An Overview of the Analytical Methods for Products Based on Clindamycin and Eco-efficiency Perspectives


Cite item

Full Text

Abstract

Background:Clindamycin (CLIN), an antibiotic sold in the form of capsules, injectable solution, gel, and lotion, is easily soluble in water and ethanol. However, it lacks eco-efficient methods for evaluating pharmaceutical products.

Objective and Method:The objective of this review is to provide an overview of the analytical methods present both in the literature and in official compendia for evaluating pharmaceutical matrices based on CLIN in the context of Green Analytical Chemistry (GAC).

Results:Firstly, microbiological methods for evaluating the potency of CLIN final products were not found, which already shows the need to develop new methods. Among the methods found, which are all physicalchemical, the most used method is HPLC (71%) followed by UV-Vis (14%). Among the targets of the methods, capsules and raw materials were the most studied (33% each). Among the choices of analytical conditions for the methods, acetonitrile is the preferred solvent (27.7%), even though CLIN is easily soluble in ethanol.

Conclusion:Thus, the gap in eco-friendly and sustainable analytical methods is a reality and an opportunity for analytical development centers to provide means for evaluating the quality of CLIN-based products.

About the authors

Isadora Lustosa

Department of Pharmacy, Faculty of Pharmacy, Universidade Federal de Goiás

Email: info@benthamscience.net

Ana Kogawa

Department of Pharmacy, Faculty of Pharmacy, Universidade Federal de Goiás

Author for correspondence.
Email: info@benthamscience.net

References

  1. Brazilian Pharmacopeia. (6th ed.), Brasília: ANVISA 2019.
  2. Luchian I, Goriuc A, Martu MA, Covasa M. Clindamycin as an alternative option in optimizing periodontal therapy. Antibiotics 2021; 10(7): 814-26. doi: 10.3390/antibiotics10070814 PMID: 34356735
  3. Tótoli EG, Salgado HRN. Miniaturized turbidimetric assay: A green option for the analysis of besifloxacin in ophthalmic suspension. Talanta 2020; 209: 120532. doi: 10.1016/j.talanta.2019.120532 PMID: 31892089
  4. Ferreira RGL, Da Silva Júnior JR, Torres IMS, Kogawa AC. Fast and new microbiological method for evaluating the potency of marbofloxacin-based tablets. J AOAC Int 2023; 106(3): 690-4. doi: 10.1093/jaoacint/qsac137 PMID: 36326443
  5. Armengol Álvarez L, Van de Sijpe G, Desmet S, et al. Ways to improve insights into clindamycin pharmacology and pharmacokinetics tailored to practice. Antibiotics 2022; 11(5): 701-25. doi: 10.3390/antibiotics11050701 PMID: 35625345
  6. Billiard KM, Dershem AR, Gionfriddo E. Implementing green analytical methodologies using solid-phase microextraction: A review. Molecules 2020; 25(22): 5297. doi: 10.3390/molecules25225297 PMID: 33202856
  7. Dakhil IA, Mahdi ZH. An overview on the recent technologies and advances in drug delivery of poorly water-soluble drugs. Al Mustansiriyah J Pharm Sci 2019; 19(4): 180-95. doi: 10.32947/ajps.v19i4.649
  8. United States Pharmacopeia. Rockville, MD: United States Convention Inc. 2020.
  9. Barazandeh Tehrani M, Namadchian M, Fadaye Vatan S, Souri E. Derivative spectrophotometric method for simultaneous determination of clindamycin phosphate and tretinoin in pharmaceutical dosage forms. Daru 2013; 21(1): 29. doi: 10.1186/2008-2231-21-29 PMID: 23575006
  10. Muthukumar S, Kathram S, Navanethan J, Selvakumar D, Banji D. Method development and validation of RP-HPLC method for simultaneous determination of clindamycin phosphate and clotrimazole in soft gelatin vaginal suppositories. Int J Pharm Ther 2013; 4: 270-5. doi: 10.21276/ijpt
  11. Wu GK, Gupta A, Khan MA, Faustino PJ. Development and application of a validated HPLC method for thedetermination of clindamycin palmitate hydrochloride in marketed drug products: Anoptimization of the current USP methodology for assay. J Anal Sci Methods Instrum 2013; 3(4): 202-11. doi: 10.4236/jasmi.2013.34026
  12. Chaudhary AM, Modi J, Shaikh M. RP-HPLC method development and validation for simultaneous estimation of clindamycin phosphate and nicotinamide in pharmaceutical dosage form. Int Bull Drug Res 2014; 4: 160-74.
  13. Khatri RH, Patel RB, Patel MR. A new RP-HPLC method for estimation of clindamycin and adapalene in gel formulation: Development and validation consideration. Thaiphesatchasan 2014; 38(1): 44-8. doi: 10.56808/3027-7922.1969
  14. Modi PB, Shah NJ. Novel stability-indicating RP-HPLC method for the simultaneous estimation of clindamycin phosphate and adapalene along with preservatives in topical gel formulations. Sci Pharm 2014; 82(4): 799-813. doi: 10.3797/scipharm.1404-01 PMID: 26171325
  15. Prava VRK, Seru G. RP-HPLC method development and validation for the simultaneous determination of clindamycin and miconazole in pharmaceutical dosage forms. Pharm Methods 2014; 5: 56-60. doi: 10.5530/PHM.2014.2.3
  16. Seethalakshmi N, Chenthilnathan A, Rama K. RP-HPLC method development and validation for simultaneous estimation of metronidazole, clindamycin phosphate and clotrimazole in combined pharmaceutical dosage forms. Int Res J Pharm Appl Sci 2014; 4: 67-77.
  17. Sun Q, Li Y, Qin L. Isolation and identification of two unknown impurities from the raw material of clindamycin hydrochloride. J Sep Sci 2014; 37(19): 2682-7. doi: 10.1002/jssc.201400166 PMID: 25044425
  18. Wahba MEK, El-Enany N, Belal F. Application of the stern–volmer equation for studying the spectrofluorimetric quenching reaction of eosin with clindamycin hydrochloride in its pure form and pharmaceutical preparations. Anal Methods 2015; 7(24): 10445-51. doi: 10.1039/C3AY42093K
  19. Rajendar L, Potnuri NR. A stability indicating RP-HPLC method for the simultaneous estimation of metronidazole, clindamycin and clotrimazole in bulk and their combined dosage form. World J Pharm Sci 2015; 3: 93-103. doi: 10.54037/WJPS
  20. Akula G, Saibabu V, Phanindra SS, Nirmal R, Suddagoni S, Jaswanth A. RP-HPLC method development and validation for the simultaneous estimation of miconazole and clindamycin in pharmaceutical dosage forms. Sch Acad J Pharm 2017; 6: 27-33. doi: 10.21276/sajp.2017.6.4
  21. Paul P, Duchateau T, Sänger-van de Griend C, Adams E, Van Schepdael A. Capillary electrophoresis with capacitively coupled contactless conductivity detection method development and validation for the determination of azithromycin, clarithromycin, and clindamycin. J Sep Sci 2017; 40(17): 3535-44. doi: 10.1002/jssc.201700560 PMID: 28683179
  22. Dedić M, Bečić E, Imamović B, Žiga N. Determination of clindamycin hydrochloride content in 1% clindamycin lotion. Glas Hem Tehnol Bosne Herceg 2018; 50: 49-54.
  23. Affas S, Sakur AA. Validated green spectrophotometric kinetic method for determination of clindamycin hydrochloride in capsules. BMC Chem 2021; 15(1): 29. doi: 10.1186/s13065-021-00755-0 PMID: 33941253
  24. Sarfraz S, Hussain S, Javed M, et al. Simultaneous HPLC determination of clindamycin phosphate, tretinoin, and preservatives in gel dosage form using a novel stability-indicating method. Inorganics 2022; 10(10): 168. doi: 10.3390/inorganics10100168
  25. Leanpolchareanchai J, Jumniansuk N, Saesoul C, Sukthongchaikool R, Phechkrajang C. Quantitative determination of clindamycin phosphate in gel preparation using PLSR model. Anal Bioanal Chem Res 2023; 10: 395-402. doi: 10.22036/ABCR.2023.386693.1890
  26. Anastas PT. Green chemistry and the role of analytical methodology development. Crit Rev Anal Chem 1999; 29(3): 167-75. doi: 10.1080/10408349891199356
  27. Armenta S, Garrigues S, Esteve-Turrillas FA, de la Guardia M. Green extraction techniques in green analytical chemistry. Trends Analyt Chem 2019; 116: 248-53. doi: 10.1016/j.trac.2019.03.016
  28. Kogawa AC, Salgado HRN. Golden age of green chemistry. EC Microbiol 2017; 12: 52-4.
  29. Kogawa AC, Salgado HRN. Analytical methods: Where do we stand in the current environmental scenario? EC Microbiol 2017; 13: 102-4.
  30. Kogawa AC, Salgado HRN. Ethanol on HPLC: Epiphany or nonsense? Acta Sci Pharm Sci 2018; 2: 14-5.
  31. de Marco BA, Rechelo BS, Tótoli EG, Kogawa AC, Salgado HRN. Evolution of green chemistry and its multidimensional impacts: A review. Saudi Pharm J 2019; 27(1): 1-8. doi: 10.1016/j.jsps.2018.07.011 PMID: 30627046
  32. Pacheco-Fernández I, Pino V. Green solvents in analytical chemistry. Curr Opin Green Sustain Chem 2019; 18: 42-50. doi: 10.1016/j.cogsc.2018.12.010
  33. Pena-Pereira F, Wojnowski W, Tobiszewski M. AGREE-Analytical GREEnness metric approach and software. Anal Chem 2020; 92(14): 10076-82. doi: 10.1021/acs.analchem.0c01887 PMID: 32538619
  34. Mohamed D, Fouad MM. Application of NEMI, Analytical Eco-Scale and GAPI tools for greenness assessment of three developed chromatographic methods for quantification of sulfadiazine and trimethoprim in bovine meat and chicken muscles: Comparison to greenness profile of reported HPLC methods. Microchem J 2020; 157: 104873-86. doi: 10.1016/j.microc.2020.104873
  35. Sinzervinch A, Torres IMS, Kogawa AC. Tools to evaluate the eco-efficiency of analytical methods in the context of green and white analytical chemistry: A review. Curr Pharm Des 2023; 29(31): 2442-9. doi: 10.2174/0113816128266396231017072043 PMID: 37877508
  36. Kowtharapu LP, Katari NK, Muchakayala SK, Marisetti VM. Green metric tools for analytical methods assessment critical review, case studies and crucify. Trends Analyt Chem 2023; 166: 117196. doi: 10.1016/j.trac.2023.117196
  37. Van Aken K, Strekowski L, Patiny L. EcoScale, a semi-quantitative tool to select an organic preparation based on economical and ecological parameters. Beilstein J Org Chem 2006; 2(1): 3. doi: 10.1186/1860-5397-2-3 PMID: 16542013
  38. Gałuszka A, Migaszewski ZM, Konieczka P, Namieśnik J. Analytical Eco-Scale for assessing the greenness of analytical procedures. Trends Analyt Chem 2012; 37: 61-72. doi: 10.1016/j.trac.2012.03.013
  39. Rodrigues D, Salgado H. Development and validation of a green analytical method of RP-HPLC for quantification of Cefepime hydrochloride in pharmaceutical dosage form: Simple, sensitive and economic. Curr Pharm Anal 2016; 12(4): 306-14. doi: 10.2174/1573412912666151221210921
  40. Pedroso TM, Medeiros ACD, Salgado HRN. RP-HPLC×HILIC chromatography for quantifying ertapenem sodium with a look at green chemistry. Talanta 2016; 160: 745-53. doi: 10.1016/j.talanta.2016.08.016 PMID: 27591671
  41. Kogawa AC, Mendonça JN, Lopes NP, Salgado HRN. Eco-friendly pharmaceutical analysis of rifaximin in tablets by HPLC-MS and microbiological turbidimetry. J Chromatogr Sci 2021; 59(7): 597-605. doi: 10.1093/chromsci/bmab044 PMID: 33942054
  42. da Trindade MT, Kogawa AC, Salgado HRN. A clean, sustainable and stability-indicating method for the quantification of ceftriaxone sodium in pharmaceutical product by HPLC. J Chromatogr Sci 2022; 60(3): 260-6. doi: 10.1093/chromsci/bmab078 PMID: 34131704
  43. de Oliveira AS, de Oliveira NRL, de Oliveira Neto JR, Tavares LL, Kogawa AC. Green method for evaluation of marbofloxacin tablets by HPLC and evaluation of interchangeability with UV and turbidimetric methods. J AOAC Int 2023; 106(6): 1432-7. doi: 10.1093/jaoacint/qsad102 PMID: 37676818
  44. da Silva TAC, da Silva Júnior JR, Kogawa AC. A new, ecological and stability-indicating method by HPLC for the quantification of moxifloxacin in tablets. Curr Green Chem 2023; 10(2): 165-73. doi: 10.2174/2213346110666230331085433
  45. Ghidini L, Kogawa A, Salgado HRN. Eco-friendly green liquid chromatographic for determination of doxycycline in tablets and in the presence of its degradation products. Drug Anal Res 2018; 2(2): 49-55. doi: 10.22456/2527-2616.89412
  46. Lima J, Kogawa A, Salgado HRN. Green analytical method for quantification of secnidazole in tablets by HPLC-UV. Drug Anal Res 2018; 2(2): 20-6. doi: 10.22456/2527-2616.89411
  47. Nascimento PA, Ac K, Hrn S. Development and validation of an innovative and ecological analytical method using high performance liquid chromatography for quantification of cephalothin sodium in pharmaceutical dosage. J Chromatogr Sep Tech 2018; 9(1): 394-401. doi: 10.4172/2157-7064.1000394
  48. Aleixa do Nascimento P, Kogawa AC, Salgado HRN. A new ecological HPLC method for determination of vancomycin dosage form. Curr Chromatogr 2020; 7(2): 82-90. doi: 10.2174/2213240607666200324140907
  49. Passos ML, Saraiva MLM. Detection in UV-visible spectrophotometry: Detectors, detection systems, and detection strategies. Measurement 2019; 135: 896-904. doi: 10.1016/j.measurement.2018.12.045
  50. Motta C, Kogawa A, Chorilli M, Salgado H. Eco-friendly and miniaturized analytical method for quantification of Rifaximin in tablets. Drug Anal Res 2019; 3(2): 23-9. doi: 10.22456/2527-2616.98376
  51. Marco B, Kogawa A, Salgado H. New, green and miniaturized analytical method for determination of cefadroxil monohydrate in capsules. Drug Anal Res 2019; 3(1): 23-8. doi: 10.22456/2527-2616.91086
  52. de Souza MJM, Kogawa AC, Salgado HRN. New and miniaturized method for analysis of enrofloxacin in palatable tablets. Spectrochim Acta A Mol Biomol Spectrosc 2019; 209: 1-7. doi: 10.1016/j.saa.2018.10.014 PMID: 30343104
  53. Nascimento P, Kogawa A, Salgado HRN. A new and ecological miniaturized method by spectrophotometry for quantification of vancomycin in dosage form. Drug Anal Res 2021; 5(1): 39-45. doi: 10.22456/2527-2616.112226
  54. Liesivuori J, Savolainen AH. Methanol and formic acid toxicity: Biochemical mechanisms. Pharmacol Toxicol 1991; 69(3): 157-63. doi: 10.1111/j.1600-0773.1991.tb01290.x PMID: 1665561
  55. Rechelo BS, Fernandes FHA, Kogawa AC, Salgado HRN. New environmentally friendly method for quantification of cefazolin sodium. Eur Chem Bull 2017; 6(6): 238-45. doi: 10.17628/ecb.2017.6.238-245
  56. de Aléssio PV, Kogawa AC, Salgado HRN. Quality of ceftriaxone sodium in lyophilized powder for injection evaluated by clean, fast, and efficient spectrophotometric method. J Anal Methods Chem 2017; 2017: 1-4. doi: 10.1155/2017/7530242 PMID: 29057140
  57. Bele AA, Khale A. An overview on thin layer chromatography. Int J Pharm Sci Res 2011; 2: 256-67.
  58. Slaughter RJ, Mason RW, Beasley DMG, Vale JA, Schep LJ. Isopropanol poisoning. Clin Toxicol 2014; 52(5): 470-8. doi: 10.3109/15563650.2014.914527 PMID: 24815348
  59. Hossain MF. Ammonium acetate in acetic acid: A versatile chemical mixture in organic synthesis. J Indian Chem Soc 2019; 96: 1419-27.
  60. Kogawa AC, Mendonça JN, Lopes NP, Nunes Salgado HR. Stability-indicating thin-layer chromatographic method for determination of darunavir in complex darunavir-β-cyclodextrin in the presence of its degradation products. Anal Methods 2014; 6(11): 3689-93. doi: 10.1039/C4AY00248B
  61. Kogawa AC, Mendonça JN, Lopes NP, Nunes Salgado HR. Method indicative of stability for the determination of rifaximin and its degradation products by thin chromatographic. Curr Pharm Anal 2017; 13(6): 520-4. doi: 10.2174/1573412912666160801103712
  62. Zimmermann A, Tótoli EG, Fernandes FHA, Salgado HRN. An eco-friendly and low-cost method for the quantification of cefazolin sodium in powder for injectable solution using thin-layer chromatography assisted by digital images. J Planar Chromatogr Mod TLC 2017; 30(4): 285-90. doi: 10.1556/1006.2017.30.4.8
  63. Sajid M, Płotka-Wasylka J. Green analytical chemistry metrics: A review. Talanta 2022; 238(Pt 2): 123046. doi: 10.1016/j.talanta.2021.123046 PMID: 34801903

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers