Effects of CYP3A5 Genetic Polymorphisms on the Weight-adjusted through Concentration of Sirolimus in Renal Transplant Recipients: A Systematic Review and Meta-analysis


如何引用文章

全文:

详细

Background:Sirolimus, one of the immunosuppressive drugs administered to renal transplant recipients, is metabolized by cytochrome P450 (CYP) 3A5. Accordingly, CYP3A5 polymorphism is a genetic factor affecting sirolimus pharmacokinetics (PK). Therefore, we conducted a systematic review and meta-analysis on the association between sirolimus PK and CYP3A5*3 polymorphism.

Methods:We searched for studies published up to 13 June 2024 from PubMed, Embase, Cochrane Library, and Web of Science. We reviewed studies on the relationship between CYP3A5*3 polymorphism and weightadjusted trough concentration/dose (C0 /D) ratio and dosage of sirolimus in renal transplant recipients, according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. We evaluated mean differences (MDs) and 95% confidence intervals (CIs).

Results:A total of seven studies were included. The weight-adjusted C0 /D ratio of sirolimus was significantly higher in patients with the CYP3A5*3/*3 rather than CYP3A5*1/*1 or CYP3A5*1/*3 genotype (MD 95.27 ng/mL per mg/kg; 95% CI: 58.06, 132.47; I2 = 74%; p < 0.00001). Also, the weight-adjusted dosage of sirolimus was significantly lower in patients with the CYP3A5*3/*3 rather than CYP3A5*1/*1 or CYP3A5*1/*3 genotype (MD -2.60 × 10-3 mg/kg; 95% CI: -4.52, -0.69; I2 = 44%; p = 0.008).

Conclusion:Our meta-analysis showed a significant effect for the CYP3A5*3 genotype on weight-adjusted C0 /D ratio and dosage of sirolimus in adult renal transplant recipients.

作者简介

Yoon-A Park

College of Pharmacy and Graduate School of Pharmaceutical Sciences,, Ewha Womans University

Email: info@benthamscience.net

Juyeong Park

College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University

Email: info@benthamscience.net

Jeong Yee

School of Pharmacy, Sungkyunkwan University

编辑信件的主要联系方式.
Email: info@benthamscience.net

Hye Gwak

College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University

编辑信件的主要联系方式.
Email: info@benthamscience.net

参考

  1. Suthanthiran M, Strom TB. Renal transplantation. N Engl J Med 1994; 331(6): 365-76. doi: 10.1056/NEJM199408113310606 PMID: 7832839
  2. Chadban SJ, Ahn C, Axelrod DA, et al. Summary of the kidney disease: Improving global outcomes (KDIGO) clinical practice guideline on the evaluation and management of candidates for kidney transplantation. Transplantation 2020; 104(4): 708-14. doi: 10.1097/TP.0000000000003137 PMID: 32224812
  3. Oweira H, Ramouz A, Ghamarnejad O, et al. Risk factors of rejection in renal transplant recipients: A narrative review. J Clin Med 2022; 11(5): 1392. doi: 10.3390/jcm11051392 PMID: 35268482
  4. Halloran PF. Immunosuppressive drugs for kidney transplantation. N Engl J Med 2004; 351(26): 2715-29. doi: 10.1056/NEJMra033540 PMID: 15616206
  5. Denton MD, Magee CC, Sayegh MH. Immunosuppressive strategies in transplantation. Lancet 1999; 353(9158): 1083-91. doi: 10.1016/S0140-6736(98)07493-5 PMID: 10199367
  6. Bauer AC, Franco RF, Manfro RC. Immunosuppression in kidney transplantation: State of the art and current protocols. Curr Pharm Des 2020; 26(28): 3440-50. doi: 10.2174/1381612826666200521142448 PMID: 32436821
  7. Augustine JJ, Bodziak KA, Hricik DE. Use of sirolimus in solid organ transplantation. Drugs 2007; 67(3): 369-91. doi: 10.2165/00003495-200767030-00004 PMID: 17335296
  8. Kahan BD. Efficacy of sirolimus compared with azathioprine for reduction of acute renal allograft rejection: A randomised multicentre study. Lancet 2000; 356(9225): 194-202. doi: 10.1016/S0140-6736(00)02480-6 PMID: 10963197
  9. Kelly PA, Gruber SA, Behbod F, Kahan BD. Sirolimus, a new, potent immunosuppressive agent. Pharmacotherapy 1997; 17(6): 1148-56. doi: 10.1002/j.1875-9114.1997.tb03080.x PMID: 9399599
  10. Panwar V, Singh A, Bhatt M, et al. Multifaceted role of mTOR (mammalian target of rapamycin) signaling pathway in human health and disease. Signal Transduct Target Ther 2023; 8(1): 375. doi: 10.1038/s41392-023-01608-z PMID: 37779156
  11. Stenton SB, Partovi N, Ensom MHH. Sirolimus. Clin Pharmacokinet 2005; 44(8): 769-86. doi: 10.2165/00003088-200544080-00001 PMID: 16029064
  12. Zimmerman KO, Wu H, Greenberg R, et al. Therapeutic drug monitoring, electronic health records, and pharmacokinetic modeling to evaluate sirolimus drug exposure-response relationships in renal transplant patients. Ther Drug Monit 2016; 38(5): 600-6. doi: 10.1097/FTD.0000000000000313 PMID: 27259059
  13. Product Information: RAPAMUNE(R) oral solution, oral tablets, sirolimus oral solution, oral tablets. Wyeth Pharmaceuticals Inc. (per FDA), Philadelphia, PA. 2013. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/021083s059,021110s076lbl.pdf Accessed 15 June 2024.
  14. Kahan BD, Napoli KL, Kelly PA, et al. Therapeutic drug monitoring of sirolimus: Correlations with efficacy and toxicity. Clin Transplant 2000; 14(2): 97-109. doi: 10.1034/j.1399-0012.2000.140201.x PMID: 10770413
  15. MacDonald A, Scarola J, Burke JT, Zimmerman JJ. Clinical pharmacokinetics and therapeutic drug monitoring of sirolimus. Clin Ther 2000; 22(Suppl B): B101-121. doi: 10.1016/S0149-2918(00)89027-X
  16. Hardinger KL, Koch MJ, Brennan DC. Current and future immunosuppressive strategies in renal transplantation. Pharmacotherapy 2004; 24(9): 1159-76. doi: 10.1592/phco.24.13.1159.38094 PMID: 15460177
  17. Holt DW, Johnston A. Monitoring immunosuppressive drugs. In: Hempel G, Ed. Drug Monitoring and Clinical Chemistry. Amsterdam, The Netherlands: Elsevier 2004; pp. 273-96. doi: 10.1016/S1567-7192(04)80012-3
  18. Cummins CL, Jacobsen W, Christians U, Benet LZ. CYP3A4- transfected Caco-2 cells as a tool for understanding biochemical absorption barriers: Studies with sirolimus and midazolam. J Pharmacol Exp Ther 2004; 308(1): 143-55. doi: 10.1124/jpet.103.058065 PMID: 14569063
  19. Lampen A, Zhang Y, Hackbarth I, Benet LZ, Sewing KF, Christians U. Metabolism and transport of the macrolide immunosuppressant sirolimus in the small intestine. J Pharmacol Exp Ther 1998; 285(3): 1104-12. PMID: 9618413
  20. Monchaud C, Marquet P. Pharmacokinetic optimization of immunosuppressive therapy in thoracic transplantation: Part II. Clin Pharmacokinet 2009; 48(8): 489-516. doi: 10.2165/11317240-000000000-00000 PMID: 19705921
  21. Tamashiro EY, Felipe CR, Genvigir FDV, et al. Influence of CYP3A4 and CYP3A5 polymorphisms on tacrolimus and sirolimus exposure in stable kidney transplant recipients. Drug Metab Pers Ther 2017; 32(2): 89-95. doi: 10.1515/dmpt-2016-0036 PMID: 28593920
  22. Lolita L, Zheng M, Zhang X, et al. The genetic polymorphism of CYP3A4 rs2242480 is associated with sirolimus trough concentrations among adult renal transplant recipients. Curr Drug Metab 2020; 21(13): 1052-9. doi: 10.2174/1389200221999201027203401 PMID: 33115392
  23. Bruckmueller H, Cascorbi I. ABCB1, ABCG2, ABCC1, ABCC2, and ABCC3 drug transporter polymorphisms and their impact on drug bioavailability: What is our current understanding? Expert Opin Drug Metab Toxicol 2021; 17(4): 369-96. doi: 10.1080/17425255.2021.1876661 PMID: 33459081
  24. Anglicheau D, Pallet N, Rabant M, et al. Role of P-glycoprotein in cyclosporine cytotoxicity in the cyclosporine-sirolimus interaction. Kidney Int 2006; 70(6): 1019-25. doi: 10.1038/sj.ki.5001649 PMID: 16837925
  25. Shao S, Hu L, Han Z, et al. The effect of ABCB1 polymorphism on sirolimus in renal transplant recipients: A meta-analysis. Transl Androl Urol 2020; 9(2): 673-83. doi: 10.21037/tau.2020.03.42 PMID: 32420174
  26. Wu MJ, Shu KH, Lian JD, Yang CR, Cheng CH, Chen CH. Impact of variability of sirolimus trough level on chronic allograft nephropathy. Transplant Proc 2008; 40(7): 2202-5. doi: 10.1016/j.transproceed.2008.07.029 PMID: 18790192
  27. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021; 372(71): n71. doi: 10.1136/bmj.n71 PMID: 33782057
  28. The Newcastle-ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Available from: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp Accessed 15 June 2024.
  29. Higgins JPT, Thompson SG. Quantifying heterogeneity in a meta- analysis. Stat Med 2002; 21(11): 1539-58. doi: 10.1002/sim.1186 PMID: 12111919
  30. Anglicheau D, Corre DL, Lechaton S, et al. Consequences of genetic polymorphisms for sirolimus requirements after renal transplant in patients on primary sirolimus therapy. Am J Transplant 2005; 5(3): 595-603. doi: 10.1111/j.1600-6143.2005.00745.x PMID: 15707415
  31. Lee J, Huang H, Chen Y, Lu X. ABCB1 haplotype influences the sirolimus dose requirements in Chinese renal transplant recipients. Biopharm Drug Dispos 2014; 35(3): 164-72. doi: 10.1002/bdd.1881 PMID: 24285256
  32. Li Y, Yan L, Shi Y, Bai Y, Tang J, Wang L. CYP3A5 and ABCB1 genotype influence tacrolimus and sirolimus pharmacokinetics in renal transplant recipients. Springerplus 2015; 4(1-6): 637. doi: 10.1186/s40064-015-1425-5 PMID: 26543771
  33. Miao LY, Huang CR, Hou JQ, Qian MY. Association study of ABCB1 and CYP3A5 gene polymorphisms with sirolimus trough concentration and dose requirements in Chinese renal transplant recipients. Biopharm Drug Dispos 2008; 29(1): 1-5. doi: 10.1002/bdd.577 PMID: 17941052
  34. Mourad M, Mourad G, Wallemacq P, et al. Sirolimus and tacrolimus trough concentrations and dose requirements after kidney transplantation in relation to CYP3A5 and MDR1 polymorphisms and steroids. Transplantation 2005; 80(7): 977-84. doi: 10.1097/01.TP.0000174131.47469.D2 PMID: 16249748
  35. Rodríguez-Jiménez C, García-Saiz M, Pérez-Tamajón L, Salido E, Torres A. Influence of genetic polymorphisms of CYP3A5 and ABCB1 on sirolimus pharmacokinetics, patient and graft survival and other clinical outcomes in renal transplant. Drug Metab Pers Ther 2017; 32(1): 49-58. doi: 10.1515/dmpt-2016-0040 PMID: 28245187
  36. Pączek L, Wyzgał J, Pączek L. Impact of CYP3A4*1B and CYP3A5*3 polymorphisms on the pharmacokinetics of cyclosporine and sirolimus in renal transplant recipients. Ann Transplant 2012; 17(3): 36-44. doi: 10.12659/AOT.883456 PMID: 23018254
  37. Khan AR, Raza A, Firasat S, Abid A. CYP3A5 gene polymorphisms and their impact on dosage and trough concentration of tacrolimus among kidney transplant patients: A systematic review and meta-analysis. Pharmacogenomics J 2020; 20(4): 553-62. doi: 10.1038/s41397-019-0144-7 PMID: 31902947
  38. Rojas L, Neumann I, Herrero MJ, et al. Effect of CYP3A5*3 on kidney transplant recipients treated with tacrolimus: A systematic review and meta-analysis of observational studies. Pharmacogenomics J 2015; 15(1): 38-48. doi: 10.1038/tpj.2014.38 PMID: 25201288
  39. Zhu HJ, Yuan SH, Fang Y, Sun XZ, Kong H, Ge WH. The effect of CYP3A5 polymorphism on dose-adjusted cyclosporine concentration in renal transplant recipients: A meta-analysis. Pharmacogenomics J 2011; 11(3): 237-46. doi: 10.1038/tpj.2010.26 PMID: 20368718
  40. Zhang J, Dai Y, Liu Z, et al. Effect of CYP3A4 and CYP3A5 genetic polymorphisms on the pharmacokinetics of sirolimus in healthy chinese volunteers. Ther Drug Monit 2017; 39(4): 406-11. doi: 10.1097/FTD.0000000000000415 PMID: 28700521
  41. Renders L, Frisman M, Ufer M, et al. CYP3A5 genotype markedly influences the pharmacokinetics of tacrolimus and sirolimus in kidney transplant recipients. Clin Pharmacol Ther 2007; 81(2): 228-34. doi: 10.1038/sj.clpt.6100039 PMID: 17192769
  42. Emoto C, Fukuda T, Venkatasubramanian R, Vinks AA. The impact of CYP3A5*3 polymorphism on sirolimus pharmacokinetics: Insights from predictions with a physiologically-based pharmacokinetic model. Br J Clin Pharmacol 2015; 80(6): 1438-46. doi: 10.1111/bcp.12743 PMID: 26256674
  43. Djebli N, Rousseau A, Hoizey G, et al. Sirolimus population pharmacokinetic/pharmacogenetic analysis and bayesian modelling in kidney transplant recipients. Clin Pharmacokinet 2006; 45(11): 1135-48. doi: 10.2165/00003088-200645110-00007 PMID: 17048977
  44. Lukas JC, Calvo R, Zografidis A, Ortega I, Suárez E. Simulation of sirolimus exposures and population variability immediately post renal transplantation: Importance of the patient’s CYP3A5 genotype in tailoring treatment. Biopharm Drug Dispos 2010; 31(2-3): 129-37. doi: 10.1002/bdd.697 PMID: 20155737
  45. Khaled SK, Palmer JM, Herzog J, et al. Influence of absorption, distribution, metabolism, and excretion genomic variants on tacrolimus/sirolimus blood levels and graft-versus-host disease after allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant 2016; 22(2): 268-76. doi: 10.1016/j.bbmt.2015.08.027 PMID: 26325438
  46. Hakeam HA, Al-Jedai AH, Raza SM, Hamawi K. Sirolimus induced dyslipidemia in tacrolimus based vs. tacrolimus free immunosuppressive regimens in renal transplant recipients. Ann Transplant 2008; 13(2): 46-53. PMID: 18566560
  47. Ma KL, Ruan XZ, Powis SH, Chen Y, Moorhead JF, Varghese Z. Sirolimus modifies cholesterol homeostasis in hepatic cells: A potential molecular mechanism for sirolimus-associated dyslipidemia. Transplantation 2007; 84(8): 1029-36. doi: 10.1097/01.tp.0000286095.55685.e9 PMID: 17989609
  48. Sam WJ, Chamberlain CE, Lee SJ, et al. Associations of ABCB1 and IL-10 genetic polymorphisms with sirolimus-induced dyslipidemia in renal transplant recipients. Transplantation 2012; 94(9): 971-7. doi: 10.1097/TP.0b013e31826b55e2 PMID: 23073467
  49. Yang S, Jiang H, Li C, et al. Genomewide association study identifies a novel variant associated with tacrolimus trough concentration in Chinese renal transplant recipients. Clin Transl Sci 2022; 15(11): 2640-51. doi: 10.1111/cts.13388 PMID: 35977080
  50. Liu J, Feng D, Kan X, et al. Polymorphisms in the CYP3A5 gene significantly affect the pharmacokinetics of sirolimus after kidney transplantation. Pharmacogenomics 2021; 22(14): 903-12. doi: 10.2217/pgs-2021-0083 PMID: 34523354

补充文件

附件文件
动作
1. JATS XML

版权所有 © Bentham Science Publishers, 2024