Mechanisms Underlying the Therapeutic Effects of Nicotinamide Mononucleotide in Treating High-fat Diet-induced Hypertrophic Cardiomyopathy based on GEO Datasets, Network Pharmacology, and Molecular Docking

  • Authors: Han Y.1, Wang L.2, Zhang Y.3, Zhou A.3, Wang Z.3, Dong W.1, Wang J.3, Wang T.1, Zou J.4
  • Affiliations:
    1. Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Academy of Nutrition and Health, Institute of Advanced Pharmaceutical Technology, College of Medicine, Wuhan University of Science and Technology
    2. Institute of Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Academy of Nutrition and Health, Institute of Advanced Pharmaceutical Technology, College of Medicine, Pharmaceutical Technology, Academy of Nutrition and Health, Wuhan University of Science and Technology
    3. Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Academy of Nutrition and Health, Institute of Advanced Pharmaceutical Technology, College of Medicine,, Wuhan University of Science and Technology
    4. Department of Pharmacy, Hainan Women and Children's Medical Center
  • Issue: Vol 30, No 38 (2024)
  • Pages: 3054-3070
  • Section: Immunology, Inflammation & Allergy
  • URL: https://vestnikugrasu.org/1381-6128/article/view/645965
  • DOI: https://doi.org/10.2174/0113816128311226240730080713
  • ID: 645965

Cite item

Full Text

Abstract

Background:The beneficial effects of nicotinamide mononucleotide (NMN) on heart disease have been reported, but the effects of NMN on high-fat diet-induced hypertrophic cardiomyopathy (HCM) and its mechanisms of action are unclear. In this study, we systematically explored the effects and mechanism of action of NMN in HCM using network pharmacology and molecular docking.

Methods:Active targets of NMN were obtained from SWISS, CNKI, PubMed, DrugBank, BingingDB, and ZINC databases. HCM-related targets were retrieved from GEO datasets combined with GeneCards, OMIM, PharmGKB, and DisGeNET databases. A Protein-Protein Interaction (PPI) network was built to screen the core targets. DAVID was used for GO and KEGG pathway enrichment analyses. The tissue and organ distribution of targets was evaluated. Interactions between potential targets and active compounds were assessed by molecular docking. A molecular dynamics simulation was conducted for the optimal core protein-compound complexes obtained by molecular docking.

Results:In total, 265 active targets of NMN and 3918 potential targets of HCM were identified. A topological analysis of the PPI network revealed 10 core targets. GO and KEGG pathway enrichment analyses indicated that the effects of NMN were mediated by genes related to inflammation, apoptosis, and oxidative stress, as well as the FOXO and PI3K-Akt signaling pathways. Molecular docking and molecular dynamics simulations revealed good binding ability between the active compounds and screened targets.

Conclusion:The possible targets and pathways of NMN in the treatment of HCM have been successfully predicted by this investigation. It provides a novel approach for further investigation into the molecular processes of NMN in HCM treatment.

About the authors

Yuan-chun Han

Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Academy of Nutrition and Health, Institute of Advanced Pharmaceutical Technology, College of Medicine, Wuhan University of Science and Technology

Email: info@benthamscience.net

Li Wang

Institute of Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Academy of Nutrition and Health, Institute of Advanced Pharmaceutical Technology, College of Medicine, Pharmaceutical Technology, Academy of Nutrition and Health, Wuhan University of Science and Technology

Email: info@benthamscience.net

Yi-dan Zhang

Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Academy of Nutrition and Health, Institute of Advanced Pharmaceutical Technology, College of Medicine,, Wuhan University of Science and Technology

Email: info@benthamscience.net

Ao-jia Zhou

Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Academy of Nutrition and Health, Institute of Advanced Pharmaceutical Technology, College of Medicine,, Wuhan University of Science and Technology

Email: info@benthamscience.net

Zi-ping Wang

Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Academy of Nutrition and Health, Institute of Advanced Pharmaceutical Technology, College of Medicine,, Wuhan University of Science and Technology

Email: info@benthamscience.net

Wen-huan Dong

Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Academy of Nutrition and Health, Institute of Advanced Pharmaceutical Technology, College of Medicine, Wuhan University of Science and Technology

Email: info@benthamscience.net

Jian-peng Wang

Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Academy of Nutrition and Health, Institute of Advanced Pharmaceutical Technology, College of Medicine,, Wuhan University of Science and Technology

Email: info@benthamscience.net

Ting Wang

Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Academy of Nutrition and Health, Institute of Advanced Pharmaceutical Technology, College of Medicine, Wuhan University of Science and Technology

Author for correspondence.
Email: info@benthamscience.net

Jun Zou

Department of Pharmacy, Hainan Women and Children's Medical Center

Author for correspondence.
Email: info@benthamscience.net

References

  1. Ashour MM, Mabrouk M, Aboelnasr MA, Beherei HH, Tohamy KM, Das DB. Anti-obesity drug delivery systems: Recent progress and challenges. Pharmaceutics 2023; 15(11): 2635. doi: 10.3390/pharmaceutics15112635 PMID: 38004612
  2. Relling DP, Esberg LB, Fang CX, et al. High-fat diet-induced juvenile obesity leads to cardiomyocyte dysfunction and upregulation of FOXO3a transcription factor independent of lipotoxicity and apoptosis. J Hypertens 2006; 24(3): 549-61. doi: 10.1097/01.hjh.0000203846.34314.94 PMID: 16467659
  3. Sparks LM, Xie H, Koza RA, et al. A high-fat diet coordinately downregulates genes required for mitochondrial oxidative phosphorylation in skeletal muscle. Diabetes 2005; 54(7): 1926-33. doi: 10.2337/diabetes.54.7.1926 PMID: 15983191
  4. Maron BJ, Maron MS. Hypertrophic cardiomyopathy. Lancet 2013; 381(9862): 242-55. doi: 10.1016/S0140-6736(12)60397-3 PMID: 22874472
  5. Fang CX, Dong F, Thomas DP, Ma H, He L, Ren J. Hypertrophic cardiomyopathy in high-fat diet-induced obesity: Role of suppression of forkhead transcription factor and atrophy gene transcription. Am J Physiol Heart Circ Physiol 2008; 295(3): H1206-15. doi: 10.1152/ajpheart.00319.2008 PMID: 18641278
  6. Liu Y, Gong JS, Marshall G, Su C, Shi JS, Xu ZH. Technology and functional insights into the nicotinamide mononucleotide for human health. Appl Microbiol Biotechnol 2023; 107(15): 4759-75. doi: 10.1007/s00253-023-12612-2 PMID: 37347262
  7. Nakajo T, Kitajima N, Katayoshi T, Tsuji-Naito K. Nicotinamide mononucleotide inhibits oxidative stress-induced damage in a SIRT1/NQO-1-dependent manner. Toxicol In Vitro 2023; 93: 105683. doi: 10.1016/j.tiv.2023.105683 PMID: 37640247
  8. Sano H, Kratz A, Nishino T, et al. Nicotinamide mononucleotide (NMN) alleviates the poly(I:C)-induced inflammatory response in human primary cell cultures. Sci Rep 2023; 13(1): 11765. doi: 10.1038/s41598-023-38762-x PMID: 37474783
  9. Tannous C, Ghali R, Karoui A, et al. Nicotinamide riboside supplementation restores myocardial nicotinamide adenine dinucleotide levels, improves survival, and promotes protective environment post myocardial infarction. Cardiovasc Drugs Ther 2023. Online ahead of print doi: 10.1007/s10557-023-07525-1 PMID: 37999834
  10. Saima , Latha S, Sharma R, Kumar A. Role of network pharmacology in prediction of mechanism of neuroprotective compounds. Methods Mol Biol 2024; 2761: 159-79. doi: 10.1007/978-1-0716-3662-6_13 PMID: 38427237
  11. Luo T, Lu Y, Yan S, Xiao X, Rong X, Guo J. Network pharmacology in research of chinese medicine formula: Methodology, application and prospective. Chin J Integr Med 2020; 26(1): 72-80. doi: 10.1007/s11655-019-3064-0 PMID: 30941682
  12. Gevaert O, Villalobos V, Sikic BI, Plevritis SK. Identification of ovarian cancer driver genes by using module network integration of multi-omics data. Interface Focus 2013; 3(4): 20130013. doi: 10.1098/rsfs.2013.0013 PMID: 24511378
  13. Barrett T, Wilhite SE, Ledoux P, et al. NCBI GEO: Archive for functional genomics data sets-update. Nucleic Acids Res 2013; 41(Database issue): D991-5. PMID: 23193258
  14. Gu S, Xue Y, Gao Y, et al. Mechanisms of indigo naturalis on treating ulcerative colitis explored by GEO gene chips combined with network pharmacology and molecular docking. Sci Rep 2020; 10(1): 15204. doi: 10.1038/s41598-020-71030-w PMID: 32938944
  15. Rebhan M, Chalifa-Caspi V, Prilusky J, Lancet D. GeneCards: Integrating information about genes, proteins and diseases. Trends Genet 1997; 13(4): 163. doi: 10.1016/S0168-9525(97)01103-7 PMID: 9097728
  16. Karim MR, Morshed MN, Iqbal S, et al. A network pharmacology and molecular-docking-based approach to identify the probable targets of short-chain fatty-acid-producing microbial metabolites against kidney cancer and inflammation. Biomolecules 2023; 13(11): 1678. doi: 10.3390/biom13111678 PMID: 38002360
  17. Zhou R, Zhao Z, Liu J, Liu M, Xie F. Efficacy and safety of iloprost in the treatment of pulmonary arterial hypertension: A systematic review and meta-analysis. Heart Lung 2024; 64: 36-45. doi: 10.1016/j.hrtlng.2023.11.006 PMID: 37992575
  18. Marcus B, Marynen F, Fieuws S, Van Beersel D, Rega F, Rex S. The perioperative use of inhaled prostacyclins in cardiac surgery: A systematic review and meta-analysis. Can J Anaesth 2023; 70(8): 1381-93. doi: 10.1007/s12630-023-02520-4 PMID: 37380903
  19. Bakhsh T, Abuzahrah SS, Qahl SH, Akela MA, Rather IA. Sugiol masters apoptotic precision to halt gastric cancer cell proliferation. Pharmaceuticals 2023; 16(11): 1528. doi: 10.3390/ph16111528 PMID: 38004394
  20. Wang Y, Li X, Dou P, Qiao T, Chang Y. Antiepileptic therapy of Abrus cantoniensis: Evidence from network pharmacology. Evid Based Complement Alternat Med 2022; 2022: 1-12. doi: 10.1155/2022/7748787 PMID: 35707480
  21. Szklarczyk D, Morris JH, Cook H, et al. The STRING database in 2017: Quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res 2017; 45(D1): D362-8. doi: 10.1093/nar/gkw937 PMID: 27924014
  22. Waheed A, Rai MF. Osteoarthritis year in review 2023: Genetics, genomics, and epigenetics. Osteoarthritis Cartilage 2024; 32(2): 128-37. doi: 10.1016/j.joca.2023.11.006 PMID: 37979669
  23. Shannon P, Markiel A, Ozier O, et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res 2003; 13(11): 2498-504. doi: 10.1101/gr.1239303 PMID: 14597658
  24. Loganathan Y, Jain M, Thiyagarajan S, et al. An in silico evaluation of phytocompounds from Albizia amara and Phyla nodiflora as cyclooxygenase-2 enzyme inhibitors. Daru 2021; 29(2): 311-20. doi: 10.1007/s40199-021-00408-6 PMID: 34415547
  25. Sherman BT, Huang DW, Tan Q, et al. DAVID Knowledgebase: A gene-centered database integrating heterogeneous gene annotation resources to facilitate high-throughput gene functional analysis. BMC Bioinformatics 2007; 8(1): 426. doi: 10.1186/1471-2105-8-426 PMID: 17980028
  26. Azmi MB, Jawed A, Ahmed SDH, et al. Understanding the impact of structural modifications at the NNAT gene’s post-translational acetylation site: In silico approach for predicting its drug-interaction role in anorexia nervosa. Eat Weight Disord 2023; 28(1): 97. doi: 10.1007/s40519-023-01618-4 PMID: 37987927
  27. Azzopardi JG, Evans DJ, Krausz T. Endocrine differentiation in breast tumours. Histopathology 1986; 10(7): 773-4. doi: 10.1111/j.1365-2559.1986.tb02535.x PMID: 3744310
  28. Argirò A, Zampieri M, Marchi A, et al. Therapeutic approaches in hypertrophic cardiomyopathy: From symptom relief to precision therapy. G Ital Cardiol (Rome) 2023; 24(10): 792-9. PMID: 37767831
  29. Yagi M, Do Y, Hirai H, et al. Improving lysosomal ferroptosis with NMN administration protects against heart failure. Life Sci Alliance 2023; 6(12): e202302116. doi: 10.26508/lsa.202302116 PMID: 37793777
  30. Tuncay E, Gando I, Huo JY, et al. The cardioprotective role of sirtuins is mediated in part by regulating KATP channel surface expression. Am J Physiol Cell Physiol 2023; 324(5): C1017-27. doi: 10.1152/ajpcell.00459.2022 PMID: 36878847
  31. Zhang Y, Zhu W, Wang M, Xi P, Wang H, Tian D. Nicotinamide mononucleotide alters body composition and ameliorates metabolic disorders induced by a high‐fat diet. IUBMB Life 2023; 75(6): 548-62. doi: 10.1002/iub.2707 PMID: 36785893
  32. Yi JS, Perla S, Enyenihi L, Bennett AM. Tyrosyl phosphorylation of PZR promotes hypertrophic cardiomyopathy in PTPN11-associated Noonan syndrome with multiple lentigines. JCI Insight 2020; 5(15): e137753. doi: 10.1172/jci.insight.137753 PMID: 32584792
  33. Xu M, Bermea KC, Ayati M, et al. Alteration in tyrosine phosphorylation of cardiac proteome and EGFR pathway contribute to hypertrophic cardiomyopathy. Commun Biol 2022; 5(1): 1251. doi: 10.1038/s42003-022-04021-4 PMID: 36380187
  34. Schulze-Bergkamen H, Brenner D, Krueger A, et al. Hepatocyte growth factor induces Mcl-1 in primary human hepatocytes and inhibits CD95-mediated apoptosis via Akt. Hepatology 2004; 39(3): 645-54. doi: 10.1002/hep.20138 PMID: 14999683
  35. Fruman DA, Meyers RE, Cantley LC. Phosphoinositide kinases. Annu Rev Biochem 1998; 67(1): 481-507. doi: 10.1146/annurev.biochem.67.1.481 PMID: 9759495
  36. Altomare DA, Lyons GE, Mitsuuchi Y, Cheng JQ, Testa JR. Akt2 mRNA is highly expressed in embryonic brown fat and the Akt2 kinase is activated by insulin. Oncogene 1998; 16(18): 2407-11. doi: 10.1038/sj.onc.1201750 PMID: 9620559
  37. Meng X, Cui J, He G. BCL-2 is involved in cardiac hypertrophy through PI3K-Akt pathway. BioMed Res Int 2021; 2021: 1-8. doi: 10.1155/2021/6615502 PMID: 33778070
  38. Pisklova M, Osmak G, Favorova O. Regulation of SMAD signaling pathway by miRNAs associated with myocardial fibrosis: In silico analysis of target gene networks. Biochemistry (Mosc) 2022; 87(8): 832-8. doi: 10.1134/S0006297922080144 PMID: 36171647
  39. Ren B, Feng J, Yang N, Guo Y, Chen C, Qin Q. Ginsenoside Rg3 attenuates angiotensin II-induced myocardial hypertrophy through repressing NLRP3 inflammasome and oxidative stress via modulating SIRT1/NF-κB pathway. Int Immunopharmacol 2021; 98: 107841. doi: 10.1016/j.intimp.2021.107841 PMID: 34153662
  40. Huang LO, Rauch A, Mazzaferro E, et al. Genome-wide discovery of genetic loci that uncouple excess adiposity from its comorbidities. Nat Metab 2021; 3(2): 228-43. doi: 10.1038/s42255-021-00346-2 PMID: 33619380
  41. Talwar D, Miller CG, Grossmann J, et al. The GAPDH redox switch safeguards reductive capacity and enables survival of stressed tumour cells. Nat Metab 2023; 5(4): 660-76. doi: 10.1038/s42255-023-00781-3 PMID: 37024754
  42. Jiang J, Xu J, Tang H. miR-490-3p alleviates cardiomyocyte injury via targeting FOXO1. Protein Pept Lett 2022; 29(11): 917-24. doi: 10.2174/0929866529666220819120736 PMID: 35986524
  43. Liu GY, Sabatini DM. mTOR at the nexus of nutrition, growth, ageing and disease. Nat Rev Mol Cell Biol 2020; 21(4): 183-203. doi: 10.1038/s41580-019-0199-y PMID: 31937935
  44. Zhang Y, Yan H, Xu Z, Yang B, Luo P, He Q. Molecular basis for class side effects associated with PI3K/AKT/mTOR pathway inhibitors. Expert Opin Drug Metab Toxicol 2019; 15(9): 767-74. doi: 10.1080/17425255.2019.1663169 PMID: 31478386
  45. Aoyagi T, Matsui T. Phosphoinositide-3 kinase signaling in cardiac hypertrophy and heart failure. Curr Pharm Des 2011; 17(18): 1818-24. doi: 10.2174/138161211796390976 PMID: 21631421
  46. Zhou WW, Dai C, Liu WZ, et al. Gentianella acuta improves TAC-induced cardiac remodelling by regulating the Notch and PI3K/Akt/FOXO1/3 pathways. Biomed Pharmacother 2022; 154: 113564. doi: 10.1016/j.biopha.2022.113564 PMID: 35988427
  47. Fan C, Li Y, Yang H, et al. Tamarixetin protects against cardiac hypertrophy via inhibiting NFAT and Akt pathway. J Mol Histol 2019; 50(4): 343-54. doi: 10.1007/s10735-019-09831-1 PMID: 31111288
  48. Hou H, Chen Y, Feng X, Xu G, Yan M. Tripartite motif containing 14 may aggravate cardiac hypertrophy via the Akt signalling pathway in neonatal rat cardiomyocytes and transgenic mice. Mol Med Rep 2023; 28(3): 173. doi: 10.3892/mmr.2023.13060 PMID: 37503784
  49. Guan P, Sun ZM, Wang N, et al. Resveratrol prevents chronic intermittent hypoxia-induced cardiac hypertrophy by targeting the PI3K/AKT/mTOR pathway. Life Sci 2019; 233: 116748. doi: 10.1016/j.lfs.2019.116748 PMID: 31412263
  50. Cheng Y, Shen A, Wu X, et al. Qingda granule attenuates angiotensin II-induced cardiac hypertrophy and apoptosis and modulates the PI3K/Akt pathway. Biomed Pharmacother 2021; 133: 111022. doi: 10.1016/j.biopha.2020.111022 PMID: 33378940
  51. Tanno M, Kuno A, Horio Y, Miura T. Emerging beneficial roles of sirtuins in heart failure. Basic Res Cardiol 2012; 107(4): 273. doi: 10.1007/s00395-012-0273-5 PMID: 22622703
  52. Spadari RC, Cavadas C, de Carvalho AETS, Ortolani D, de Moura AL, Vassalo PF. Role of beta-adrenergic receptors and sirtuin signaling in the heart during aging, heart failure, and adaptation to stress. Cell Mol Neurobiol 2018; 38(1): 109-20. doi: 10.1007/s10571-017-0557-2 PMID: 29063982
  53. Wong A, Woodcock EA. FOXO proteins and cardiac pathology. Adv Exp Med Biol 2009; 665: 78-89. doi: 10.1007/978-1-4419-1599-3_6 PMID: 20429417
  54. Chistiakov DA, Orekhov AN, Bobryshev YV. The impact of FOXO-1 to cardiac pathology in diabetes mellitus and diabetes-related metabolic abnormalities. Int J Cardiol 2017; 245: 236-44. doi: 10.1016/j.ijcard.2017.07.096 PMID: 28781146
  55. Cao DJ, Jiang N, Blagg A, et al. Mechanical unloading activates FOXO3 to trigger Bnip3-dependent cardiomyocyte atrophy. J Am Heart Assoc 2013; 2(2): e000016. doi: 10.1161/JAHA.113.000016 PMID: 23568341
  56. Kim M, Hunter RW, Garcia-Menendez L, et al. Mutation in the γ2-subunit of AMP-activated protein kinase stimulates cardiomyocyte proliferation and hypertrophy independent of glycogen storage. Circ Res 2014; 114(6): 966-75. doi: 10.1161/CIRCRESAHA.114.302364 PMID: 24503893
  57. Ucar A, Gupta SK, Fiedler J, et al. The miRNA-212/132 family regulates both cardiac hypertrophy and cardiomyocyte autophagy. Nat Commun 2012; 3(1): 1078. doi: 10.1038/ncomms2090 PMID: 23011132
  58. Alcendor RR, Kirshenbaum LA, Imai S, Vatner SF, Sadoshima J. Silent information regulator 2alpha, a longevity factor and class III histone deacetylase, is an essential endogenous apoptosis inhibitor in cardiac myocytes. Circ Res 2004; 95(10): 971-80. doi: 10.1161/01.RES.0000147557.75257.ff PMID: 15486319
  59. Alcendor RR, Gao S, Zhai P, et al. SIRT1 regulates aging and resistance to oxidative stress in the heart. Circ Res 2007; 100(10): 1512-21. doi: 10.1161/01.RES.0000267723.65696.4a PMID: 17446436
  60. Sundaresan NR, Gupta M, Kim G, Rajamohan SB, Isbatan A, Gupta MP. SIRT3 blocks the cardiac hypertrophic response by augmenting FOXO3a-dependent antioxidant defense mechanisms in mice. J Clin Invest 2009; 119(9): 2758-71. doi: 10.1172/JCI39162 PMID: 19652361
  61. Hsu CP, Zhai P, Yamamoto T, et al. Silent information regulator 1 protects the heart from ischemia/reperfusion. Circulation 2010; 122(21): 2170-82. doi: 10.1161/CIRCULATIONAHA.110.958033 PMID: 21060073
  62. Alonso D, Pinyol-Gallemí A, Alcoverro T, Arthur R. Fish community reassembly after a coral mass mortality: Higher trophic groups are subject to increased rates of extinction. Ecol Lett 2015; 18(5): 451-61. doi: 10.1111/ele.12426 PMID: 25782022
  63. Hafner AV, Dai J, Gomes AP, et al. Regulation of the mPTP by SIRT3-mediated deacetylation of CypD at lysine 166 suppresses age-related cardiac hypertrophy. Aging (Albany NY) 2010; 2(12): 914-23. doi: 10.18632/aging.100252 PMID: 21212461
  64. Lee JJ, van de Ven RAH, Zaganjor E, et al. Inhibition of epithelial cell migration and Src/FAK signaling by SIRT3. Proc Natl Acad Sci USA 2018; 115(27): 7057-62. doi: 10.1073/pnas.1800440115 PMID: 29915029
  65. Li Y, Hossain E, Arifen N, Srivastava AK, Anand-Srivastava MB. Sirtuin1 contributes to the overexpression of Giα proteins and hyperproliferation of vascular smooth muscle cells from spontaneously hypertensive rats. J Hypertens 2022; 40(1): 117-27. doi: 10.1097/HJH.0000000000002985 PMID: 34420010
  66. Wang S, Bai J, Che Y, Qu W, Li J. Fucoidan inhibits apoptosis and improves cardiac remodeling by inhibiting p53 transcriptional activation through USP22/SIRT1. Front Pharmacol 2023; 14: 1164333. doi: 10.3389/fphar.2023.1164333 PMID: 37324479
  67. Wang H, Dong X, Liu Z, et al. Resveratrol suppresses rotenone‐induced neurotoxicity through activation of SIRT1/Akt1 signaling pathway. Anat Rec (Hoboken) 2018; 301(6): 1115-25. doi: 10.1002/ar.23781 PMID: 29350822
  68. Imperatore F, Maurizio J, Vargas Aguilar S, et al. SIRT1 regulates macrophage self‐renewal. EMBO J 2017; 36(16): 2353-72. doi: 10.15252/embj.201695737 PMID: 28701484
  69. Sun HJ, Xiong SP, Cao X, et al. Polysulfide-mediated sulfhydration of SIRT1 prevents diabetic nephropathy by suppressing phosphorylation and acetylation of p65 NF-κB and STAT3. Redox Biol 2021; 38: 101813. doi: 10.1016/j.redox.2020.101813 PMID: 33279869
  70. Mustafa Rizvi SH, Shao D, Tsukahara Y, et al. Oxidized GAPDH transfers S-glutathionylation to a nuclear protein Sirtuin-1 leading to apoptosis. Free Radic Biol Med 2021; 174: 73-83. doi: 10.1016/j.freeradbiomed.2021.07.037 PMID: 34332079
  71. Rajman L, Chwalek K, Sinclair DA. Therapeutic potential of NAD-boosting molecules: The in vivo evidence. Cell Metab 2018; 27(3): 529-47. doi: 10.1016/j.cmet.2018.02.011 PMID: 29514064
  72. Chen C, Zhou M, Ge Y, Wang X. SIRT1 and aging related signaling pathways. Mech Ageing Dev 2020; 187: 111215. doi: 10.1016/j.mad.2020.111215 PMID: 32084459
  73. Shen S, Shen M, Kuang L, et al. SIRT1/SREBPs-mediated regulation of lipid metabolism. Pharmacol Res 2024; 199: 107037. doi: 10.1016/j.phrs.2023.107037 PMID: 38070792
  74. Li X. SIRT1 and energy metabolism. Acta Biochim Biophys Sin (Shanghai) 2013; 45(1): 51-60. doi: 10.1093/abbs/gms108 PMID: 23257294
  75. Alves-Fernandes DK, Jasiulionis MG. The role of SIRT1 on DNA damage response and epigenetic alterations in cancer. Int J Mol Sci 2019; 20(13): 3153. doi: 10.3390/ijms20133153 PMID: 31261609

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers