Exploring the Biomarkers and Potential Mechanisms of Botulinum Toxin Type A in the Treatment of Microglial Inflammatory Activation through P2X7 Receptors based on Transcriptome Sequencing
- Authors: Zhang K.1, Ren Y.1, Lv J.1, Mao P.1, Zhou W.1, Shi Y.1, Zhou K.1, Wang L.2, Zhang C.2, Zhang H.1
-
Affiliations:
- Department of Spine Surgery, Lanzhou University Second Hospital
- Department of Drug Development, Lanzhou Biotechnique Development Co., LTD
- Issue: Vol 30, No 38 (2024)
- Pages: 3038-3053
- Section: Immunology, Inflammation & Allergy
- URL: https://vestnikugrasu.org/1381-6128/article/view/645964
- DOI: https://doi.org/10.2174/0113816128318908240730093036
- ID: 645964
Cite item
Full Text
Abstract
Aims:This study aims to explore the potential mechanism by which Botulinum toxin type A (BoNT/ A) inhibits microglial inflammatory activation through P2X7 receptors (P2X7R).
Background:BoNT/A is a promising analgesic drug, and previous studies have established that it alleviates Neuropathic Pain (NP) by inhibiting microglial inflammatory activation. This study examined the biomarkers and potential mechanisms by which BoNT/A relieves neuropathic pain by mediating microglial P2X7R and analyzing transcriptome sequencing data from mouse BV-2 microglial cells.
Objective:The P2X7R agonist Bz-ATP was used to induce microglial inflammatory activation, whilst RNAseq technology was used to explore the biomarkers and potential mechanisms through which BoNT/A suppresses microglial inflammation.
Methods:RNA sequencing was performed on three BV-2 cell samples treated with a P2X7R specific activator (Bz-ATP) and three BV-2 cell samples pre-treated with BoNT/A. Only data that successfully passed quality control measures were included in subsequent analysis. Initially, Differentially Expressed Genes (DEGs) were identified from BoNT/A and control samples, followed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Biomarkers were then identified by constructing a Protein- Protein Interaction (PPI) network and utilizing the CytoHubba plug-in in Cytoscape software. Lastly, enrichment analysis and regulatory network analysis were performed to elucidate the potential mechanism of BoNT/A in the treatment of NP.
Results:93 DEGs related to the "cell component size regulation" GO term and enriched in the "axon guidance" KEGG pathway were identified. Subsequently, 6 biomarkers were identified, namely PTPRF, CHDH, CKM, Ky, Sema3b, and Sema3f, which were enriched in pathways related to biosynthesis and metabolism, disease progression, signal transduction, and organelle function, including the "ribosome" and "Wnt signaling pathway." Finally, a competing endogenous RNA (ceRNAs) network was constructed from 6 mRNAs, 66 miRNAs, and 31 lncRNAs, forming a complex relationship network.
Conclusion:Six genes (PTPRF, Sema3b, Sema3f, CHDH, CKM, and Ky) were identified as biomarkers of microglial inflammatory activation following BoNT/A treatment. This finding may provide a valuable reference for the relief and treatment of neuropathic pain.
About the authors
Kai Zhang
Department of Spine Surgery, Lanzhou University Second Hospital
Email: info@benthamscience.net
Yi Ren
Department of Spine Surgery, Lanzhou University Second Hospital
Email: info@benthamscience.net
Jiayang Lv
Department of Spine Surgery, Lanzhou University Second Hospital
Email: info@benthamscience.net
Peng Mao
Department of Spine Surgery, Lanzhou University Second Hospital
Email: info@benthamscience.net
Wenming Zhou
Department of Spine Surgery, Lanzhou University Second Hospital
Email: info@benthamscience.net
Yongqiang Shi
Department of Spine Surgery, Lanzhou University Second Hospital
Email: info@benthamscience.net
Kaisheng Zhou
Department of Spine Surgery, Lanzhou University Second Hospital
Email: info@benthamscience.net
Linna Wang
Department of Drug Development, Lanzhou Biotechnique Development Co., LTD
Email: info@benthamscience.net
Chengjun Zhang
Department of Drug Development, Lanzhou Biotechnique Development Co., LTD
Email: info@benthamscience.net
Haihong Zhang
Department of Spine Surgery, Lanzhou University Second Hospital
Author for correspondence.
Email: info@benthamscience.net
References
- Kim Y, Kwon SY, Jung HS, et al. Amitriptyline inhibits the MAPK/ERK and CREB pathways and proinflammatory cytokines through A3AR activation in rat neuropathic pain models. Korean J Anesthesiol 2019; 72(1): 60-7. doi: 10.4097/kja.d.18.00022 PMID: 29969887
- Gangadharan V, Zheng H, Taberner FJ, et al. Neuropathic pain caused by miswiring and abnormal end organ targeting. Nature 2022; 606(7912): 137-45. doi: 10.1038/s41586-022-04777-z PMID: 35614217
- Koga K, Kobayashi K, Tsuda M, Kubota K, Kitano Y, Furue H. Voltage-gated calcium channel subunit α2δ-1 in spinal dorsal horn neurons contributes to aberrant excitatory synaptic transmission and mechanical hypersensitivity after peripheral nerve injury. Front Mol Neurosci 2023; 16: 1099925. doi: 10.3389/fnmol.2023.1099925 PMID: 37033377
- Pickering G, Martin E, Tiberghien F, Delorme C, Mick G. Localized neuropathic pain: An expert consensus on local treatments. Drug Des Devel Ther 2017; 11: 2709-18. doi: 10.2147/DDDT.S142630 PMID: 29066862
- Chu Q, An J, Liu P, et al. Repurposing a tricyclic antidepressant in tumor and metabolism disease treatment through fatty acid uptake inhibition. J Exp Med 2023; 220(3): e20221316. doi: 10.1084/jem.20221316 PMID: 36520461
- Zaccara G, Perucca P, Loiacono G, Giovannelli F, Verrotti A. The adverse event profile of lacosamide: A systematic review and meta-analysis of randomized controlled trials. Epilepsia 2013; 54(1): 66-74. doi: 10.1111/j.1528-1167.2012.03589.x PMID: 22779776
- Yuan X, Han S, Manyande A, et al. Spinal voltage-gated potassium channel Kv1.3 contributes to neuropathic pain via the promotion of microglial M1 polarization and activation of the NLRP3 inflammasome. Eur J Pain 2023; 27(2): 289-302. doi: 10.1002/ejp.2059 PMID: 36440534
- Yin Y, Wei L, Caseley EA, et al. Leveraging the ATP-P2X7 receptor signalling axis to alleviate traumatic CNS damage and related complications. Med Res Rev 2023; 43(5): 1346-73. doi: 10.1002/med.21952 PMID: 36924449
- Hu S, Hu J, Zou F, et al. P2X7 receptor in inflammation and pain. Brain Res Bull 2022; 187: 199-209. doi: 10.1016/j.brainresbull.2022.07.006 PMID: 35850190
- Gui X, Wang H, Wu L, et al. Botulinum toxin type A promotes microglial M2 polarization and suppresses chronic constriction injury-induced neuropathic pain through the P2X7 receptor. Cell Biosci 2020; 10(1): 45. doi: 10.1186/s13578-020-00405-3 PMID: 32211150
- Clark AK, DAquisto F, Gentry C, Marchand F, McMahon SB, Malcangio M. Rapid co-release of interleukin 1β and caspase 1 in spinal cord inflammation. J Neurochem 2006; 99(3): 868-80. doi: 10.1111/j.1471-4159.2006.04126.x PMID: 16942597
- Huang Q, Mao XF, Wu HY, et al. Cynandione A attenuates neuropathic pain through p38β MAPK-mediated spinal microglial expression of β-endorphin. Brain Behav Immun 2017; 62: 64-77. doi: 10.1016/j.bbi.2017.02.005 PMID: 28189715
- Borst K, Dumas AA, Prinz M. Microglia: Immune and non-immune functions. Immunity 2021; 54(10): 2194-208. doi: 10.1016/j.immuni.2021.09.014 PMID: 34644556
- Villasana-Salazar B, Vezzani A. Neuroinflammation microenvironment sharpens seizure circuit. Neurobiol Dis 2023; 178: 106027. doi: 10.1016/j.nbd.2023.106027 PMID: 36736598
- Bradesi S, Svensson CI, Steinauer J, Pothoulakis C, Yaksh TL, Mayer EA. Role of spinal microglia in visceral hyperalgesia and NK1R up-regulation in a rat model of chronic stress. Gastroenterology 2009; 136(4): 1339-48.
- Tsuda M. P2 receptors, microglial cytokines and chemokines, and neuropathic pain. J Neurosci Res 2017; 95(6): 1319-29. doi: 10.1002/jnr.23816 PMID: 27376880
- Xie J, Liu S, Wu B, et al. The protective effect of resveratrol in the transmission of neuropathic pain mediated by the P2X7 receptor in the dorsal root ganglia. Neurochem Int 2017; 103: 24-35. doi: 10.1016/j.neuint.2016.12.006 PMID: 28027922
- Martel-Gallegos G, Casas-Pruneda G, Ortega-Ortega F, et al. Oxidative stress induced by P2X7 receptor stimulation in murine macrophages is mediated by c-Src/Pyk2 and ERK1/2. Biochim Biophys Acta, Gen Subj 2013; 1830(10): 4650-9. doi: 10.1016/j.bbagen.2013.05.023 PMID: 23711511
- Chen S. Clinical uses of botulinum neurotoxins: Current indications, limitations and future developments. Toxins (Basel) 2012; 4(10): 913-39. doi: 10.3390/toxins4100913 PMID: 23162705
- Novis SA, De Mattos JP, De Rosso AL. Botulinum toxin in blepharospasm, in hemifacial spasm, and in cervical dystonia: Results in 33 patients. Arq Neuropsiquiatr 1995; 53(3-A): 403-10. doi: 10.1590/S0004-282X1995000300006 PMID: 8540813
- Schaefer S, Gottschalk C, Jabbari B. Treatment of chronic migraine with focus on botulinum neurotoxins. Toxins (Basel) 2015; 7(7): 2615-28. doi: 10.3390/toxins7072615 PMID: 26184313
- Pearl C, Moxley B, Perry A, Demian N, Dallaire-Giroux C. Management of trigeminal neuralgia with botulinum toxin Type A: Report of two cases. Dent J (Basel) 2022; 10(11): 207.
- Peng F, Xia TB. Effects of intradermal botulinum toxin injections on herpes zoster related neuralgia. Infect Drug Resist 2023; 16: 2159-65. doi: 10.2147/IDR.S401972 PMID: 37077249
- Sandrini G, De Icco R, Tassorelli C, Smania N, Tamburin S. Botulinum neurotoxin type A for the treatment of pain: Not just in migraine and trigeminal neuralgia. J Headache Pain 2017; 18(1): 38. doi: 10.1186/s10194-017-0744-z PMID: 28324318
- Papagiannopoulou D, Vardouli L, Dimitriadis F, Apostolidis A. Retrograde transport of radiolabelled botulinum neurotoxin type A to the CNS after intradetrusor injection in rats. BJU Int 2016; 117(4): 697-704. doi: 10.1111/bju.13163 PMID: 25912438
- Kim DW, Lee SK, Ahnn J. Botulinum toxin as a pain killer: Players and actions in antinociception. Toxins (Basel) 2015; 7(7): 2435-53. doi: 10.3390/toxins7072435 PMID: 26134255
- Jiang F, Zhong H, Hong Y, Zhao G. Use of a tourniquet in total knee arthroplasty: A systematic review and meta-analysis of randomized controlled trials. J Orthop Sci 2015; 20(1): 110-23. doi: 10.1007/s00776-014-0664-6 PMID: 25373840
- Maiarù M, Leese C, Certo M, et al. Selective neuronal silencing using synthetic botulinum molecules alleviates chronic pain in mice. Sci Transl Med 2018; 10(450): eaar7384. doi: 10.1126/scitranslmed.aar7384 PMID: 30021888
- de Sena Brandine G, Smith AD. Falco: High-speed FastQC emulation for quality control of sequencing data. F1000 Res 2019; 8: 1874. doi: 10.12688/f1000research.21142.1 PMID: 33552473
- Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol 2019; 37(8): 907-15. doi: 10.1038/s41587-019-0201-4 PMID: 31375807
- Liao Y, Smyth GK, Shi W. featureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 2014; 30(7): 923-30. doi: 10.1093/bioinformatics/btt656 PMID: 24227677
- Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 2014; 15(12): 550. doi: 10.1186/s13059-014-0550-8 PMID: 25516281
- Gustavsson EK, Zhang D, Reynolds RH, Garcia-Ruiz S, Ryten M. ggtranscript : An R package for the visualization and interpretation of transcript isoforms using ggplot2. Bioinformatics 2022; 38(15): 3844-6. doi: 10.1093/bioinformatics/btac409 PMID: 35751589
- Gu Z, Hübschmann D. Make interactive complex heatmaps in R. Bioinformatics 2022; 38(5): 1460-2. doi: 10.1093/bioinformatics/btab806 PMID: 34864868
- Yu G, Wang LG, Han Y, He QY. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS 2012; 16(5): 284-7. doi: 10.1089/omi.2011.0118 PMID: 22455463
- Cheng X, Deng W, Zhang Z, et al. Novel amino acid metabolism-related gene signature to predict prognosis in clear cell renal cell carcinoma. Front Genet 2022; 13: 982162. doi: 10.3389/fgene.2022.982162 PMID: 36118874
- Liu P, Xu H, Shi Y, Deng L, Chen X. Potential molecular mechanisms of plantain in the treatment of gout and hyperuricemia based on network pharmacology. Evid Based Complement Alternat Med 2020; 2020: 1-20. doi: 10.1155/2020/3023127 PMID: 33149752
- Zheng Y, Gao W, Zhang Q, et al. Ferroptosis and autophagy-related genes in the pathogenesis of ischemic cardiomyopathy. Front Cardiovasc Med 2022; 9: 906753. doi: 10.3389/fcvm.2022.906753 PMID: 35845045
- Liberzon A, Birger C, Thorvaldsdóttir H, Ghandi M, Mesirov JP, Tamayo P. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst 2015; 1(6): 417-25. doi: 10.1016/j.cels.2015.12.004 PMID: 26771021
- Zhou W, Lei Z, Shi Y, et al. Intrathecal injection of botulinum toxin type A has an analgesic effect in male rats CCI model by inhibiting the activation of spinal P2X4R. Neurochem Res 2023; 48(10): 3099-112. doi: 10.1007/s11064-023-03969-x PMID: 37336823
- Damo E, Simonetti M. Axon guidance molecules and pain. Cells 2022; 11(19): 3143. doi: 10.3390/cells11193143 PMID: 36231105
- Picón-Pagès P, Garcia-Buendia J, Muñoz FJ. Functions and dysfunctions of nitric oxide in brain. Biochim Biophys Acta Mol Basis Dis 2019; 1865(8): 1949-67. doi: 10.1016/j.bbadis.2018.11.007 PMID: 30500433
- Salvemini D, Little JW, Doyle T, Neumann WL. Roles of reactive oxygen and nitrogen species in pain. Free Radic Biol Med 2011; 51(5): 951-66. doi: 10.1016/j.freeradbiomed.2011.01.026 PMID: 21277369
- Coles CH, Jones EY, Aricescu AR. Extracellular regulation of type IIa receptor protein tyrosine phosphatases: Mechanistic insights from structural analyses. Semin Cell Dev Biol 2015; 37: 98-107. doi: 10.1016/j.semcdb.2014.09.007 PMID: 25234613
- Sarhan AR, Patel TR, Creese AJ, et al. Regulation of platelet derived growth factor signaling by Leukocyte Common Antigen-related (LAR) protein tyrosine phosphatase: A quantitative phosphoproteomics study. Mol Cell Proteomics 2016; 15(6): 1823-36. doi: 10.1074/mcp.M115.053652 PMID: 27074791
- McLeod F, Salinas PC. Wnt proteins as modulators of synaptic plasticity. Curr Opin Neurobiol 2018; 53: 90-5. doi: 10.1016/j.conb.2018.06.003 PMID: 29975877
- Li XH, Miao HH, Zhuo M. NMDA receptor dependent long-term potentiation in chronic pain. Neurochem Res 2019; 44(3): 531-8. doi: 10.1007/s11064-018-2614-8 PMID: 30109556
- Cao FL, Xu M, Gong K, et al. Imbalance between excitatory and inhibitory synaptic transmission in the primary somatosensory cortex caused by persistent nociception in rats. J Pain 2019; 20(8): 917-31. doi: 10.1016/j.jpain.2018.11.014 PMID: 30742914
- Simonetti M, Agarwal N, Stösser S, et al. Wnt-Fzd signaling sensitizes peripheral sensory neurons via distinct noncanonical pathways. Neuron 2014; 83(1): 104-21. doi: 10.1016/j.neuron.2014.05.037 PMID: 24991956
- Liu S, Liu YP, Huang ZJ, et al. Wnt/Ryk signaling contributes to neuropathic pain by regulating sensory neuron excitability and spinal synaptic plasticity in rats. Pain 2015; 156(12): 2572-84. doi: 10.1097/j.pain.0000000000000366 PMID: 26407042
- Zhang Y, Zhao D, Li X, et al. The Wnt/β-Catenin pathway regulated cytokines for pathological neuropathic pain in chronic compression of dorsal root ganglion model. Neural Plast 2021; 2021: 1-10. doi: 10.1155/2021/6680192 PMID: 33959159
- Halleskog C, Mulder J, Dahlström J, et al. WNT signaling in activated microglia is proinflammatory. Glia 2011; 59(1): 119-31. doi: 10.1002/glia.21081 PMID: 20967887
- Halleskog C, Dijksterhuis JP, Kilander MBC, et al. Heterotrimeric G protein-dependent WNT-5A signaling to ERK1/2 mediates distinct aspects of microglia proinflammatory transformation. J Neuroinflammation 2012; 9(1): 111. doi: 10.1186/1742-2094-9-111 PMID: 22647544
- Yang Y, Zhang Z. Microglia and Wnt pathways: Prospects for inflammation in Alzheimers disease. Front Aging Neurosci 2020; 12: 110. doi: 10.3389/fnagi.2020.00110 PMID: 32477095
- Halleskog C, Schulte G. WNT -3A and WNT -5A counteract lipopolysaccharide-induced pro-inflammatory changes in mouse primary microglia. J Neurochem 2013; 125(6): 803-8. doi: 10.1111/jnc.12250 PMID: 23534675
- OKoren EG, Yu C, Klingeborn M, et al. Microglial function is distinct in different anatomical locations during retinal homeostasis and degeneration. Immunity 2019; 50(3): 723-737.e7. doi: 10.1016/j.immuni.2019.02.007 PMID: 30850344
- Mrdjen D, Pavlovic A, Hartmann FJ, et al. High-dimensional single-cell mapping of central nervous system immune cells reveals distinct myeloid subsets in health, aging, and disease. Immunity 2018; 48(2): 380-395.e6. doi: 10.1016/j.immuni.2018.01.011 PMID: 29426702
- Böttcher C, Schlickeiser S, Sneeboer MAM, et al. Human microglia regional heterogeneity and phenotypes determined by multiplexed single-cell mass cytometry. Nat Neurosci 2019; 22(1): 78-90. doi: 10.1038/s41593-018-0290-2 PMID: 30559476
- Worzfeld T, Offermanns S. Semaphorins and plexins as therapeutic targets. Nat Rev Drug Discov 2014; 13(8): 603-21. doi: 10.1038/nrd4337 PMID: 25082288
- Gilabert-Juan J, Sáez AR, Lopez-Campos G, et al. Semaphorin and plexin gene expression is altered in the prefrontal cortex of schizophrenia patients with and without auditory hallucinations. Psychiatry Res 2015; 229(3): 850-7. doi: 10.1016/j.psychres.2015.07.074 PMID: 26243375
- Mosca-Boidron AL, Gueneau L, Huguet G, et al. A de novo microdeletion of SEMA5A in a boy with autism spectrum disorder and intellectual disability. Eur J Hum Genet 2016; 24(6): 838-43. doi: 10.1038/ejhg.2015.211 PMID: 26395558
- Calderon de Anda F, Rosario AL, Durak O, et al. Autism spectrum disorder susceptibility gene TAOK2 affects basal dendrite formation in the neocortex. Nat Neurosci 2012; 15(7): 1022-31. doi: 10.1038/nn.3141 PMID: 22683681
- Pijuan J, Ortigoza-Escobar JD, Ortiz J, et al. PLXNA2 and LRRC40 as candidate genes in autism spectrum disorder. Autism Res 2021; 14(6): 1088-100. doi: 10.1002/aur.2502 PMID: 33749153
- Igea A, Carvalheiro T, Malvar-Fernández B, et al. Central role of semaphorin 3B in a serum-induced arthritis model and reduced levels in patients with rheumatoid arthritis. Arthritis Rheumatol 2022; 74(6): 972-83. doi: 10.1002/art.42065 PMID: 35001548
- Tang MW, Malvar Fernández B, Newsom SP, et al. Class 3 semaphorins modulate the invasive capacity of rheumatoid arthritis fibroblast-like synoviocytes. Rheumatology (Oxford) 2018; 57(5): 909-20. doi: 10.1093/rheumatology/kex511 PMID: 29471421
- Wang Q, Chiu SL, Koropouli E, et al. Neuropilin-2/PlexinA3 receptors associate with GluA1 and mediate Sema3F-dependent homeostatic scaling in cortical neurons. Neuron 2017; 96(5): 1084-1098.e7. doi: 10.1016/j.neuron.2017.10.029 PMID: 29154130
- Park S, Choi SG, Yoo SM, Son JH, Jung YK. Choline dehydrogenase interacts with SQSTM1/p62 to recruit LC3 and stimulate mitophagy. Autophagy 2014; 10(11): 1906-20. doi: 10.4161/auto.32177 PMID: 25483962
- Kuai J, Wu K, Han T, Zhai W, Sun R. LncRNA HOXA10-AS promotes the progression of esophageal carcinoma by regulating the expression of HOXA10. Cell Cycle 2023; 22(3): 276-90. doi: 10.1080/15384101.2022.2108633 PMID: 36588458
- Waldbillig F, Bormann F, Neuberger M, et al. An m6A-driven prognostic marker panel for renal cell carcinoma based on the first transcriptome-wide m6A-seq. Diagnostics (Basel) 2023; 13(5): 823. doi: 10.3390/diagnostics13050823 PMID: 36899967
- Wei X, Su R, Yang M, et al. Quantitative proteomic profiling of hepatocellular carcinoma at different serum alpha-fetoprotein level. Transl Oncol 2022; 20: 101422. doi: 10.1016/j.tranon.2022.101422 PMID: 35430532
- Zhang Q, Ding L, Zhou T, et al. A metabolic reprogramming-related prognostic risk model for clear cell renal cell carcinoma: From construction to preliminary application. Front Oncol 2022; 12: 982426. doi: 10.3389/fonc.2022.982426 PMID: 36176391
- Ohnishi T, Balan S, Toyoshima M, et al. Investigation of betaine as a novel psychotherapeutic for schizophrenia. EBioMedicine 2019; 45: 432-46. doi: 10.1016/j.ebiom.2019.05.062 PMID: 31255657
- Truong TTT, Bortolasci CC, Kidnapillai S, et al. Common effects of bipolar disorder medications on expression quantitative trait loci genes. J Psychiatr Res 2022; 150: 105-12. doi: 10.1016/j.jpsychires.2022.03.025 PMID: 35366598
- Yang Q, Zhang P, Han L, et al. Mitochondrial-related genes PDK2, CHDH, and ALDH5A1 served as a diagnostic signature and correlated with immune cell infiltration in ulcerative colitis. Aging (Albany NY) 2024; 16(4): 3803-22. doi: 10.18632/aging.205561 PMID: 38376420
- Johnson AR, Lao S, Wang T, Galanko JA, Zeisel SH. Choline dehydrogenase polymorphism rs12676 is a functional variation and is associated with changes in human sperm cell function. PLoS One 2012; 7(4): e36047. doi: 10.1371/journal.pone.0036047 PMID: 22558321
- Wang C, Ma C, Gong L, Dai S, Li Y. Preventive and therapeutic role of betaine in liver disease: A review on molecular mechanisms. Eur J Pharmacol 2021; 912: 174604. doi: 10.1016/j.ejphar.2021.174604 PMID: 34743980
- Mogilnicka I, Jaworska K, Koper M, et al. Hypertensive rats show increased renal excretion and decreased tissue concentrations of glycine betaine, a protective osmolyte with diuretic properties. PLoS One 2024; 19(1): e0294926. doi: 10.1371/journal.pone.0294926 PMID: 38166023
- Zhang M, Wang XL, Shi H, et al. Betaine inhibits NLRP3 inflammasome hyperactivation and regulates microglial m1/m2 phenotypic differentiation, thereby attenuating lipopolysaccharide-induced depression-like behavior. J Immunol Res 2022; 2022: 1-14. doi: 10.1155/2022/9313436 PMID: 36339940
- Pukale DD, Lazarenko D, Aryal SR, Khabaz F, Shriver LP, Leipzig ND. Osmotic contribution of synthesized betaine by choline dehydrogenase using in vivo and in vitro models of post-traumatic syringomyelia. Cell Mol Bioeng 2023; 16(1): 41-54. doi: 10.1007/s12195-022-00749-5 PMID: 36660584
- Maucher D, Schmidt B, Schumann J. Loss of endothelial barrier function in the inflammatory setting: Indication for a cytokine-mediated post-transcriptional mechanism by virtue of upregulation of miRNAs miR-29a-3p, miR-29b-3p, and miR-155-5p. Cells 2021; 10(11): 2843. doi: 10.3390/cells10112843 PMID: 34831066
- Xiao X, Li W, Rong D, et al. Human umbilical cord mesenchymal stem cells-derived extracellular vesicles facilitate the repair of spinal cord injury via the miR-29b-3p/PTEN/Akt/mTOR axis. Cell Death Discov 2021; 7(1): 212. doi: 10.1038/s41420-021-00572-3 PMID: 34381025
Supplementary files
