Assessing TGF-β Prognostic Model Predictions for Chemotherapy Response and Oncogenic Role of FKBP1A in Liver Cancer

  • Authors: Chen W.1, Que Q.1, Zhong R.2, Lin Z.3, Yi Q.4, Wang Q.5
  • Affiliations:
    1. Department of Blood Transfusion, Longyan First Affiliated Hospital of Fujian Medical University
    2. Department of Emergency, Longyan First Affiliated Hospital of Fujian Medical University
    3. Department of Burn Plastic Surgery and Wound Repair Surgery, Longyan First Affiliated Hospital of Fujian Medical University
    4. Department of Clinical Laboratory, Longyan First Affiliated Hospital of Fujian Medical University
    5. Second Affiliated Hospital of Fujian University of Traditional Chinese Medical University Medicine, Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine
  • Issue: Vol 30, No 39 (2024)
  • Pages: 3131-3152
  • Section: Immunology, Inflammation & Allergy
  • URL: https://vestnikugrasu.org/1381-6128/article/view/645970
  • DOI: https://doi.org/10.2174/0113816128326151240820105525
  • ID: 645970

Cite item

Full Text

Abstract

Background:The Transforming Growth Factor-Beta (TGF-β) signaling pathway plays a crucial role in the pathogenesis of diseases. This study aimed to identify differentially expressed TGF-β-related genes in liver cancer patients and to correlate these findings with clinical features and immune signatures.

Methods:The TCGA-STAD and LIRI-JP cohorts were utilized for a comprehensive analysis of TGF-β- related genes. Differential gene expression, functional enrichment, survival analysis, and machine learning techniques were employed to develop a prognostic model based on a TGF-β-related gene signature (TGFBRS).

Results:We developed a prognostic model for liver cancer based on the expression levels of nine TGF-β- related genes. The model indicates that higher TGFBRS values are associated with poorer prognosis, higher tumor grades, more advanced pathological stages, and resistance to chemotherapy. Additionally, the TGFBRS-High subtype was characterized by elevated levels of immune-suppressive cells and increased expression of immune checkpoint molecules. Using a Gradient Boosting Decision Tree (GBDT) machine learning approach, the FKBP1A gene was identified as playing a significant role in liver cancer. Notably, knocking down FKBP1A significantly inhibited the proliferation and metastatic capabilities of liver cancer cells both in vitro and in vivo.

Conclusion:Our study highlights the potential of TGFBRS in predicting chemotherapy responses and in shaping the tumor immune microenvironment in liver cancer. The results identify FKBP1A as a promising molecular target for developing preventive and therapeutic strategies against liver cancer. Our findings could potentially guide personalized treatment strategies to improve the prognosis of liver cancer patients.

About the authors

Weimei Chen

Department of Blood Transfusion, Longyan First Affiliated Hospital of Fujian Medical University

Email: info@benthamscience.net

Qinghe Que

Department of Blood Transfusion, Longyan First Affiliated Hospital of Fujian Medical University

Email: info@benthamscience.net

Rongrong Zhong

Department of Emergency, Longyan First Affiliated Hospital of Fujian Medical University

Email: info@benthamscience.net

Zhou Lin

Department of Burn Plastic Surgery and Wound Repair Surgery, Longyan First Affiliated Hospital of Fujian Medical University

Email: info@benthamscience.net

Qiaolan Yi

Department of Clinical Laboratory, Longyan First Affiliated Hospital of Fujian Medical University

Email: info@benthamscience.net

Qingshui Wang

Second Affiliated Hospital of Fujian University of Traditional Chinese Medical University Medicine, Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine

Author for correspondence.
Email: info@benthamscience.net

References

  1. Sahin TK, Rizzo A, Aksoy S, Guven DC. Prognostic significance of the Royal Marsden Hospital (RMH) score in patients with cancer: A systematic review and meta-analysis. Cancers 2024; 16(10): 1835. doi: 10.3390/cancers16101835 PMID: 38791914
  2. Anwanwan D, Singh SK, Singh S, Saikam V, Singh R. Challenges in liver cancer and possible treatment approaches. Biochim Biophys Acta Rev Cancer 2020; 1873(1): 188314. doi: 10.1016/j.bbcan.2019.188314 PMID: 31682895
  3. Li X, Ramadori P, Pfister D, Seehawer M, Zender L, Heikenwalder M. The immunological and metabolic landscape in primary and metastatic liver cancer. Nat Rev Cancer 2021; 21(9): 541-57. doi: 10.1038/s41568-021-00383-9 PMID: 34326518
  4. Blagotinsek K, Rozman D. Targeting signalling pathways in hepatocellular carcinoma. Curr Pharm Des 2017; 23(1): 170-5. PMID: 27719638
  5. Gupta M, Chandan K, Sarwat M. Role of microRNA and long non-coding RNA in hepatocellular carcinoma. Curr Pharm Des 2020; 26(4): 415-28. doi: 10.2174/1381612826666200115093835 PMID: 31939724
  6. Rizzo A, Ricci AD, Brandi G. Trans-arterial chemoembolization plus systemic treatments for hepatocellular carcinoma: An update. J Pers Med 2022; 12(11): 1788. doi: 10.3390/jpm12111788 PMID: 36579504
  7. Rizzo A, Dadduzio V, Ricci AD, et al. Lenvatinib plus pembrolizumab: The next frontier for the treatment of hepatocellular carcinoma? Expert Opin Investig Drugs 2022; 31(4): 371-8. doi: 10.1080/13543784.2021.1948532 PMID: 34167433
  8. Guven DC, Sahin TK, Erul E, et al. The association between albumin levels and survival in patients treated with immune checkpoint inhibitors: A systematic review and meta-analysis. Front Mol Biosci 2022; 9: 1039121. doi: 10.3389/fmolb.2022.1039121 PMID: 36533070
  9. Rizzo A, Mollica V, Tateo V, et al. Hypertransaminasemia in cancer patients receiving immunotherapy and immune-based combinations: The MOUSEION-05 study. Cancer Immunol Immunother 2023; 72(6): 1381-94. doi: 10.1007/s00262-023-03366-x PMID: 36695827
  10. Koller F, Geevarghese S, Gorden D. Liver transplantation for hepatocellular carcinoma: Current role and future opportunities. Curr Pharm Des 2007; 13(32): 3265-73. doi: 10.2174/138161207782360591 PMID: 18045177
  11. Rongrui L, Na H, Zongfang L, Fanpu J, Shiwen J. Epigenetic mechanism involved in the HBV/HCV-related hepatocellular carcinoma tumorigenesis. Curr Pharm Des 2014; 20(11): 1715-25. doi: 10.2174/13816128113199990533 PMID: 23888939
  12. Tommasi S, Pinto R, Pilato B, Paradiso A. Molecular pathways and related target therapies in liver carcinoma. Curr Pharm Des 2007; 13(32): 3279-87. doi: 10.2174/138161207782360663 PMID: 18045179
  13. Shen J, Wu WK, Ren SX, et al. miRNAs in gastrointestinal and liver cancers: Their perspectives and clinical applications. Curr Pharm Des 2013; 19(7): 1301-10. PMID: 23092341
  14. Jang MK, Kim H, Chung YH. Clinical aspects of tumor necrosis factor-α signaling in hepatocellular carcinoma. Curr Pharm Des 2014; 20(17): 2799-808. doi: 10.2174/13816128113199990587 PMID: 23944370
  15. Breinig M, Schirmacher P, Kern M. Cyclooxygenase-2 (COX-2) -a therapeutic target in liver cancer? Curr Pharm Des 2007; 13(32): 3305-15. doi: 10.2174/138161207782360627 PMID: 18045183
  16. Peng D, Fu M, Wang M, Wei Y, Wei X. Targeting TGF-β signal transduction for fibrosis and cancer therapy. Mol Cancer 2022; 21(1): 104. doi: 10.1186/s12943-022-01569-x PMID: 35461253
  17. Morikawa M, Derynck R, Miyazono K. TGF-β and the TGF-β family: Context-dependent roles in cell and tissue physiology. Cold Spring Harb Perspect Biol 2016; 8(5): a021873. doi: 10.1101/cshperspect.a021873 PMID: 27141051
  18. Larson C, Oronsky B, Carter CA, et al. TGF-beta: A master immune regulator. Expert Opin Ther Targets 2020; 24(5): 427-38. doi: 10.1080/14728222.2020.1744568 PMID: 32228232
  19. Yang L, Pang Y, Moses HL. TGF-β and immune cells: An important regulatory axis in the tumor microenvironment and progression. Trends Immunol 2010; 31(6): 220-7. doi: 10.1016/j.it.2010.04.002 PMID: 20538542
  20. Bierie B, Moses H. TGF-β and cancer. Cytokine Growth Factor Rev 2006; 17(1-2): 29-40. doi: 10.1016/j.cytogfr.2005.09.006 PMID: 16289860
  21. Reichl P, Haider C, Grubinger M, Mikulits W. TGF-β in epithelial to mesenchymal transition and metastasis of liver carcinoma. Curr Pharm Des 2012; 18(27): 4135-47. doi: 10.2174/138161212802430477 PMID: 22630087
  22. Zi Z. Molecular engineering of the TGF-β signaling pathway. J Mol Biol 2019; 431(15): 2644-54. doi: 10.1016/j.jmb.2019.05.022 PMID: 31121181
  23. Dai X, Hua D, Lu X. Roles of TGF-β in cancer hallmarks and emerging onco-therapeutic design. Expert Rev Mol Med 2022; 24: e42. doi: 10.1017/erm.2022.37 PMID: 36345661
  24. Katsuno Y, Lamouille S, Derynck R. TGF-β signaling and epithelial-mesenchymal transition in cancer progression. Curr Opin Oncol 2013; 25(1): 76-84. doi: 10.1097/CCO.0b013e32835b6371 PMID: 23197193
  25. Meulmeester E, ten Dijke P. The dynamic roles of TGF-β in cancer. J Pathol 2011; 223(2): 206-19. doi: 10.1002/path.2785 PMID: 20957627
  26. Wang Q, Liu J, Li R, et al. Assessing the role of programmed cell death signatures and related gene TOP2A in progression and prognostic prediction of clear cell renal cell carcinoma. Cancer Cell Int 2024; 24(1): 164. doi: 10.1186/s12935-024-03346-w PMID: 38730293
  27. Liu CJ, Hu FF, Xia MX, Han L, Zhang Q, Guo AY. GSCALite: A web server for gene set cancer analysis. Bioinformatics 2018; 34(21): 3771-2. doi: 10.1093/bioinformatics/bty411 PMID: 29790900
  28. Xu L, Ye Y, Sun Y, et al. Low FNDC5/Irisin expression is associated with aggressive phenotypes in gastric cancer. Front Pharmacol 2022; 13: 981201. doi: 10.3389/fphar.2022.981201 PMID: 36386179
  29. Wang Q, Weng S, Sun Y, et al. High DAPK1 expression promotes tumor metastasis of gastric cancer. Biology (Basel) 2022; 11(10): 11. doi: 10.3390/genes14010011 PMID: 36290392
  30. Yu L, Lin N, Ye Y, et al. Prognostic and chemotherapeutic response prediction by proliferation essential gene signature: Investigating POLE2 in bladder cancer progression and cisplatin resistance. J Cancer 2024; 15(6): 1734-49. doi: 10.7150/jca.93023 PMID: 38370377
  31. Zhong W, Liu H, Li F, et al. Elevated expression of LIF predicts a poor prognosis and promotes cell migration and invasion of clear cell renal cell carcinoma. Front Oncol 2022; 12: 934128. doi: 10.3389/fonc.2022.934128 PMID: 35992780
  32. Deng Z, Fan T, Xiao C, et al. TGF-β signaling in health, disease, and therapeutics. Signal Transduct Target Ther 2024; 9(1): 61. doi: 10.1038/s41392-024-01764-w PMID: 38514615
  33. Clark DA, Coker R. Molecules in focus transforming growth factor-beta (TGF-β). Int J Biochem Cell Biol 1998; 30(3): 293-8. doi: 10.1016/S1357-2725(97)00128-3 PMID: 9611771
  34. Moses HL, Roberts AB, Derynck R. The discovery and early days of TGF-β: A historical perspective. Cold Spring Harb Perspect Biol 2016; 8(7): a021865. doi: 10.1101/cshperspect.a021865 PMID: 27328871
  35. Akhurst RJ, Derynck R. TGF-β signaling in cancer - A double-edged sword. Trends Cell Biol 2001; 11(11): S44-51. doi: 10.1016/S0962-8924(01)02130-4 PMID: 11684442
  36. Drabsch Y, ten Dijke P. TGF-β signalling and its role in cancer progression and metastasis. Cancer Metastasis Rev 2012; 31(3-4): 553-68. doi: 10.1007/s10555-012-9375-7 PMID: 22714591
  37. Guo W, Liu H, Yan Y, et al. Targeting the TGF-β signaling pathway: An updated patent review (2021-present). Expert Opin Ther Pat 2021; 34: 99-126.
  38. Santerre K, Cortez Ghio S, Proulx S. TGF-β-mediated modulation of cell-cell interactions in postconfluent maturing corneal endothelial cells. Invest Ophthalmol Vis Sci 2022; 63(11): 3. doi: 10.1167/iovs.63.11.3 PMID: 36194422
  39. Ito N, Kawata S, Tamura S, et al. Elevated levels of transforming growth factor beta messenger RNA and its polypeptide in human hepatocellular carcinoma. Cancer Res 1991; 51(15): 4080-3. PMID: 1649698
  40. Jiang Y, Sun A, Zhao Y, et al. Proteomics identifies new therapeutic targets of early-stage hepatocellular carcinoma. Nature 2019; 567(7747): 257-61. doi: 10.1038/s41586-019-0987-8 PMID: 30814741
  41. Li L, Guo L, Wang Q, et al. DAPK1 as an independent prognostic marker in liver cancer. PeerJ 2017; 5: e3568. doi: 10.7717/peerj.3568 PMID: 28740751
  42. Lin Y, Zhong W, Lin Q, et al. SFPQ promotes the proliferation, migration and invasion of hepatocellular carcinoma cells and is associated with poor prognosis. Am J Cancer Res 2023; 13(6): 2269-84. PMID: 37424798
  43. Tao H, Weng S, Xu L, et al. Target-triggered assembly of plasmon resonance nanostructures for quantitative detection of lncRNA in liver cancer cells via surface enhanced Raman spectroscopy. Biosens Bioelectron 2024; 261: 116488. doi: 10.1016/j.bios.2024.116488 PMID: 38905860
  44. Huang Y, Wang C, Li K, et al. Death-associated protein kinase 1 suppresses hepatocellular carcinoma cell migration and invasion by upregulation of DEAD-box helicase 20. Cancer Sci 2020; 111(8): 2803-13. doi: 10.1111/cas.14499 PMID: 32449268
  45. Shirai Y, Kawata S, Tamura S, et al. Plasma transforming growth factor-β1 in patients with hepatocellular carcinoma. Comparison with chronic liver diseases. Cancer 1994; 73(9): 2275-9. doi: 10.1002/1097-0142(19940501)73:93.0.CO;2-T PMID: 7513247
  46. Song BC, Chung YH, Kim JA, et al. Transforming growth factor-β1 as a useful serologic marker of small hepatocellular carcinoma. Cancer 2002; 94(1): 175-80. doi: 10.1002/cncr.10170 PMID: 11815974
  47. Lin TH, Shao YY, Chan SY, Huang CY, Hsu CH, Cheng AL. High serum transforming growth factor-β1 levels predict outcome in hepatocellular carcinoma patients treated with sorafenib. Clin Cancer Res 2015; 21(16): 3678-84. doi: 10.1158/1078-0432.CCR-14-1954 PMID: 25977342
  48. Tu S, Huang W, Huang C, Luo Z, Yan X. Contextual regulation of TGF-β signaling in liver cancer. Cells 2019; 8(10): 1235. doi: 10.3390/cells8101235 PMID: 31614569
  49. Zhen J, Pan J, Zhou X, et al. FARSB serves as a novel hypomethylated and immune cell infiltration related prognostic biomarker in hepatocellular carcinoma. Aging (Albany NY) 2023; 15(8): 2937-69. doi: 10.18632/aging.204619 PMID: 37074800
  50. Zadjali F, Al-Yahyaee A, Al-Nabhani M, et al. Homozygosity for FARSB mutation leads to Phe-tRNA synthetase-related disease of growth restriction, brain calcification, and interstitial lung disease. Hum Mutat 2018; 39(10): 1355-9. doi: 10.1002/humu.23595 PMID: 30014610
  51. Krenke K, Szczałuba K, Bielecka T, et al. FARSA mutations mimic phenylalanyl-tRNA synthetase deficiency caused by FARSB defects. Clin Genet 2019; 96(5): 468-72. doi: 10.1111/cge.13614 PMID: 31355908
  52. Antonellis A, Oprescu SN, Griffin LB, Heider A, Amalfitano A, Innis JW. Compound heterozygosity for loss-of-function FARSB variants in a patient with classic features of recessive aminoacyl-tRNA synthetase-related disease. Hum Mutat 2018; 39(6): 834-40. doi: 10.1002/humu.23424 PMID: 29573043
  53. Wang Y, Wang G, Hu S, et al. FARSB facilitates hepatocellular carcinoma progression by activating the mTORC1 signaling pathway. Int J Mol Sci 2023; 24(23): 16709. doi: 10.3390/ijms242316709 PMID: 38069034
  54. Zhang Y, Xu H, Pi S, Tan H, Huang B, Chen Y. The prognostic and immunological role of FKBP1A in an integrated muti-omics cancers analysis, especially lung cancer. J Cancer Res Clin Oncol 2023; 149(18): 16589-608. doi: 10.1007/s00432-023-05362-1 PMID: 37715833
  55. Sabbah DA, Hajjo R, Sweidan K. Review on Epidermal Growth Factor Receptor (EGFR) structure, signaling pathways, interactions, and recent updates of EGFR inhibitors. Curr Top Med Chem 2020; 20(10): 815-34. doi: 10.2174/1568026620666200303123102 PMID: 32124699
  56. Rude Voldborg B, Damstrup L, Spang-Thomsen M, Skovgaard Poulsen H. Epidermal growth factor receptor (EGFR) and EGFR mutations, function and possible role in clinical trials. Ann Oncol 1997; 8(12): 1197-206. doi: 10.1023/A:1008209720526 PMID: 9496384
  57. Talukdar S, Emdad L, Das SK, Fisher PB. EGFR: An essential receptor tyrosine kinase-regulator of cancer stem cells. Adv Cancer Res 2020; 147: 161-88. doi: 10.1016/bs.acr.2020.04.003 PMID: 32593400
  58. Zhou J, Tu D, Peng R, et al. RNF173 suppresses RAF/MEK/ERK signaling to regulate invasion and metastasis via GRB2 ubiquitination in hepatocellular carcinoma. Cell Commun Signal 2023; 21(1): 224. doi: 10.1186/s12964-023-01241-x PMID: 37626338
  59. Ijaz M, Wang F, Shahbaz M, Jiang W, Fathy AH, Nesa EU. The role of Grb2 in cancer and peptides as Grb2 antagonists. Protein Pept Lett 2018; 24(12): 1084-95. PMID: 29173143
  60. Tari A, Lopez-Berestein G. GRB2: A pivotal protein in signal transduction. Semin Oncol 2001; 28(5) (Suppl. 16): 142-7. doi: 10.1016/S0093-7754(01)90291-X PMID: 11706405
  61. Wang D, Liu G, Meng Y, Chen H, Ye Z, Jing J. The configuration of GRB2 in protein interaction and signal transduction. Biomolecules 2024; 14(3): 259. doi: 10.3390/biom14030259 PMID: 38540680
  62. Lin CC, Wieteska L, Suen KM, Kalverda AP, Ahmed Z, Ladbury JE. Grb2 binding induces phosphorylation-independent activation of Shp2. Commun Biol 2021; 4(1): 437. doi: 10.1038/s42003-021-01969-7 PMID: 33795832
  63. Wu X, Wang H, Lian Y, et al. GTSE1 promotes cell migration and invasion by regulating EMT in hepatocellular carcinoma and is associated with poor prognosis. Sci Rep 2017; 7(1): 5129. doi: 10.1038/s41598-017-05311-2 PMID: 28698581
  64. Xie HJ, Noh JH, Kim JK, et al. HDAC1 inactivation induces mitotic defect and caspase-independent autophagic cell death in liver cancer. PLoS One 2012; 7(4): e34265. doi: 10.1371/journal.pone.0034265 PMID: 22496786
  65. Sun B, Zhong FJ, Xu C, et al. Programmed cell death 10 promotes metastasis and epithelial-mesenchymal transition of hepatocellular carcinoma via PP2Ac-mediated YAP activation. Cell Death Dis 2021; 12(9): 849. doi: 10.1038/s41419-021-04139-z PMID: 34521817
  66. Sauzeau V, Beignet J, Vergoten G, Bailly C. Overexpressed or hyperactivated Rac1 as a target to treat hepatocellular carcinoma. Pharmacol Res 2022; 179: 106220. doi: 10.1016/j.phrs.2022.106220 PMID: 35405309
  67. Liu J, Zhao K, Wu S, et al. The dual role of PDCD10 in cancers: A promising therapeutic target. Cancers 2022; 14(23): 5986. doi: 10.3390/cancers14235986 PMID: 36497468
  68. Xu K, Fei W, Huo Z, et al. PDCD10 promotes proliferation, migration, and invasion of osteosarcoma by inhibiting apoptosis and activating EMT pathway. Cancer Med 2023; 12(2): 1673-84. doi: 10.1002/cam4.5025 PMID: 35848121
  69. Peng X, Zhu J, Liu S, et al. Signature construction and molecular subtype identification based on cuproptosis-related genes to predict the prognosis and immune activity of patients with hepatocellular carcinoma. Front Immunol 2022; 13: 990790. doi: 10.3389/fimmu.2022.990790 PMID: 36248822
  70. Tang B, Zhu J, Zhao Z, et al. Diagnosis and prognosis models for hepatocellular carcinoma patient’s management based on tumor mutation burden. J Adv Res 2021; 33: 153-65. doi: 10.1016/j.jare.2021.01.018 PMID: 34603786
  71. Zhou H, Song T. Conversion therapy and maintenance therapy for primary hepatocellular carcinoma. Biosci Trends 2021; 15(3): 155-60. doi: 10.5582/bst.2021.01091 PMID: 34039818
  72. Demir T, Lee SS, Kaseb AO. Systemic therapy of liver cancer. Adv Cancer Res 2021; 149: 257-94. doi: 10.1016/bs.acr.2020.12.001 PMID: 33579425
  73. Wang J, Gong R, Zhao C, Lei K, Sun X, Ren H. Human FOXP3 and tumour microenvironment. Immunology 2023; 168(2): 248-55. doi: 10.1111/imm.13520 PMID: 35689826
  74. Kim CH. FOXP3 and its role in the immune system. Adv Exp Med Biol 2009; 665: 17-29. doi: 10.1007/978-1-4419-1599-3_2 PMID: 20429413
  75. Saito T, Nishikawa H, Wada H, et al. Two FOXP3+CD4+ T cell subpopulations distinctly control the prognosis of colorectal cancers. Nat Med 2016; 22(6): 679-84. doi: 10.1038/nm.4086 PMID: 27111280
  76. Ziółkowska-Suchanek I, Żurawek M. FOXP3: A player of immunogenetic architecture in lung cancer. Genes 2024; 15(4): 493. doi: 10.3390/genes15040493 PMID: 38674427
  77. Mailer RKW. Alternative splicing of FOXP3-virtue and vice. Front Immunol 2018; 9: 530. doi: 10.3389/fimmu.2018.00530 PMID: 29593749

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers