez-Flores WA, Reyes-Gordillo J, et al. Blastocystis infection is associated with irritable bowel syndrome in a Mexican patient population. Parasitol Res 2012; 110(3): 1269-75. doi: 10.1007/s00436-011-2626-7 PMID: 21870243
  35. Engsbro AL, Stensvold CR, Nielsen HV, Bytzer P. Treatment of Dientamoeba fragilis in patients with irritable bowel syndrome. Am J Trop Med Hyg 2012; 87(6): 1046-52. PMID: 23091195
  36. Chai JY, Han ET, Shin EH, et al. High prevalence of Haplorchis taichui, Phaneropsolus molenkampi, and other helminth infections among people in Khammouane province, Lao PDR. Korean J Parasitol 2009; 47(3): 243-7. PMID: 19724697
  37. Kumchoo K, Wongsawad C, Chai JY, Vanittanakom P, Rojanapaibul A. High prevalence of Haplorchis taichui metacercariae in cyprinoid fish from Chiang Mai province, Thailand. Southeast Asian J Trop Med Public Health 2005; 36(2): 451-5. PMID: 15916054
  38. Watthanakulpanich D, Waikagul J, Maipanich W, et al. Haplorchis taichui as a possible etiologic agent of irritable bowel syndrome-like symptoms. Korean J Parasitol 2010; 48(3): 225-9. doi: 10.3347/kjp.2010.48.3.225 PMID: 20877501
  39. Soyturk M, Akpinar H, Gurler O, et al. Irritable bowel syndrome in persons who acquired trichinellosis. Am J Gastroenterol 2007; 102(5): 1064-9. doi: 10.1111/j.1572-0241.2007.01084.x PMID: 17313500
  40. Diniz-Santos DR, Jambeiro J, Mascarenhas RR, Silva LR. Massive Trichuris trichiura infection as a cause of chronic bloody diarrhea in a child. J Trop Pediatr 2006; 52(1): 66-8. doi: 10.1093/tropej/fmi073 PMID: 16000342
  41. Qiu P, Ishimoto T, Fu L, Zhang J, Zhang Z, Liu Y. The gut microbiota in inflammatory bowel disease. Front Cell Infect Microbiol 2022; 12: 733992. PMID: 35273921
  42. Ng SC, Shi HY, Hamidi N, et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: A systematic review of population-based studies. Lancet 2017; 390(10114): 2769-78. doi: 10.1016/S0140-6736(17)32448-0 PMID: 29050646
  43. Oligschlaeger Y, Yadati T, Houben T, Condello Oliván CM, Shiri-Sverdlov R. Inflammatory bowel disease: A stressed "gut/feeling". Cells 2019; 8(7): 659. doi: 10.3390/cells8070659 PMID: 31262067
  44. Lopetuso LR, Ianiro G, Scaldaferri F, Cammarota G, Gasbarrini A. Gut virome and inflammatory bowel disease. Inflamm Bowel Dis 2016; 22(7): 1708-12. doi: 10.1097/MIB.0000000000000807 PMID: 27206017
  45. Ramakrishna BS. Role of the gut microbiota in human nutrition and metabolism. J Gastroenterol Hepatol 2013; 28: 9-17. PMID: 24251697
  46. Allen-Vercoe E, Coburn B. A microbiota-derived metabolite augments cancer immunotherapy responses in mice. Cancer Cell 2020; 38(4): 452-3. doi: 10.1016/j.ccell.2020.09.005 PMID: 32976777
  47. Stappenbeck TS, Virgin HW. Accounting for reciprocal host-microbiome interactions in experimental science. Nature 2016; 534(7606): 191-9. PMID: 27279212
  48. Lakatos PL. Recent trends in the epidemiology of inflammatory bowel diseases: Up or down? World J Gastroenterol 2006; 12(38): 6102-8. PMID: 17036379
  49. Hallen-Adams HE, Suhr MJ. Fungi in the healthy human gastrointestinal tract. Virulence 2017; 8(3): 352-8. PMID: 27736307
  50. Hoffmann C, Dollive S, Grunberg S, et al. Archaea and fungi of the human gut microbiome: Correlations with diet and bacterial residents. PLoS One 2013; 8(6): e66019. PMID: 23799070
  51. Dollive S, Chen YY, Grunberg S, et al. Fungi of the murine gut: Episodic variation and proliferation during antibiotic treatment. PLoS One 2013; 8(8): e71806. PMID: 23977147
  52. Auchtung TA, Fofanova TY, Stewart CJ, et al. Investigating colonization of the healthy adult gastrointestinal tract by fungi. MSphere 2018; 3(2): e00092-18. doi: 10.1128/mSphere.00092-18 PMID: 29600282
  53. David LA, Maurice CF, Carmody RN, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014; 505(7484): 559-63. PMID: 24336217
  54. McFarland LV. Systematic review and meta-analysis of Saccharomyces boulardii in adult patients. World J Gastroenterol 2010; 16(18): 2202-22. doi: 10.3748/wjg.v16.i18.2202 PMID: 20458757
  55. Madoff SE, Urquiaga M, Alonso CD, Kelly CP. Prevention of recurrent Clostridioides difficile infection: A systematic review of randomized controlled trials. Anaerobe 2020; 61: 102098. doi: 10.1016/j.anaerobe.2019.102098 PMID: 31493500
  56. Olendzki B, Bucci V, Cawley C, et al. Dietary manipulation of the gut microbiome in inflammatory bowel disease patients: Pilot study. Gut Microbes 2022; 14(1): 2046244. PMID: 35311458
  57. Hart L, Verburgt CM, Wine E, et al. Nutritional therapies and their influence on the intestinal microbiome in pediatric inflammatory bowel disease. Nutrients 2021; 14(1): 4. doi: 10.3390/nu14010004 PMID: 35010879
  58. Kong C, Yan X, Liu Y, et al. Ketogenic diet alleviates colitis by reduction of colonic group 3 innate lymphoid cells through altering gut microbiome. Signal Transduct Target Ther 2021; 6(1): 154. PMID: 33888680
  59. Levine A, Wine E, Assa A, et al. Crohn’s disease exclusion diet plus partial enteral nutrition induces sustained remission in a randomized controlled trial. Gastroenterology 2019; 157(2): 440-450.e8. PMID: 31170412
  60. Ciubotaru I, Green SJ, Kukreja S, Barengolts E. Significant differences in fecal microbiota are associated with various stages of glucose tolerance in African American male veterans. Transl Res 2015; 166(5): 401-11. doi: 10.1016/j.trsl.2015.06.015 PMID: 26209747
  61. Healy AR, Herzon SB. Molecular basis of gut microbiome-associated colorectal cancer: A synthetic perspective. J Am Chem Soc 2017; 139(42): 14817-24. doi: 10.1021/jacs.7b07807 PMID: 28949546
  62. Liang X, Li H, Tian G, Li S. Dynamic microbe and molecule networks in a mouse model of colitis-associated colorectal cancer. Sci Rep 2014; 4(1): 4985. doi: 10.1038/srep04985 PMID: 24828543
  63. Gargi A, Reno M, Blanke SR. Bacterial toxin modulation of the eukaryotic cell cycle: Are all cytolethal distending toxins created equally? Front Cell Infect Microbiol 2012; 2: 124. doi: 10.3389/fcimb.2012.00124 PMID: 23061054
  64. Fedor Y, Vignard J, Nicolau-Travers ML, et al. From single-strand breaks to double-strand breaks during S-phase: A new mode of action of the Escherichia coli cytolethal distending toxin. Cell Microbiol 2013; 15(1): 1-15. PMID: 22978660
  65. van Elsland D, Neefjes J. Bacterial infections and cancer. EMBO Rep 2018; 19(11): e46632. doi: 10.15252/embr.201846632 PMID: 30348892
  66. Nougayrède JP, Homburg S, Taieb F, et al. Escherichia coli induces DNA double-strand breaks in eukaryotic cells. Science 2006; 313(5788): 848-51. doi: 10.1126/science.1127059 PMID: 16902142
  67. Balish E, Warner T. Enterococcus faecalis induces inflammatory bowel disease in interleukin-10 knockout mice. Am J Pathol 2002; 160(6): 2253-7. PMID: 12057927
  68. Deleu S, Machiels K, Raes J, Verbeke K, Vermeire S. Short chain fatty acids and its producing organisms: An overlooked therapy for IBD? EBioMedicine 2021; 66: 103293. PMID: 33813134
  69. Lee M, Chang EB. Inflammatory bowel diseases (IBD) and the microbiome-searching the crime scene for clues. Gastroenterology 2021; 160(2): 524-37. doi: 10.1053/j.gastro.2020.09.056 PMID: 33253681
  70. Stensvold CR, van der Giezen M. Associations between gut microbiota and common luminal intestinal parasites. Trends Parasitol 2018; 34(5): 369-77. doi: 10.1016/j.pt.2018.02.004 PMID: 29567298
  71. Eichenberger RM, Ryan S, Jones L, et al. Hookworm secreted extracellular vesicles interact with host cells and prevent inducible colitis in mice. Front Immunol 2018; 9: 850. PMID: 29760697
  72. Tito RY, Chaffron S, Caenepeel C, et al. Population-level analysis of Blastocystis subtype prevalence and variation in the human gut microbiota. Gut 2019; 68(7): 1180-9. doi: 10.1136/gutjnl-2018-316106 PMID: 30171064
  73. Yamamoto-Furusho JK, Torijano-Carrera E. Intestinal protozoa infections among patients with ulcerative colitis: Prevalence and impact on clinical disease course. Digestion 2010; 82(1): 18-23. PMID: 20145404
  74. Audebert C, Even G, Cian A, et al. Colonization with the enteric protozoa Blastocystis is associated with increased diversity of human gut bacterial microbiota. Sci Rep 2016; 6(1): 25255. doi: 10.1038/srep25255 PMID: 27147260
  75. Verstockt B, Vermeire S, Van Assche G, Ferrante M. When IBD is not IBD. Scand J Gastroenterol 2018; 53(9): 1085-8. doi: 10.1080/00365521.2018.1500637 PMID: 30256685
  76. Vadlamudi N, Maclin J, Dimmitt RA, Thame KA. Cryptosporidial infection in children with inflammatory bowel disease. J Crohn’s Colitis 2013; 7(9): e337-43. PMID: 23415795
  77. Stensvold CR, Lebbad M, Victory EL, et al. Increased sampling reveals novel lineages of Entamoeba: Consequences of genetic diversity and host specificity for taxonomy and molecular detection. Protist 2011; 162(3): 525-41. doi: 10.1016/j.protis.2010.11.002 PMID: 21295520
  78. D’Anchino M, Orlando D, De Feudis L. Giardia lamblia infections become clinically evident by eliciting symptoms of irritable bowel syndrome. J Infect 2002; 45(3): 169-72. doi: 10.1053/jinf.2002.1038 PMID: 12387773
  79. Suhr MJ, Hallen-Adams HE. The human gut mycobiome: Pitfalls and potentials-A mycologist’s perspective. Mycologia 2015; 107(6): 1057-73. PMID: 26354806
  80. Richard ML, Sokol H. The gut mycobiota: Insights into analysis, environmental interactions and role in gastrointestinal diseases. Nat Rev Gastroenterol Hepatol 2019; 16(6): 331-45. PMID: 30824884
  81. Sokol H, Leducq V, Aschard H, et al. Fungal microbiota dysbiosis in IBD. Gut 2017; 66(6): 1039-48. doi: 10.1136/gutjnl-2015-310746 PMID: 26843508
  82. Whibley N, Jaycox JR, Reid D, et al. Delinking CARD9 and IL-17: CARD9 protects against Candida tropicalis infection through a TNF-α–dependent, IL-17–independent mechanism. J Immunol 2015; 195(8): 3781-92. doi: 10.4049/jimmunol.1500870 PMID: 26336150
  83. Maher CO, Dunne K, Comerford R, et al. Candida albicans stimulates IL-23 release by human dendritic cells and downstream IL-17 secretion by Vδ1 T cells. J Immunol 2015; 194(12): 5953-60. doi: 10.4049/jimmunol.1403066 PMID: 25964489
  84. Ford AC, Peyrin-Biroulet L. Opportunistic infections with anti-tumor necrosis factor-α therapy in inflammatory bowel disease: Meta-analysis of randomized controlled trials. Am J Gastroenterol 2013; 108(8): 1268-76. PMID: 23649185
  85. Rath SK, Panja AK, Nagar L, Shinde A. The scientific basis of rasa (taste) of a substance as a tool to explore its pharmacological behavior. Anc Sci Life 2014; 33(4): 198-202. PMID: 25593398
  86. Ranade A, Gayakwad S, Chougule S, Shirolkar A, Gaidhani S, Pawar SD. Gut microbiota: Metabolic programmers as a lead for deciphering Ayurvedic pharmacokinetics. Curr Sci 2020; 119(3): 451-61. doi: 10.18520/cs/v119/i3/451-461
  87. Ranade AV, Shirolkar A, Pawar SD. Gut microbiota: One of the new frontiers for elucidating fundamentals of Vipaka in Ayurveda. Ayu 2019; 40(2): 75-8. PMID: 32398906
  88. Upadhyaya N, Suvitha SV, Yadav S, Yadav CR. A clinical utility of Prakriti parikshan- An ayurvedic diagnostic tool: A brief review. Int J Res Ayush Pharm Sci 2021; 5(2): 514-20.
  89. Govindaraj P, Nizamuddin S, Sharath A, et al. Genome-wide analysis correlates Ayurveda Prakriti. Sci Rep 2015; 5: 15786. PMID: 26511157
  90. Chaudhari D, Dhotre D, Agarwal D, et al. Understanding the association between the human gut, oral and skin microbiome and the Ayurvedic concept of Prakriti. J Biosci 2019; 44(5): 112. doi: 10.1007/s12038-019-9939-6 PMID: 31719221
  91. Arpaia N, Campbell C, Fan X, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 2013; 504(7480): 451-5. doi: 10.1038/nature12726 PMID: 24226773
  92. Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. Cell 2014; 157(1): 121-41. doi: 10.1016/j.cell.2014.03.011 PMID: 24679531
  93. Li S, Jin M, Wu Y, et al. An efficient enzyme-triggered controlled release system for colon-targeted oral delivery to combat dextran sodium sulfate (DSS)-induced colitis in mice. Drug Deliv 2021; 28(1): 1120-31. PMID: 34121560
  94. van der Lelie D, Oka A, Taghavi S, et al. Rationally designed bacterial consortia to treat chronic immune-mediated colitis and restore intestinal homeostasis. Nat Commun 2021; 12(1): 3105. doi: 10.1038/s41467-021-23460-x PMID: 34050144
  95. Lee Y, Sugihara K, Gillilland MG III, Jon S, Kamada N, Moon JJ. Hyaluronic acid-bilirubin nanomedicine for targeted modulation of dysregulated intestinal barrier, microbiome and immune responses in colitis. Nat Mater 2020; 19(1): 118-26. PMID: 31427744
  96. Levine A, Sigall Boneh R, Wine E. Evolving role of diet in the pathogenesis and treatment of inflammatory bowel diseases. Gut 2018; 67(9): 1726-38. doi: 10.1136/gutjnl-2017-315866 PMID: 29777041

补充文件

附件文件
动作
1. JATS XML

版权所有 © Bentham Science Publishers, 2024