Exploring the Biomarkers and Potential Mechanisms of Botulinum Toxin Type A in the Treatment of Microglial Inflammatory Activation through P2X7 Receptors based on Transcriptome Sequencing


Cite item

Full Text

Abstract

Aims:This study aims to explore the potential mechanism by which Botulinum toxin type A (BoNT/ A) inhibits microglial inflammatory activation through P2X7 receptors (P2X7R).

Background:BoNT/A is a promising analgesic drug, and previous studies have established that it alleviates Neuropathic Pain (NP) by inhibiting microglial inflammatory activation. This study examined the biomarkers and potential mechanisms by which BoNT/A relieves neuropathic pain by mediating microglial P2X7R and analyzing transcriptome sequencing data from mouse BV-2 microglial cells.

Objective:The P2X7R agonist Bz-ATP was used to induce microglial inflammatory activation, whilst RNAseq technology was used to explore the biomarkers and potential mechanisms through which BoNT/A suppresses microglial inflammation.

Methods:RNA sequencing was performed on three BV-2 cell samples treated with a P2X7R specific activator (Bz-ATP) and three BV-2 cell samples pre-treated with BoNT/A. Only data that successfully passed quality control measures were included in subsequent analysis. Initially, Differentially Expressed Genes (DEGs) were identified from BoNT/A and control samples, followed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Biomarkers were then identified by constructing a Protein- Protein Interaction (PPI) network and utilizing the CytoHubba plug-in in Cytoscape software. Lastly, enrichment analysis and regulatory network analysis were performed to elucidate the potential mechanism of BoNT/A in the treatment of NP.

Results:93 DEGs related to the "cell component size regulation" GO term and enriched in the "axon guidance" KEGG pathway were identified. Subsequently, 6 biomarkers were identified, namely PTPRF, CHDH, CKM, Ky, Sema3b, and Sema3f, which were enriched in pathways related to biosynthesis and metabolism, disease progression, signal transduction, and organelle function, including the "ribosome" and "Wnt signaling pathway." Finally, a competing endogenous RNA (ceRNAs) network was constructed from 6 mRNAs, 66 miRNAs, and 31 lncRNAs, forming a complex relationship network.

Conclusion:Six genes (PTPRF, Sema3b, Sema3f, CHDH, CKM, and Ky) were identified as biomarkers of microglial inflammatory activation following BoNT/A treatment. This finding may provide a valuable reference for the relief and treatment of neuropathic pain.

About the authors

Kai Zhang

Department of Spine Surgery, Lanzhou University Second Hospital

Email: info@benthamscience.net

Yi Ren

Department of Spine Surgery, Lanzhou University Second Hospital

Email: info@benthamscience.net

Jiayang Lv

Department of Spine Surgery, Lanzhou University Second Hospital

Email: info@benthamscience.net

Peng Mao

Department of Spine Surgery, Lanzhou University Second Hospital

Email: info@benthamscience.net

Wenming Zhou

Department of Spine Surgery, Lanzhou University Second Hospital

Email: info@benthamscience.net

Yongqiang Shi

Department of Spine Surgery, Lanzhou University Second Hospital

Email: info@benthamscience.net

Kaisheng Zhou

Department of Spine Surgery, Lanzhou University Second Hospital

Email: info@benthamscience.net

Linna Wang

Department of Drug Development, Lanzhou Biotechnique Development Co., LTD

Email: info@benthamscience.net

Chengjun Zhang

Department of Drug Development, Lanzhou Biotechnique Development Co., LTD

Email: info@benthamscience.net

Haihong Zhang

Department of Spine Surgery, Lanzhou University Second Hospital

Author for correspondence.
Email: info@benthamscience.net

References

  1. Kim Y, Kwon SY, Jung HS, et al. Amitriptyline inhibits the MAPK/ERK and CREB pathways and proinflammatory cytokines through A3AR activation in rat neuropathic pain models. Korean J Anesthesiol 2019; 72(1): 60-7. doi: 10.4097/kja.d.18.00022 PMID: 29969887
  2. Gangadharan V, Zheng H, Taberner FJ, et al. Neuropathic pain caused by miswiring and abnormal end organ targeting. Nature 2022; 606(7912): 137-45. doi: 10.1038/s41586-022-04777-z PMID: 35614217
  3. Koga K, Kobayashi K, Tsuda M, Kubota K, Kitano Y, Furue H. Voltage-gated calcium channel subunit α2δ-1 in spinal dorsal horn neurons contributes to aberrant excitatory synaptic transmission and mechanical hypersensitivity after peripheral nerve injury. Front Mol Neurosci 2023; 16: 1099925. doi: 10.3389/fnmol.2023.1099925 PMID: 37033377
  4. Pickering G, Martin E, Tiberghien F, Delorme C, Mick G. Localized neuropathic pain: An expert consensus on local treatments. Drug Des Devel Ther 2017; 11: 2709-18. doi: 10.2147/DDDT.S142630 PMID: 29066862
  5. Chu Q, An J, Liu P, et al. Repurposing a tricyclic antidepressant in tumor and metabolism disease treatment through fatty acid uptake inhibition. J Exp Med 2023; 220(3): e20221316. doi: 10.1084/jem.20221316 PMID: 36520461
  6. Zaccara G, Perucca P, Loiacono G, Giovannelli F, Verrotti A. The adverse event profile of lacosamide: A systematic review and meta-analysis of randomized controlled trials. Epilepsia 2013; 54(1): 66-74. doi: 10.1111/j.1528-1167.2012.03589.x PMID: 22779776
  7. Yuan X, Han S, Manyande A, et al. Spinal voltage-gated potassium channel Kv1.3 contributes to neuropathic pain via the promotion of microglial M1 polarization and activation of the NLRP3 inflammasome. Eur J Pain 2023; 27(2): 289-302. doi: 10.1002/ejp.2059 PMID: 36440534
  8. Yin Y, Wei L, Caseley EA, et al. Leveraging the ATP-P2X7 receptor signalling axis to alleviate traumatic CNS damage and related complications. Med Res Rev 2023; 43(5): 1346-73. doi: 10.1002/med.21952 PMID: 36924449
  9. Hu S, Hu J, Zou F, et al. P2X7 receptor in inflammation and pain. Brain Res Bull 2022; 187: 199-209. doi: 10.1016/j.brainresbull.2022.07.006 PMID: 35850190
  10. Gui X, Wang H, Wu L, et al. Botulinum toxin type A promotes microglial M2 polarization and suppresses chronic constriction injury-induced neuropathic pain through the P2X7 receptor. Cell Biosci 2020; 10(1): 45. doi: 10.1186/s13578-020-00405-3 PMID: 32211150
  11. Clark AK, D’Aquisto F, Gentry C, Marchand F, McMahon SB, Malcangio M. Rapid co-release of interleukin 1β and caspase 1 in spinal cord inflammation. J Neurochem 2006; 99(3): 868-80. doi: 10.1111/j.1471-4159.2006.04126.x PMID: 16942597
  12. Huang Q, Mao XF, Wu HY, et al. Cynandione A attenuates neuropathic pain through p38β MAPK-mediated spinal microglial expression of β-endorphin. Brain Behav Immun 2017; 62: 64-77. doi: 10.1016/j.bbi.2017.02.005 PMID: 28189715
  13. Borst K, Dumas AA, Prinz M. Microglia: Immune and non-immune functions. Immunity 2021; 54(10): 2194-208. doi: 10.1016/j.immuni.2021.09.014 PMID: 34644556
  14. Villasana-Salazar B, Vezzani A. Neuroinflammation microenvironment sharpens seizure circuit. Neurobiol Dis 2023; 178: 106027. doi: 10.1016/j.nbd.2023.106027 PMID: 36736598
  15. Bradesi S, Svensson CI, Steinauer J, Pothoulakis C, Yaksh TL, Mayer EA. Role of spinal microglia in visceral hyperalgesia and NK1R up-regulation in a rat model of chronic stress. Gastroenterology 2009; 136(4): 1339-48.
  16. Tsuda M. P2 receptors, microglial cytokines and chemokines, and neuropathic pain. J Neurosci Res 2017; 95(6): 1319-29. doi: 10.1002/jnr.23816 PMID: 27376880
  17. Xie J, Liu S, Wu B, et al. The protective effect of resveratrol in the transmission of neuropathic pain mediated by the P2X7 receptor in the dorsal root ganglia. Neurochem Int 2017; 103: 24-35. doi: 10.1016/j.neuint.2016.12.006 PMID: 28027922
  18. Martel-Gallegos G, Casas-Pruneda G, Ortega-Ortega F, et al. Oxidative stress induced by P2X7 receptor stimulation in murine macrophages is mediated by c-Src/Pyk2 and ERK1/2. Biochim Biophys Acta, Gen Subj 2013; 1830(10): 4650-9. doi: 10.1016/j.bbagen.2013.05.023 PMID: 23711511
  19. Chen S. Clinical uses of botulinum neurotoxins: Current indications, limitations and future developments. Toxins (Basel) 2012; 4(10): 913-39. doi: 10.3390/toxins4100913 PMID: 23162705
  20. Novis SA, De Mattos JP, De Rosso AL. Botulinum toxin in blepharospasm, in hemifacial spasm, and in cervical dystonia: Results in 33 patients. Arq Neuropsiquiatr 1995; 53(3-A): 403-10. doi: 10.1590/S0004-282X1995000300006 PMID: 8540813
  21. Schaefer S, Gottschalk C, Jabbari B. Treatment of chronic migraine with focus on botulinum neurotoxins. Toxins (Basel) 2015; 7(7): 2615-28. doi: 10.3390/toxins7072615 PMID: 26184313
  22. Pearl C, Moxley B, Perry A, Demian N, Dallaire-Giroux C. Management of trigeminal neuralgia with botulinum toxin Type A: Report of two cases. Dent J (Basel) 2022; 10(11): 207.
  23. Peng F, Xia TB. Effects of intradermal botulinum toxin injections on herpes zoster related neuralgia. Infect Drug Resist 2023; 16: 2159-65. doi: 10.2147/IDR.S401972 PMID: 37077249
  24. Sandrini G, De Icco R, Tassorelli C, Smania N, Tamburin S. Botulinum neurotoxin type A for the treatment of pain: Not just in migraine and trigeminal neuralgia. J Headache Pain 2017; 18(1): 38. doi: 10.1186/s10194-017-0744-z PMID: 28324318
  25. Papagiannopoulou D, Vardouli L, Dimitriadis F, Apostolidis A. Retrograde transport of radiolabelled botulinum neurotoxin type A to the CNS after intradetrusor injection in rats. BJU Int 2016; 117(4): 697-704. doi: 10.1111/bju.13163 PMID: 25912438
  26. Kim DW, Lee SK, Ahnn J. Botulinum toxin as a pain killer: Players and actions in antinociception. Toxins (Basel) 2015; 7(7): 2435-53. doi: 10.3390/toxins7072435 PMID: 26134255
  27. Jiang F, Zhong H, Hong Y, Zhao G. Use of a tourniquet in total knee arthroplasty: A systematic review and meta-analysis of randomized controlled trials. J Orthop Sci 2015; 20(1): 110-23. doi: 10.1007/s00776-014-0664-6 PMID: 25373840
  28. Maiarù M, Leese C, Certo M, et al. Selective neuronal silencing using synthetic botulinum molecules alleviates chronic pain in mice. Sci Transl Med 2018; 10(450): eaar7384. doi: 10.1126/scitranslmed.aar7384 PMID: 30021888
  29. de Sena Brandine G, Smith AD. Falco: High-speed FastQC emulation for quality control of sequencing data. F1000 Res 2019; 8: 1874. doi: 10.12688/f1000research.21142.1 PMID: 33552473
  30. Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol 2019; 37(8): 907-15. doi: 10.1038/s41587-019-0201-4 PMID: 31375807
  31. Liao Y, Smyth GK, Shi W. featureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 2014; 30(7): 923-30. doi: 10.1093/bioinformatics/btt656 PMID: 24227677
  32. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 2014; 15(12): 550. doi: 10.1186/s13059-014-0550-8 PMID: 25516281
  33. Gustavsson EK, Zhang D, Reynolds RH, Garcia-Ruiz S, Ryten M. ggtranscript : An R package for the visualization and interpretation of transcript isoforms using ggplot2. Bioinformatics 2022; 38(15): 3844-6. doi: 10.1093/bioinformatics/btac409 PMID: 35751589
  34. Gu Z, Hübschmann D. Make interactive complex heatmaps in R. Bioinformatics 2022; 38(5): 1460-2. doi: 10.1093/bioinformatics/btab806 PMID: 34864868
  35. Yu G, Wang LG, Han Y, He QY. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS 2012; 16(5): 284-7. doi: 10.1089/omi.2011.0118 PMID: 22455463
  36. Cheng X, Deng W, Zhang Z, et al. Novel amino acid metabolism-related gene signature to predict prognosis in clear cell renal cell carcinoma. Front Genet 2022; 13: 982162. doi: 10.3389/fgene.2022.982162 PMID: 36118874
  37. Liu P, Xu H, Shi Y, Deng L, Chen X. Potential molecular mechanisms of plantain in the treatment of gout and hyperuricemia based on network pharmacology. Evid Based Complement Alternat Med 2020; 2020: 1-20. doi: 10.1155/2020/3023127 PMID: 33149752
  38. Zheng Y, Gao W, Zhang Q, et al. Ferroptosis and autophagy-related genes in the pathogenesis of ischemic cardiomyopathy. Front Cardiovasc Med 2022; 9: 906753. doi: 10.3389/fcvm.2022.906753 PMID: 35845045
  39. Liberzon A, Birger C, Thorvaldsdóttir H, Ghandi M, Mesirov JP, Tamayo P. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst 2015; 1(6): 417-25. doi: 10.1016/j.cels.2015.12.004 PMID: 26771021
  40. Zhou W, Lei Z, Shi Y, et al. Intrathecal injection of botulinum toxin type A has an analgesic effect in male rats CCI model by inhibiting the activation of spinal P2X4R. Neurochem Res 2023; 48(10): 3099-112. doi: 10.1007/s11064-023-03969-x PMID: 37336823
  41. Damo E, Simonetti M. Axon guidance molecules and pain. Cells 2022; 11(19): 3143. doi: 10.3390/cells11193143 PMID: 36231105
  42. Picón-Pagès P, Garcia-Buendia J, Muñoz FJ. Functions and dysfunctions of nitric oxide in brain. Biochim Biophys Acta Mol Basis Dis 2019; 1865(8): 1949-67. doi: 10.1016/j.bbadis.2018.11.007 PMID: 30500433
  43. Salvemini D, Little JW, Doyle T, Neumann WL. Roles of reactive oxygen and nitrogen species in pain. Free Radic Biol Med 2011; 51(5): 951-66. doi: 10.1016/j.freeradbiomed.2011.01.026 PMID: 21277369
  44. Coles CH, Jones EY, Aricescu AR. Extracellular regulation of type IIa receptor protein tyrosine phosphatases: Mechanistic insights from structural analyses. Semin Cell Dev Biol 2015; 37: 98-107. doi: 10.1016/j.semcdb.2014.09.007 PMID: 25234613
  45. Sarhan AR, Patel TR, Creese AJ, et al. Regulation of platelet derived growth factor signaling by Leukocyte Common Antigen-related (LAR) protein tyrosine phosphatase: A quantitative phosphoproteomics study. Mol Cell Proteomics 2016; 15(6): 1823-36. doi: 10.1074/mcp.M115.053652 PMID: 27074791
  46. McLeod F, Salinas PC. Wnt proteins as modulators of synaptic plasticity. Curr Opin Neurobiol 2018; 53: 90-5. doi: 10.1016/j.conb.2018.06.003 PMID: 29975877
  47. Li XH, Miao HH, Zhuo M. NMDA receptor dependent long-term potentiation in chronic pain. Neurochem Res 2019; 44(3): 531-8. doi: 10.1007/s11064-018-2614-8 PMID: 30109556
  48. Cao FL, Xu M, Gong K, et al. Imbalance between excitatory and inhibitory synaptic transmission in the primary somatosensory cortex caused by persistent nociception in rats. J Pain 2019; 20(8): 917-31. doi: 10.1016/j.jpain.2018.11.014 PMID: 30742914
  49. Simonetti M, Agarwal N, Stösser S, et al. Wnt-Fzd signaling sensitizes peripheral sensory neurons via distinct noncanonical pathways. Neuron 2014; 83(1): 104-21. doi: 10.1016/j.neuron.2014.05.037 PMID: 24991956
  50. Liu S, Liu YP, Huang ZJ, et al. Wnt/Ryk signaling contributes to neuropathic pain by regulating sensory neuron excitability and spinal synaptic plasticity in rats. Pain 2015; 156(12): 2572-84. doi: 10.1097/j.pain.0000000000000366 PMID: 26407042
  51. Zhang Y, Zhao D, Li X, et al. The Wnt/β-Catenin pathway regulated cytokines for pathological neuropathic pain in chronic compression of dorsal root ganglion model. Neural Plast 2021; 2021: 1-10. doi: 10.1155/2021/6680192 PMID: 33959159
  52. Halleskog C, Mulder J, Dahlström J, et al. WNT signaling in activated microglia is proinflammatory. Glia 2011; 59(1): 119-31. doi: 10.1002/glia.21081 PMID: 20967887
  53. Halleskog C, Dijksterhuis JP, Kilander MBC, et al. Heterotrimeric G protein-dependent WNT-5A signaling to ERK1/2 mediates distinct aspects of microglia proinflammatory transformation. J Neuroinflammation 2012; 9(1): 111. doi: 10.1186/1742-2094-9-111 PMID: 22647544
  54. Yang Y, Zhang Z. Microglia and Wnt pathways: Prospects for inflammation in Alzheimer’s disease. Front Aging Neurosci 2020; 12: 110. doi: 10.3389/fnagi.2020.00110 PMID: 32477095
  55. Halleskog C, Schulte G. WNT -3A and WNT -5A counteract lipopolysaccharide-induced pro-inflammatory changes in mouse primary microglia. J Neurochem 2013; 125(6): 803-8. doi: 10.1111/jnc.12250 PMID: 23534675
  56. O’Koren EG, Yu C, Klingeborn M, et al. Microglial function is distinct in different anatomical locations during retinal homeostasis and degeneration. Immunity 2019; 50(3): 723-737.e7. doi: 10.1016/j.immuni.2019.02.007 PMID: 30850344
  57. Mrdjen D, Pavlovic A, Hartmann FJ, et al. High-dimensional single-cell mapping of central nervous system immune cells reveals distinct myeloid subsets in health, aging, and disease. Immunity 2018; 48(2): 380-395.e6. doi: 10.1016/j.immuni.2018.01.011 PMID: 29426702
  58. Böttcher C, Schlickeiser S, Sneeboer MAM, et al. Human microglia regional heterogeneity and phenotypes determined by multiplexed single-cell mass cytometry. Nat Neurosci 2019; 22(1): 78-90. doi: 10.1038/s41593-018-0290-2 PMID: 30559476
  59. Worzfeld T, Offermanns S. Semaphorins and plexins as therapeutic targets. Nat Rev Drug Discov 2014; 13(8): 603-21. doi: 10.1038/nrd4337 PMID: 25082288
  60. Gilabert-Juan J, Sáez AR, Lopez-Campos G, et al. Semaphorin and plexin gene expression is altered in the prefrontal cortex of schizophrenia patients with and without auditory hallucinations. Psychiatry Res 2015; 229(3): 850-7. doi: 10.1016/j.psychres.2015.07.074 PMID: 26243375
  61. Mosca-Boidron AL, Gueneau L, Huguet G, et al. A de novo microdeletion of SEMA5A in a boy with autism spectrum disorder and intellectual disability. Eur J Hum Genet 2016; 24(6): 838-43. doi: 10.1038/ejhg.2015.211 PMID: 26395558
  62. Calderon de Anda F, Rosario AL, Durak O, et al. Autism spectrum disorder susceptibility gene TAOK2 affects basal dendrite formation in the neocortex. Nat Neurosci 2012; 15(7): 1022-31. doi: 10.1038/nn.3141 PMID: 22683681
  63. Pijuan J, Ortigoza-Escobar JD, Ortiz J, et al. PLXNA2 and LRRC40 as candidate genes in autism spectrum disorder. Autism Res 2021; 14(6): 1088-100. doi: 10.1002/aur.2502 PMID: 33749153
  64. Igea A, Carvalheiro T, Malvar-Fernández B, et al. Central role of semaphorin 3B in a serum-induced arthritis model and reduced levels in patients with rheumatoid arthritis. Arthritis Rheumatol 2022; 74(6): 972-83. doi: 10.1002/art.42065 PMID: 35001548
  65. Tang MW, Malvar Fernández B, Newsom SP, et al. Class 3 semaphorins modulate the invasive capacity of rheumatoid arthritis fibroblast-like synoviocytes. Rheumatology (Oxford) 2018; 57(5): 909-20. doi: 10.1093/rheumatology/kex511 PMID: 29471421
  66. Wang Q, Chiu SL, Koropouli E, et al. Neuropilin-2/PlexinA3 receptors associate with GluA1 and mediate Sema3F-dependent homeostatic scaling in cortical neurons. Neuron 2017; 96(5): 1084-1098.e7. doi: 10.1016/j.neuron.2017.10.029 PMID: 29154130
  67. Park S, Choi SG, Yoo SM, Son JH, Jung YK. Choline dehydrogenase interacts with SQSTM1/p62 to recruit LC3 and stimulate mitophagy. Autophagy 2014; 10(11): 1906-20. doi: 10.4161/auto.32177 PMID: 25483962
  68. Kuai J, Wu K, Han T, Zhai W, Sun R. LncRNA HOXA10-AS promotes the progression of esophageal carcinoma by regulating the expression of HOXA10. Cell Cycle 2023; 22(3): 276-90. doi: 10.1080/15384101.2022.2108633 PMID: 36588458
  69. Waldbillig F, Bormann F, Neuberger M, et al. An m6A-driven prognostic marker panel for renal cell carcinoma based on the first transcriptome-wide m6A-seq. Diagnostics (Basel) 2023; 13(5): 823. doi: 10.3390/diagnostics13050823 PMID: 36899967
  70. Wei X, Su R, Yang M, et al. Quantitative proteomic profiling of hepatocellular carcinoma at different serum alpha-fetoprotein level. Transl Oncol 2022; 20: 101422. doi: 10.1016/j.tranon.2022.101422 PMID: 35430532
  71. Zhang Q, Ding L, Zhou T, et al. A metabolic reprogramming-related prognostic risk model for clear cell renal cell carcinoma: From construction to preliminary application. Front Oncol 2022; 12: 982426. doi: 10.3389/fonc.2022.982426 PMID: 36176391
  72. Ohnishi T, Balan S, Toyoshima M, et al. Investigation of betaine as a novel psychotherapeutic for schizophrenia. EBioMedicine 2019; 45: 432-46. doi: 10.1016/j.ebiom.2019.05.062 PMID: 31255657
  73. Truong TTT, Bortolasci CC, Kidnapillai S, et al. Common effects of bipolar disorder medications on expression quantitative trait loci genes. J Psychiatr Res 2022; 150: 105-12. doi: 10.1016/j.jpsychires.2022.03.025 PMID: 35366598
  74. Yang Q, Zhang P, Han L, et al. Mitochondrial-related genes PDK2, CHDH, and ALDH5A1 served as a diagnostic signature and correlated with immune cell infiltration in ulcerative colitis. Aging (Albany NY) 2024; 16(4): 3803-22. doi: 10.18632/aging.205561 PMID: 38376420
  75. Johnson AR, Lao S, Wang T, Galanko JA, Zeisel SH. Choline dehydrogenase polymorphism rs12676 is a functional variation and is associated with changes in human sperm cell function. PLoS One 2012; 7(4): e36047. doi: 10.1371/journal.pone.0036047 PMID: 22558321
  76. Wang C, Ma C, Gong L, Dai S, Li Y. Preventive and therapeutic role of betaine in liver disease: A review on molecular mechanisms. Eur J Pharmacol 2021; 912: 174604. doi: 10.1016/j.ejphar.2021.174604 PMID: 34743980
  77. Mogilnicka I, Jaworska K, Koper M, et al. Hypertensive rats show increased renal excretion and decreased tissue concentrations of glycine betaine, a protective osmolyte with diuretic properties. PLoS One 2024; 19(1): e0294926. doi: 10.1371/journal.pone.0294926 PMID: 38166023
  78. Zhang M, Wang XL, Shi H, et al. Betaine inhibits NLRP3 inflammasome hyperactivation and regulates microglial m1/m2 phenotypic differentiation, thereby attenuating lipopolysaccharide-induced depression-like behavior. J Immunol Res 2022; 2022: 1-14. doi: 10.1155/2022/9313436 PMID: 36339940
  79. Pukale DD, Lazarenko D, Aryal SR, Khabaz F, Shriver LP, Leipzig ND. Osmotic contribution of synthesized betaine by choline dehydrogenase using in vivo and in vitro models of post-traumatic syringomyelia. Cell Mol Bioeng 2023; 16(1): 41-54. doi: 10.1007/s12195-022-00749-5 PMID: 36660584
  80. Maucher D, Schmidt B, Schumann J. Loss of endothelial barrier function in the inflammatory setting: Indication for a cytokine-mediated post-transcriptional mechanism by virtue of upregulation of miRNAs miR-29a-3p, miR-29b-3p, and miR-155-5p. Cells 2021; 10(11): 2843. doi: 10.3390/cells10112843 PMID: 34831066
  81. Xiao X, Li W, Rong D, et al. Human umbilical cord mesenchymal stem cells-derived extracellular vesicles facilitate the repair of spinal cord injury via the miR-29b-3p/PTEN/Akt/mTOR axis. Cell Death Discov 2021; 7(1): 212. doi: 10.1038/s41420-021-00572-3 PMID: 34381025

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers