Nanomaterials in Targeting Cancer Cells with Nanotherapeutics: Transitioning Towards Responsive Systems
- Authors: Jain B.1, Verma D.2, Rawat R.3, Berdimurodov E.4
-
Affiliations:
- Siddhachalam Laboratory, Institute of Life Science Research
- Department of Medicinal Chemistry,, Govt. Digvijay P.G. Autonomous College
- Department of Chemistry, Echelon Institute of Technology
- Department of Chemistry, National University of Uzbekistan
- Issue: Vol 30, No 38 (2024)
- Pages: 3018-3037
- Section: Immunology, Inflammation & Allergy
- URL: https://vestnikugrasu.org/1381-6128/article/view/645963
- DOI: https://doi.org/10.2174/0113816128317407240724065912
- ID: 645963
Cite item
Full Text
Abstract
:On a global scale, cancer is a difficult and devastating illness. Several problems with current chemotherapies include cytotoxicity, lack of selectivity, stem-like cell growth, and multi-drug resistance. The most appropriate nanomaterials for cancer treatment are those with characteristics, such as cytotoxicity, restricted specificity, and drug capacity and bioavailability; these materials are nanosized (1-100 nm). Nanodrugs are rarely licenced for therapeutic use despite growing research. These compounds need nanocarrier-targeted drug delivery experiments to improve their translation. This review describes new nanomaterials reported in the literature, impediments to their clinical studies, and their beneficial cancer therapeutic use. It also suggests ways to use nanomaterials in cancer therapy more efficiently and describes the intrinsic challenges of cancer treatment and the different nanocarriers and chemicals that can be utilised for specified tumour targeting. Furthermore, it provides a concise overview of cancer theranostics methods, with a focus on those that make use of nanomaterials. Although nanotechnology offers a great source for future advancements in cancer detection and therapy, there is an emerging need for more studies to address the present barriers to clinical translation.
About the authors
Bhawana Jain
Siddhachalam Laboratory, Institute of Life Science Research
Author for correspondence.
Email: info@benthamscience.net
Dakeshwar Verma
Department of Medicinal Chemistry,, Govt. Digvijay P.G. Autonomous College
Email: info@benthamscience.net
Reena Rawat
Department of Chemistry, Echelon Institute of Technology
Email: info@benthamscience.net
Elyor Berdimurodov
Department of Chemistry, National University of Uzbekistan
Email: info@benthamscience.net
References
- Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin 2022; 72(1): 7-33. doi: 10.3322/caac.21708 PMID: 35020204
- Cao W, Chen HD, Yu YW, Li N, Chen WQ. Changing profiles of cancer burden worldwide and in China: A secondary analysis of the global cancer statistics 2020. Chin Med J 2021; 134(7): 783-91. doi: 10.1097/CM9.0000000000001474 PMID: 33734139
- Arnold M, Morgan E, Rumgay H, et al. Current and future burden of breast cancer: Global statistics for 2020 and 2040. Breast 2022; 66: 15-23. doi: 10.1016/j.breast.2022.08.010 PMID: 36084384
- Haier J, Schaefers J. Economic perspective of cancer care and its consequences for vulnerable groups. Cancers 2022; 14(13): 3158. doi: 10.3390/cancers14133158 PMID: 35804928
- Zhong L, Li Y, Xiong L, et al. Small molecules in targeted cancer therapy: Advances, challenges, and future perspectives. Signal Transduct Target Ther 2021; 6(1): 201. doi: 10.1038/s41392-021-00572-w PMID: 34054126
- Xie YH, Chen YX, Fang JY. Comprehensive review of targeted therapy for colorectal cancer. Signal Transduct Target Ther 2020; 5(1): 22. doi: 10.1038/s41392-020-0116-z PMID: 32296018
- Anand U, Dey A, Chandel AKS, et al. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics. Genes Dis 2023; 10(4): 1367-401. doi: 10.1016/j.gendis.2022.02.007 PMID: 37397557
- Zhu R, Zhang F, Peng Y, Xie T, Wang Y, Lan Y. Current progress in cancer treatment using nanomaterials. Front Oncol 2022; 12: 930125. doi: 10.3389/fonc.2022.930125 PMID: 35912195
- Yang Y, Chen Q, Qiu Y, Wang Y, Huang Q, Ai K. Editorial: Nanomaterials and multimodal tumor therapy. Front Oncol 2022; 12: 1081687. doi: 10.3389/fonc.2022.1081687 PMID: 36568218
- Chehelgerdi M, Chehelgerdi M, Allela OQB, et al. Progressing nanotechnology to improve targeted cancer treatment: Overcoming hurdles in its clinical implementation. Mol Cancer 2023; 22(1): 169. doi: 10.1186/s12943-023-01865-0 PMID: 37814270
- Kyriakides TR, Raj A, Tseng TH, et al. Biocompatibility of nanomaterials and their immunological properties. Biomed Mater 2021; 16(4): 042005. doi: 10.1088/1748-605X/abe5fa PMID: 33578402
- Abbasi R, Shineh G, Mobaraki M, Doughty S, Tayebi L. Structural parameters of nanoparticles affecting their toxicity for biomedical applications: A review. J Nanopart Res 2023; 25(3): 43. doi: 10.1007/s11051-023-05690-w PMID: 36875184
- Dessale M, Mengistu G, Mengist HM. Nanotechnology: A promising approach for cancer diagnosis, therapeutics and theragnosis. Int J Nanomed 2022; 17: 3735-49. doi: 10.2147/IJN.S378074 PMID: 36051353
- Verma J, Warsame C, Seenivasagam RK, Katiyar NK, Aleem E, Goel S. Nanoparticle-mediated cancer cell therapy: Basic science to clinical applications. Cancer Metastasis Rev 2023; 42(3): 601-27. doi: 10.1007/s10555-023-10086-2 PMID: 36826760
- Kong X, Gao P, Wang J, Fang Y, Hwang KC. Advances of medical nanorobots for future cancer treatments. J Hematol Oncol 2023; 16(1): 74. doi: 10.1186/s13045-023-01463-z PMID: 37452423
- Subhan MA, Yalamarty SSK, Filipczak N, Parveen F, Torchilin VP. Recent advances in tumor targeting via EPR effect for cancer treatment. J Pers Med 2021; 11(6): 571. doi: 10.3390/jpm11060571 PMID: 34207137
- Argenziano M, Arpicco S, Brusa P, et al. Developing actively targeted nanoparticles to fight cancer: Focus on italian research. Pharmaceutics 2021; 13(10): 1538. doi: 10.3390/pharmaceutics13101538 PMID: 34683830
- Tiwari H, Rai N, Singh S, et al. Recent advances in nanomaterials-based targeted drug delivery for preclinical cancer diagnosis and therapeutics. Bioengineering 2023; 10(7): 760. doi: 10.3390/bioengineering10070760 PMID: 37508788
- Malik S, Muhammad K, Waheed Y. Emerging applications of nanotechnology in healthcare and medicine. Molecules 2023; 28(18): 6624. doi: 10.3390/molecules28186624 PMID: 37764400
- Kumbhar PR, Kumar P, Lasure A, Velayutham R, Mandal D. An updated landscape on nanotechnology-based drug delivery, immunotherapy, vaccinations, imaging, and biomarker detections for cancers: Recent trends and future directions with clinical success. Discover Nano 2023; 18(1): 156. doi: 10.1186/s11671-023-03913-6 PMID: 38112935
- Yusuf A, Almotairy ARZ, Henidi H, Alshehri OY, Aldughaim MS. Nanoparticles as drug delivery systems: A review of the implication of nanoparticles physicochemical properties on responses in biological systems. Polymers 2023; 15(7): 1596. doi: 10.3390/polym15071596 PMID: 37050210
- Gawali P, Saraswat A, Bhide S, Gupta S, Patel K. Human solid tumors and clinical relevance of the enhanced permeation and retention effect: A golden gate for nanomedicine in preclinical studies? Nanomedicine 2023; 18(2): 169-90. doi: 10.2217/nnm-2022-0257 PMID: 37042320
- Kashyap BK, Singh VV, Solanki MK, Kumar A, Ruokolainen J, Kesari KK. Smart nanomaterials in cancer theranostics: Challenges and opportunities. ACS Omega 2023; 8(16): 14290-320. doi: 10.1021/acsomega.2c07840 PMID: 37125102
- Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2007; 2(12): 751-60. doi: 10.1038/nnano.2007.387 PMID: 18654426
- Maeda H, Nakamura H, Fang J. The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv Drug Deliv Rev 2013; 65(1): 71-9. doi: 10.1016/j.addr.2012.10.002 PMID: 23088862
- Ganta S, Devalapally H, Shahiwala A, Amiji M. A review of stimuli-responsive nanocarriers for drug and gene delivery. J Control Release 2008; 126(3): 187-204. doi: 10.1016/j.jconrel.2007.12.017 PMID: 18261822
- Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR. Nanoparticle-based medicines: A review of FDA-approved materials and clinical trials to date. Pharm Res 2016; 33(10): 2373-87. doi: 10.1007/s11095-016-1958-5 PMID: 27299311
- Jokerst JV, Gambhir SS. The era of personalized oncology: From diagnosis to treatment with nanomicelles. Int J Nanomed 2011; 6: 211-26.
- Farokhzad OC, Langer R. Impact of nanotechnology on drug delivery. ACS Nano 2009; 3(1): 16-20. doi: 10.1021/nn900002m PMID: 19206243
- Masood F. Polymeric nanoparticles for targeted drug delivery system for cancer therapy. Mater Sci Eng C 2016; 60: 569-78. doi: 10.1016/j.msec.2015.11.067 PMID: 26706565
- Vijayan V, Reddy KR, Sakthivel S, Swetha C. Optimization and charaterization of repaglinide biodegradable polymeric nanoparticle loaded transdermal patchs: In vitro and in vivo studies. Colloids Surf B Biointerfaces 2013; 111: 150-5. doi: 10.1016/j.colsurfb.2013.05.020 PMID: 23792547
- Shastri V. Non-degradable biocompatible polymers in medicine: Past, present and future. Curr Pharm Biotechnol 2003; 4(5): 331-7. doi: 10.2174/1389201033489694 PMID: 14529423
- Elsabahy M, Wooley KL. Design of polymeric nanoparticles for biomedical delivery applications. Chem Soc Rev 2012; 41(7): 2545-61. doi: 10.1039/c2cs15327k PMID: 22334259
- Martín-Saldaña S, Palao-Suay R, Aguilar MR, Ramírez-Camacho R, San Román J. Polymeric nanoparticles loaded with dexamethasone or α-tocopheryl succinate to prevent cisplatin-induced ototoxicity. Acta Biomater 2017; 53: 199-210. doi: 10.1016/j.actbio.2017.02.019 PMID: 28213099
- Wang J, Sui L, Huang J, et al. MoS2-based nanocomposites for cancer diagnosis and therapy. Bioact Mater 2021; 6(11): 4209-42. doi: 10.1016/j.bioactmat.2021.04.021 PMID: 33997503
- Huang J, Huang Q, Liu M, Chen Q, Ai K. Emerging bismuth chalcogenides based nanodrugs for cancer radiotherapy. Front Pharmacol 2022; 13: 844037. doi: 10.3389/fphar.2022.844037 PMID: 35250594
- Lai WF. Non-conjugated polymers with intrinsic luminescence for drug delivery. J Drug Deliv Sci Technol 2020; 59: 101916. doi: 10.1016/j.jddst.2020.101916
- Ajorlou E, Khosroushahi AY. Trends on polymer and lipid-based nanostructures for parenteral drug delivery to tumors. Cancer Chemother Pharmacol 2017; 79(2): 251-65. doi: 10.1007/s00280-016-3168-6 PMID: 27744564
- Teixeira MC, Carbone C, Souto EB. Beyond liposomes: Recent advances on lipid based nanostructures for poorly soluble/poorly permeable drug delivery. Prog Lipid Res 2017; 68: 1-11. doi: 10.1016/j.plipres.2017.07.001 PMID: 28778472
- Andreiuk B, Reisch A, Lindecker M, et al. Fluorescent polymer nanoparticles for cell barcoding in vitro and in vivo. Small 2017; 13(38): 1701582. doi: 10.1002/smll.201701582 PMID: 28791769
- Kang EB, Lee JE, Mazrad ZAI, In I, Jeong JH, Park SY. pH-Responsible fluorescent carbon nanoparticles for tumor selective theranostics via pH-turn on/off fluorescence and photothermal effect in vivo and in vitro. Nanoscale 2018; 10(5): 2512-23. doi: 10.1039/C7NR07900A PMID: 29344592
- Tang C, Edelstein J, Mikitsh JL, et al. Biodistribution and fate of core-labeled125 I polymeric nanocarriers prepared by Flash NanoPrecipitation (FNP). J Mater Chem B Mater Biol Med 2016; 4(14): 2428-34. doi: 10.1039/C5TB02172C PMID: 27073688
- Goel M, Mackeyev Y, Krishnan S. Radiolabeled nanomaterial for cancer diagnostics and therapeutics: Principles and concepts. Cancer Nanotechnol 2023; 14(1): 15. doi: 10.1186/s12645-023-00165-y PMID: 36865684
- Dey R, Xia Y, Nieh MP, Burkhard P. Molecular design of a minimal peptide nanoparticle. ACS Biomater Sci Eng 2017; 3(5): 724-32. doi: 10.1021/acsbiomaterials.6b00243 PMID: 33440498
- Thakkar D, Gupta R, Mohan P, Monson K, Rapoport N. Overcoming biological barriers with ultrasound. AIP Conf Proc 2012; 1481: 381-7. doi: 10.1063/1.4757365 PMID: 24839333
- Barua S, Mitragotri S. Challenges associated with penetration of nanoparticles across cell and tissue barriers: A review of current status and future prospects. Nano Today 2014; 9(2): 223-43. doi: 10.1016/j.nantod.2014.04.008 PMID: 25132862
- Zhou Y, Peng Z, Seven ES, Leblanc RM. Crossing the blood- brain barrier with nanoparticles. J Control Release 2018; 270: 290-303. doi: 10.1016/j.jconrel.2017.12.015 PMID: 29269142
- Tharkar P, Varanasi R, Wong WSF, Jin CT, Chrzanowski W. Nano-enhanced drug delivery and therapeutic ultrasound for cancer treatment and beyond. Front Bioeng Biotechnol 2019; 7: 324. doi: 10.3389/fbioe.2019.00324 PMID: 31824930
- Lockman PR, Mumper RJ, Khan MA, Allen DD. Nanoparticle technology for drug delivery across the blood-brain barrier. Drug Dev Ind Pharm 2002; 28(1): 1-13. doi: 10.1081/DDC-120001481 PMID: 11858519
- Ali ES, Sharker SM, Islam MT, et al. Targeting cancer cells with nanotherapeutics and nanodiagnostics: Current status and future perspectives. Semin Cancer Biol 2021; 69: 52-68. doi: 10.1016/j.semcancer.2020.01.011 PMID: 32014609
- Rosenblum D, Joshi N, Tao W, Karp JM, Peer D. Progress and challenges towards targeted delivery of cancer therapeutics. Nat Commun 2018; 9(1): 1410. doi: 10.1038/s41467-018-03705-y PMID: 29650952
- Shi J, Xiao Z, Kamaly N, Farokhzad OC. Self-assembled targeted nanoparticles: Evolution of technologies and bench to bedside translation. Acc Chem Res 2011; 44(10): 1123-34. doi: 10.1021/ar200054n PMID: 21692448
- Sharma P, Bhargava M. Applications and characteristics of nanomaterials in industrial environment. Res Dev 2013; 3(4): 63-72.
- Song S, Qin Y, He Y, Huang Q, Fan C, Chen HY. Functional nanoprobes for ultrasensitive detection of biomolecules. Chem Soc Rev 2010; 39(11): 4234-43. doi: 10.1039/c000682n PMID: 20871878
- Osaki T, Yokoe I, Sunden Y, et al. Efcacy of 5-aminolevulinic acid in photodynamic detection and photodynamic therapy in veterinary medicine. Cancers 2019; 11(4): 495. doi: 10.3390/cancers11040495 PMID: 30959982
- Gao W, Wang Z, Lv L, et al. Photodynamic therapy induced enhancement of tumor vasculature permeability using an upconversion nanoconstruct for improved intratumoral nanoparticle delivery in deep tissues. Theranostics 2016; 6(8): 1131-44. doi: 10.7150/thno.15262 PMID: 27279907
- Horst MF, Coral DF, Fernández van Raap MB, Alvarez M, Lassalle V. Hybrid nanomaterials based on gum Arabic and magnetite for hyperthermia treatments. Mater Sci Eng C 2017; 74: 443-50. doi: 10.1016/j.msec.2016.12.035 PMID: 28254315
- Samad A, Sultana Y, Aqil M. Liposomal drug delivery systems: An update review. Curr Drug Deliv 2007; 4(4): 297-305. doi: 10.2174/156720107782151269 PMID: 17979650
- Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS, Farokhzad OC. Nanoparticles in medicine: Therapeutic applications and developments. Clin Pharmacol Ther 2008; 83(5): 761-9. doi: 10.1038/sj.clpt.6100400 PMID: 17957183
- Portney NG, Ozkan M. Nano-oncology: Drug delivery, imaging, and sensing. Anal Bioanal Chem 2006; 384(3): 620-30. doi: 10.1007/s00216-005-0247-7 PMID: 16440195
- Cattel L, Ceruti M, Dosio F. From conventional to stealth liposomes: A new frontier in cancer chemotherapy. Tumori 2003; 89(3): 237-49. doi: 10.1177/030089160308900302 PMID: 12908776
- James ND, Coker RJ, Tomlinson D, et al. Liposomal doxorubicin (Doxil): An effective new treatment for Kaposis sarcoma in AIDS. Clin Oncol (R Coll Radiol) 1994; 6(5): 294-6. doi: 10.1016/S0936-6555(05)80269-9 PMID: 7530036
- Laginha KM, Verwoert S, Charrois GJR, Allen TM. Determination of doxorubicin levels in whole tumor and tumor nuclei in murine breast cancer tumors. Clin Cancer Res 2005; 11(19): 6944-9. doi: 10.1158/1078-0432.CCR-05-0343 PMID: 16203786
- Sriraman SK, Geraldo V, Luther E, Degterev A, Torchilin V. Cytotoxicity of PEGylated liposomes co-loaded with novel pro-apoptotic drug NCL-240 and the MEK inhibitor cobimetinib against colon carcinoma in vitro. J Control Release 2015; 220(Pt A): 160-8. doi: 10.1016/j.jconrel.2015.10.037 PMID: 26497930
- Batist G, Gelmon KA, Chi KN, et al. Safety, pharmacokinetics, and efficacy of CPX-1 liposome injection in patients with advanced solid tumors. Clin Cancer Res 2009; 15(2): 692-700. doi: 10.1158/1078-0432.CCR-08-0515 PMID: 19147776
- Deng ZJ, Morton SW, Ben-Akiva E, Dreaden EC, Shopsowitz KE, Hammond PT. Layer-by-layer nanoparticles for systemic codelivery of an anticancer drug and siRNA for potential triple-negative breast cancer treatment. ACS Nano 2013; 7(11): 9571-84. doi: 10.1021/nn4047925 PMID: 24144228
- Zhang H, Li R, Lu X, Mou Z, Lin G. Docetaxel-loaded liposomes: Preparation, pH sensitivity, Pharmacokinetics, and tissue distribution. J Zhejiang Univ Sci B 2012; 13(12): 981-9. doi: 10.1631/jzus.B1200098 PMID: 23225853
- Zhang N, Su Z, Liang Y, Yao Y. pH-Sensitive carboxymethyl chitosan-modified cationic liposomes for sorafenib and siRNA co-delivery. Int J Nanomed 2015; 10: 6185-97. doi: 10.2147/IJN.S90524 PMID: 26491291
- Naseri N, Valizadeh H, Zakeri-Milani P. Solid lipid nanoparticles and nanostructured lipid carriers: Structure, preparation and application. Adv Pharm Bull 2015; 5(3): 305-13. doi: 10.15171/apb.2015.043 PMID: 26504751
- Kraft JC, Freeling JP, Wang Z, Ho RJY. Emerging research and clinical development trends of liposome and lipid nanoparticle drug delivery systems. J Pharm Sci 2014; 103(1): 29-52. doi: 10.1002/jps.23773 PMID: 24338748
- Das S, Chaudhury A. Recent advances in lipid nanoparticle formulations with solid matrix for oral drug delivery. AAPS PharmSciTech 2011; 12(1): 62-76. doi: 10.1208/s12249-010-9563-0 PMID: 21174180
- Selvamuthukumar S, Velmurugan R. Nanostructured lipid carriers: A potential drug carrier for cancer chemotherapy. Lipids Health Dis 2012; 11(1): 159. doi: 10.1186/1476-511X-11-159 PMID: 23167765
- Iqbal MA, Md S, Sahni JK, Baboota S, Dang S, Ali J. Nanostructured lipid carriers system: Recent advances in drug delivery. J Drug Target 2012; 20(10): 813-30. doi: 10.3109/1061186X.2012.716845 PMID: 22931500
- Ramezani Dana H, Ebrahimi F. Synthesis, properties, and applications of polylactic acid-based polymers. Polym Eng Sci 2023; 63(1): 22-43. doi: 10.1002/pen.26193
- Cheng Z, Li M, Dey R, Chen Y. Nanomaterials for cancer therapy: Current progress and perspectives. J Hematol Oncol 2021; 14(1): 85. doi: 10.1186/s13045-021-01096-0 PMID: 34059100
- Peltek OO, Muslimov AR, Zyuzin MV, Timin AS. Current outlook on radionuclide delivery systems: From design consideration to translation into clinics. J Nanobiotechnol 2019; 17(1): 90. doi: 10.1186/s12951-019-0524-9 PMID: 31434562
- Zhou H, Ge J, Miao Q, et al. Biodegradable inorganic nanoparticles for cancer theranostics: Insights into the degradation behavior. Bioconjug Chem 2020; 31(2): 315-31. doi: 10.1021/acs.bioconjchem.9b00699 PMID: 31765561
- Shetty A, Chandra S. Inorganic hybrid nanoparticles in cancer theranostics: Understanding their combinations for better clinical translation. Mater Today Chem 2020; 18: 100381. doi: 10.1016/j.mtchem.2020.100381
- Gobbo OL, Sjaastad K, Radomski MW, Volkov Y, Prina-Mello A. Magnetic nanoparticles in cancer theranostics. Theranostics 2015; 5(11): 1249-63. doi: 10.7150/thno.11544 PMID: 26379790
- Kaphle A, Navya PN, Umapathi A, Daima HK. Nanomaterials for agriculture, food and environment: Applications, toxicity and regulation. Environ Chem Lett 2018; 16(1): 43-58. doi: 10.1007/s10311-017-0662-y
- Youssef FS, El-Banna HA, Elzorba HY, Galal AM. Application of some nanoparticles in the field of veterinary medicine. Int J Vet Sci Med 2019; 7(1): 78-93. doi: 10.1080/23144599.2019.1691379 PMID: 32010725
- Madhyastha H, Madhyastha R, Thakur A, et al. c-Phycocyanin primed silver nano conjugates: Studies on red blood cell stress resilience mechanism. Colloids Surf B Biointerfaces 2020; 194: 111211. doi: 10.1016/j.colsurfb.2020.111211 PMID: 32615521
- Austin LA, Kang B, Yen CW, El-Sayed MA. Plasmonic imaging of human oral cancer cell communities during programmed cell death by nuclear-targeting silver nanoparticles. J Am Chem Soc 2011; 133(44): 17594-7. doi: 10.1021/ja207807t PMID: 21981727
- Liu K, Liu K, Liu J, et al. Copper chalcogenide materials as photothermal agents for cancer treatment. Nanoscale 2020; 12(5): 2902-13. doi: 10.1039/C9NR08737K PMID: 31967164
- Yun B, Zhu H, Yuan J, Sun Q, Li Z. Synthesis, modification and bioapplications of nanoscale copper chalcogenides. J Mater Chem B Mater Biol Med 2020; 8(22): 4778-812. doi: 10.1039/D0TB00182A PMID: 32226981
- Netam AK, Prasad J, Satapathy T, Jain P. Evaluation for toxicity and improved therapeutic effectiveness of natural polymer co-administered along with venocin in acetic acid-induced colitis using rat model BT - advances in biomedical engineering and technology. In: Rizvanov AA, Singh BK, Ganasala P, Eds. Singapore: Springer Singapore 2021; pp. 207-20.
- Zhao Y, Song M, Yang X, et al. Amorphous Ag2-xCuxS quantum dots: "All-in-one" theranostic nanomedicines for near-infrared fluorescence/photoacoustics dual-modal-imaging-guided photothermal therapy. Chem Eng J 2020; 399: 125777. doi: 10.1016/j.cej.2020.125777
- Li X, Pan Z, Xiang C, et al. Structure transformable nanoparticles for photoacoustic imaging-guided photothermal ablation of tumors via enzyme-induced multistage delivery. Chem Eng J 2021; 421: 127747. doi: 10.1016/j.cej.2020.127747
- Wang S, Zhang L, Zhao J, He M, Huang Y, Zhao S. A tumor microenvironment-induced absorption red-shifted polymer nanoparticle for simultaneously activated photoacoustic imaging and photothermal therapy. Sci Adv 2021; 7(12): eabe3588.
- Sievers EL, Senter PD. Antibody-drug conjugates in cancer therapy. Annu Rev Med 2013; 64(1): 15-29. doi: 10.1146/annurev-med-050311-201823 PMID: 23043493
- Nieto C, Vega MA, Martín del Valle EM. Trastuzumab: More than a guide in HER2-positive cancer nanomedicine. Nanomaterials 2020; 10(9): 1674. doi: 10.3390/nano10091674 PMID: 32859026
- Gavas S, Quazi S, Karpiński TM. Nanoparticles for cancer therapy: Current progress and challenges. Nanoscale Res Lett 2021; 16(1): 173. doi: 10.1186/s11671-021-03628-6 PMID: 34866166
- Fu Q, Wang J, Liu H. Chemo-immune synergetic therapy of esophageal carcinoma: Trastuzumab modified, cisplatin and fluorouracil co-delivered lipidpolymer hybrid nanoparticles. Drug Deliv 2020; 27(1): 1535-43. doi: 10.1080/10717544.2020.1837294 PMID: 33118428
- Liang S, Sun M, Lu Y, et al. Cytokine-induced killer cells-assisted tumor-targeting delivery of HER-2 monoclonal antibody-conjugated gold nanostars with NIR photosensitizer for enhanced therapy of cancer. J Mater Chem B Mater Biol Med 2020; 8(36): 8368-82. doi: 10.1039/D0TB01391A PMID: 32966532
- de Charette M, Marabelle A, Houot R. Turning tumour cells into antigen presenting cells: The next step to improve cancer immunotherapy? Eur J Cancer 2016; 68: 134-47. doi: 10.1016/j.ejca.2016.09.010 PMID: 27755997
- Xu P, Wang R, Yang W, et al. A DM1-doped porous gold nanoshell system for NIR accelerated redox-responsive release and triple modal imaging guided photothermal synergistic chemotherapy. J Nanobiotechnol 2021; 19(1): 77. doi: 10.1186/s12951-021-00824-5 PMID: 33741008
- Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine: Progress, challenges and opportunities. Nat Rev Cancer 2017; 17(1): 20-37. doi: 10.1038/nrc.2016.108 PMID: 27834398
- Kubota T, Kuroda S, Kanaya N, Morihiro T, Aoyama K, Yoshihiko K. HER2-targeted gold nanoparticles potentially overcome resistance to trastuzumab in gastric cancer. Nanomed Nanotechnol Biol Med 2018; 14(6): 1919-29.
- György B, Szabó TG, Pásztói M, et al. Membrane vesicles, current state-of-the-art: Emerging role of extracellular vesicles. Cell Mol Life Sci 2011; 68(16): 2667-88. doi: 10.1007/s00018-011-0689-3 PMID: 21560073
- Raposo G, Stoorvogel W. Extracellular vesicles: Exosomes, microvesicles, and friends. J Cell Biol 2013; 200(4): 373-83. doi: 10.1083/jcb.201211138 PMID: 23420871
- Colombo M, Raposo G, Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 2014; 30(1): 255-89. doi: 10.1146/annurev-cellbio-101512-122326 PMID: 25288114
- Batrakova EV, Kim MS. Using exosomes, naturally-equipped nanocarriers, for drug delivery. J Control Release 2015; 219: 396-405. doi: 10.1016/j.jconrel.2015.07.030 PMID: 26241750
- Phelps MP, Yang H, Patel S, Rahman MM, McFadden G, Chen E. Oncolytic virus-mediated RAS targeting in rhabdomyosarcoma. Mol Ther Oncolytics 2018; 11: 52-61. doi: 10.1016/j.omto.2018.09.001 PMID: 30364635
- Sudhir Dhote N, Dineshbhai Patel R, Kuwar U, Agrawal M, Alexander A, Jain P. Application of thermoresponsive smart polymers based in situ gel as a novel carrier for tumor targeting. Curr Cancer Drug Targets 2024; 24(4): 375-96.
- Moss KH, Popova P, Hadrup SR, Astakhova K, Taskova M. Lipid nanoparticles for delivery of therapeutic RNA oligonucleotides. Mol Pharm 2019; 16(6): 2265-77. doi: 10.1021/acs.molpharmaceut.8b01290 PMID: 31063396
- Briolay T, Petithomme T, Fouet M, Nguyen-Pham N, Blanquart C, Boisgerault N. Delivery of cancer therapies by synthetic and bio-inspired nanovectors. Mol Cancer 2021; 20(1): 55. doi: 10.1186/s12943-021-01346-2 PMID: 33761944
- Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJA. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 2011; 29(4): 341-5. doi: 10.1038/nbt.1807 PMID: 21423189
- Kim MS, Haney MJ, Zhao Y, et al. Engineering macrophage-derived exosomes for targeted paclitaxel delivery to pulmonary metastases: In vitro and in vivo evaluations. Nanomedicine 2018; 14(1): 195-204. doi: 10.1016/j.nano.2017.09.011 PMID: 28982587
- Jaiswal M, Dudhe R, Sharma PK. Nanoemulsion: An advanced mode of drug delivery system. 3 Biotech 2015; 5: 123-7. doi: 10.1007/s13205-014-0214-0
- Gorain B, Choudhury H, Nair AB, Dubey SK, Kesharwani P. Theranostic application of nanoemulsions in chemotherapy. Drug Discov Today 2020; 25(7): 1174-88. doi: 10.1016/j.drudis.2020.04.013 PMID: 32344042
- Gadhave DG, Kokare CR. Nanostructured lipid carriers engineered for intranasal delivery of teriflunomide in multiple sclerosis: Optimization and in vivo studies. Drug Dev Ind Pharm 2019; 45(5): 839-51. doi: 10.1080/03639045.2019.1576724 PMID: 30702966
- Prasad J, Netam AK, Satapathy T, Prakash Rao S, Jain P. Anti-hyperlipidemic and antioxidant activities of a combination of terminalia arjuna and commiphora mukul on experimental animals BT - advances in biomedical engineering and technology. In: Rizvanov AA, Singh BK, Ganasala P, Eds. Singapore: Springer Singapore 2021; pp. 175-88.
- Azambuja JH, Schuh RS, Michels LR, et al. Nasal administration of cationic nanoemulsions as CD73-siRNA delivery system for glioblastoma treatment: A new therapeutical approach. Mol Neurobiol 2020; 57(2): 635-49. doi: 10.1007/s12035-019-01730-6 PMID: 31407144
- Du M, Yang Z, Lu W, et al. Design and development of spirulina polysaccharide-loaded nanoemulsions with improved the antitumor effects of paclitaxel. J Microencapsul 2020; 37(6): 403-12. doi: 10.1080/02652048.2020.1767224 PMID: 32401077
- Dianzani C, Monge C, Miglio G, et al. Nanoemulsions as delivery systems for poly-chemotherapy aiming at melanoma treatment. Cancers 2020; 12(5): 1198. doi: 10.3390/cancers12051198 PMID: 32397484
- Ribeiro EB, de Marchi PGF, Honorio-França AC, França EL, Soler MAG. Interferon-gamma carrying nanoemulsion with immunomodulatory and anti-tumor activities. J Biomed Mater Res A 2020; 108(2): 234-45. doi: 10.1002/jbm.a.36808 PMID: 31587469
- Meng L, Xia X, Yang Y, et al. Co-encapsulation of paclitaxel and baicalein in nanoemulsions to overcome multidrug resistance via oxidative stress augmentation and P-glycoprotein inhibition. Int J Pharm 2016; 513(1-2): 8-16. doi: 10.1016/j.ijpharm.2016.09.001 PMID: 27596118
- Balachandran P, Pugh ND, Ma G, Pasco DS. Toll-like receptor 2-dependent activation of monocytes by Spirulina polysaccharide and its immune enhancing action in mice. Int Immunopharmacol 2006; 6(12): 1808-14. doi: 10.1016/j.intimp.2006.08.001 PMID: 17052671
- Baker JR Jr. Dendrimer-based nanoparticles for cancer therapy. Hematology 2009; 2009(1): 708-19. doi: 10.1182/asheducation-2009.1.708 PMID: 20008257
- Bhairam M, Prasad J, Verma K, Jain P, Gidwani B. Formulation of transdermal patch of losartan potassium & glipizide for the treatment of hypertension & diabetes. Mater Today Proc 2023; 83: 59-68. doi: 10.1016/j.matpr.2023.01.147
- Lo ST, Kumar A, Hsieh JT, Sun X. Dendrimer nanoscaffolds for potential theranostics of prostate cancer with a focus on radiochemistry. Mol Pharm 2013; 10(3): 793-812. doi: 10.1021/mp3005325 PMID: 23294202
- Li D, Fan Y, Shen M, Bányai I, Shi X. Design of dual drug-loaded dendrimer/carbon dot nanohybrids for fluorescence imaging and enhanced chemotherapy of cancer cells. J Mater Chem B Mater Biol Med 2019; 7(2): 277-85. doi: 10.1039/C8TB02723D PMID: 32254552
- Pishavar E, Ramezani M, Hashemi M. Co-delivery of doxorubicin and TRAIL plasmid by modified PAMAM dendrimer in colon cancer cells, in vitro and in vivo evaluation. Drug Dev Ind Pharm 2019; 45(12): 1931-9. doi: 10.1080/03639045.2019.1680995 PMID: 31609130
- Tarach P, Janaszewska A. Recent advances in preclinical research using PAMAM dendrimers for cancer gene therapy. Int J Mol Sci 2021; 22(6): 2912. doi: 10.3390/ijms22062912 PMID: 33805602
- Islam M, Huang Y, Jain P, Fan B, Tong L, Wang F. Enzymatic hydrolysis of soy protein to high moisture textured meat analogue with emphasis on antioxidant effects: As a tool to improve techno- functional property. Biocatal Agric Biotechnol 2023; 50: 102700. doi: 10.1016/j.bcab.2023.102700
- Thi TTH, Suys EJA, Lee JS, Nguyen DH, Park KD, Truong NP. Lipid-based nanoparticles in the clinic and clinical trials: From cancer nanomedicine to COVID-19 vaccines. Vaccines 2021; 9(4): 359. doi: 10.3390/vaccines9040359 PMID: 33918072
- Olusanya T, Haj Ahmad R, Ibegbu D, Smith J, Elkordy A. Liposomal drug delivery systems and anticancer drugs. Molecules 2018; 23(4): 907. doi: 10.3390/molecules23040907 PMID: 29662019
- Lai X, Jiang H, Wang X. Biodegradable metal organic frameworks for multimodal imaging and targeting theranostics. Biosensors 2021; 11(9): 299. doi: 10.3390/bios11090299 PMID: 34562889
- Anselmo A C, Mitragotri S. Nanoparticles in the clinic: An update. Bioeng Transl Med 2019; 4(3): e10143.
- Chen F, Ehlerding EB, Cai W. Theranostic nanoparticles. J Nucl Med 2014; 55(12): 1919-22. doi: 10.2967/jnumed.114.146019 PMID: 25413134
- Rajakumar G, Zhang XH, Gomathi T, et al. Current use of carbon-based materials for biomedical applications. A prospective and review. Processes 2020; 8(3): 355. doi: 10.3390/pr8030355
- Dhas N, Pastagia M, Sharma A, et al. Organic quantum dots: An ultrasmall nanoplatform for cancer theranostics. J Control Release 2022; 348: 798-824. doi: 10.1016/j.jconrel.2022.06.033 PMID: 35752250
- Saleem J, Wang L, Chen C. Carbon-based nanomaterials for cancer therapy via targeting tumor microenvironment. Adv Healthcare Mater 2018; 7(20): 1800525. doi: 10.1002/adhm.201800525 PMID: 30073803
- Fadeel B, Bussy C, Merino S, et al. Safety assessment of graphene-based materials: Focus on human health and the environment. ACS Nano 2018; 12(11): 10582-620. doi: 10.1021/acsnano.8b04758 PMID: 30387986
- Ou L, Song B, Liang H, et al. Toxicity of graphene-family nanoparticles: A general review of the origins and mechanisms. Part Fibre Toxicol 2016; 13(1): 57. doi: 10.1186/s12989-016-0168-y PMID: 27799056
- Krishna KV, Ménard-Moyon C, Verma S, Bianco A. Graphene-based nanomaterials for nanobiotechnology and biomedical applications. Nanomedicine 2013; 8(10): 1669-88. doi: 10.2217/nnm.13.140 PMID: 24074389
- Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomically thin carbon films. Science 2004; 306(5696): 666-9. doi: 10.1126/science.1102896 PMID: 15499015
- Liu J, Dong J, Zhang T, Peng Q. Graphene-based nanomaterials and their potentials in advanced drug delivery and cancer therapy. J Control Release 2018; 286: 64-73. doi: 10.1016/j.jconrel.2018.07.034 PMID: 30031155
- Verde V, Longo A, Cucci LM, et al. Anti-angiogenic and anti-proliferative graphene oxide nanosheets for tumor cell therapy. Int J Mol Sci 2020; 21(15): 5571. doi: 10.3390/ijms21155571 PMID: 32759830
- Rebuttini V, Fazio E, Santangelo S, et al. Chemical modification of graphene oxide through diazonium chemistry and its influence on the structureproperty relationships of graphene oxideiron oxide nanocomposites. Chemistry 2015; 21(35): 12465-74. doi: 10.1002/chem.201500836 PMID: 26178747
- Jain A, Jain P, Soni P, Tiwari A, Tiwari SP. Design and characterization of silver nanoparticles of different species of curcuma in the treatment of cancer using human colon cancer cell line (HT-29). J Gastrointest Cancer 2023; 54(1): 90-5. doi: 10.1007/s12029-021-00788-7 PMID: 35043370
- Ema M, Gamo M, Honda K. A review of toxicity studies on graphene-based nanomaterials in laboratory animals. Regul Toxicol Pharmacol 2017; 85: 7-24. doi: 10.1016/j.yrtph.2017.01.011 PMID: 28161457
- Zhang Z, Liu Q, Gao D, et al. Graphene oxide as a multifunctional platform for raman and fluorescence imaging of cells. Small 2015; 11(25): 3000-5. doi: 10.1002/smll.201403459 PMID: 25708171
- Geim AK. Graphene: Status and prospects. Science 2009; 324(5934): 1530-4. doi: 10.1126/science.1158877 PMID: 19541989
- Goenka S, Sant V, Sant S. Graphene-based nanomaterials for drug delivery and tissue engineering. J Control Release 2014; 173: 75-88. doi: 10.1016/j.jconrel.2013.10.017 PMID: 24161530
- Ma J, Liu R, Wang X, et al. Crucial role of lateral size for graphene oxide in activating macrophages and stimulating pro-inflammatory responses in cells and animals. ACS Nano 2015; 9(10): 10498-515. doi: 10.1021/acsnano.5b04751 PMID: 26389709
- Feito MJ, Vila M, Matesanz MC, et al. In vitro evaluation of graphene oxide nanosheets on immune function. J Colloid Interface Sci 2014; 432: 221-8. doi: 10.1016/j.jcis.2014.07.004 PMID: 25086397
- Burnett M, Abuetabh Y, Wronski A, et al. Graphene oxide nanoparticles induce apoptosis in wild-type and CRISPR/Cas9-IGF/IGFBP3 knocked-out osteosarcoma cells. J Cancer 2020; 11(17): 5007-23. doi: 10.7150/jca.46464 PMID: 32742448
- Najafi M, Mortezaee K, Majidpoor J. Cancer stem cell (CSC) resistance drivers. Life Sci 2019; 234: 116781. doi: 10.1016/j.lfs.2019.116781 PMID: 31430455
- Fiorillo M, Verre AF, Iliut M, et al. Graphene oxide selectively targets cancer stem cells, across multiple tumor types: Implications for non-toxic cancer treatment, via "differentiation-based nano-therapy". Oncotarget 2015; 6(6): 3553-62. doi: 10.18632/oncotarget.3348 PMID: 25708684
- Meng J, Yang M, Jia F, et al. Subcutaneous injection of water-soluble multi-walled carbon nanotubes in tumor-bearing mice boosts the host immune activity. Nanotechnology 2010; 21(14): 145104. doi: 10.1088/0957-4484/21/14/145104 PMID: 20234075
- Meng J, Meng J, Duan J, et al. Carbon nanotubes conjugated to tumor lysate protein enhance the efficacy of an antitumor immunotherapy. Small 2008; 4(9): 1364-70. doi: 10.1002/smll.200701059 PMID: 18720440
- Sundaram P, Abrahamse H. Effective photodynamic therapy for colon cancer cells using chlorin e6 coated hyaluronic acid-based carbon nanotubes. Int J Mol Sci 2020; 21(13): 4745. doi: 10.3390/ijms21134745 PMID: 32635295
- Park YH, Park SY, In I. Direct noncovalent conjugation of folic acid on reduced graphene oxide as anticancer drug carrier. J Ind Eng Chem 2015; 30: 190-6. doi: 10.1016/j.jiec.2015.05.021
- Liu Y, Zhong H, Qin Y, Zhang Y, Liu X, Zhang T. Non-covalent hydrophilization of reduced graphene oxide used as a paclitaxel vehicle. RSC Advances 2016; 6(36): 30184-93. doi: 10.1039/C6RA04349F
- Masoudipour E, Kashanian S, Maleki N. A targeted drug delivery system based on dopamine functionalized nano graphene oxide. Chem Phys Lett 2017; 668: 56-63. doi: 10.1016/j.cplett.2016.12.019
- Jafarizad A, Aghanejad A, Sevim M, et al. Gold nanoparticles and reduced graphene oxide-gold nanoparticle composite materials as covalent drug delivery systems for breast cancer treatment. ChemistrySelect 2017; 2(23): 6663-72. doi: 10.1002/slct.201701178
- Nie X, Tang J, Liu Y, et al. Fullerenol inhibits the cross-talk between bone marrow-derived mesenchymal stem cells and tumor cells by regulating MAPK signaling. Nanomedicine 2017; 13(6): 1879-90. doi: 10.1016/j.nano.2017.03.013 PMID: 28365417
- Rao Z, Ge H, Liu L, et al. Carboxymethyl cellulose modifed graphene oxide as pH-sensitive drug delivery system. Int J Biol Macromol 2018; 107(Part A): 1184-92.
- Gu YJ, Cheng J, Jin J, Cheng SH, Wong WT. Development and evaluation of pH-responsive single-walled carbon nanotube-doxorubicin complexes in cancer cells. Int J Nanomed 2011; 6: 2889-98. PMID: 22131835
- Meng H, Xing G, Sun B, et al. Potent angiogenesis inhibition by the particulate form of fullerene derivatives. ACS Nano 2010; 4(5): 2773-83. doi: 10.1021/nn100448z PMID: 20429577
- Zhou L, Li Z, Liu Z, Ren J, Qu X. Luminescent carbon dot-gated nanovehicles for pH-triggered intracellular controlled release and imaging. Langmuir 2013; 29(21): 6396-403. doi: 10.1021/la400479n PMID: 23642102
- Dong X, Sun Z, Wang X, Leng X. An innovative MWCNTs/DOX/TC nanosystem for chemo-photothermal combination therapy of cancer. Nanomedicine 2017; 13(7): 2271-80. doi: 10.1016/j.nano.2017.07.002 PMID: 28712919
- Dubertret B, Skourides P, Norris DJ, Noireaux V, Brivanlou AH, Libchaber A. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 2002; 298(5599): 1759-62. doi: 10.1126/science.1077194 PMID: 12459582
- Gao X, Cui Y, Levenson RM, Chung LWK, Nie S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 2004; 22(8): 969-76. doi: 10.1038/nbt994 PMID: 15258594
- Pooresmaeil M, Namazi H, Salehi R. Synthesis of photoluminescent glycodendrimer with terminal β-cyclodextrin molecules as a biocompatible pH-sensitive carrier for doxorubicin delivery. Carbohydr Polym 2020; 246: 116658. doi: 10.1016/j.carbpol.2020.116658 PMID: 32747290
- Lin H, Chen Y, Shi J. Nanoparticle-triggered in situ catalytic chemical reactions for tumour-specific therapy. Chem Soc Rev 2018; 47(6): 1938-58. doi: 10.1039/C7CS00471K PMID: 29417106
- Han Y, Gao S, Zhang Y, et al. Metal-based nanocatalyst for combined cancer therapeutics. Bioconjug Chem 2020; 31(5): 1247-58. doi: 10.1021/acs.bioconjchem.0c00194 PMID: 32319762
- Tang Z, Zhang H, Liu Y, et al. Antiferromagnetic pyrite as the tumor microenvironment-mediated nanoplatform for self-enhanced tumor imaging and therapy. Adv Mater 2017; 29(47): 1701683. doi: 10.1002/adma.201701683 PMID: 29094389
- Lee KT, Lu YJ, Mi FL, et al. Catalase-modulated heterogeneous fenton reaction for selective cancer cell eradication: SnFe2O4 nanocrystals as an effective reagent for treating lung cancer cells. ACS Appl Mater Interfaces 2017; 9(2): 1273-9. doi: 10.1021/acsami.6b13529 PMID: 28006093
- Zhang X, Zheng Y, Wang Z, et al. Methotrexate-loaded PLGA nanobubbles for ultrasound imaging and synergistic targeted therapy of residual tumor during HIFU ablation. Biomaterials 2014; 35(19): 5148-61. doi: 10.1016/j.biomaterials.2014.02.036 PMID: 24680663
- Maghsoudnia N, Baradaran Eftekhari R, Naderi Sohi A, et al. Mitochondrial delivery of microRNA mimic let-7b to NSCLC cells by PAMAM-based nanoparticles. J Drug Target 2020; 28(7-8): 818-30. doi: 10.1080/1061186X.2020.1774594 PMID: 32452217
- Jeong K, Yu YJ, You JY, Rhee WJ, Kim JA. Exosome-mediated microRNA-497 delivery for anti-cancer therapy in a microfluidic 3D lung cancer model. Lab Chip 2020; 20(3): 548-57. doi: 10.1039/C9LC00958B PMID: 31942592
- Zhang K, Dong C, Chen M, et al. Extracellular vesicle-mediated delivery of miR-101 inhibits lung metastasis in osteosarcoma. Theranostics 2020; 10(1): 411-25. doi: 10.7150/thno.33482 PMID: 31903129
- Roy B, Ghose S, Biswas S. Therapeutic strategies for miRNA delivery to reduce hepatocellular carcinoma. Semin Cell Dev Biol 2021. PMID: 33926792
- Nicolas J, Mura S, Brambilla D, Mackiewicz N, Couvreur P. Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery. Chem Soc Rev 2013; 42(3): 1147-235. doi: 10.1039/C2CS35265F PMID: 23238558
- Wang W, Zhou F, Ge L, Liu X, Kong F. Transferrin-PEG-PE modified dexamethasone conjugated cationic lipid carrier mediated gene delivery system for tumor-targeted transfection. Int J Nanomed 2012; 7: 2513-22. PMID: 22679364
- Markman JL, Rekechenetskiy A, Holler E, Ljubimova JY. Nanomedicine therapeutic approaches to overcome cancer drug resistance. Adv Drug Deliv Rev 2013; 65(13-14): 1866-79. doi: 10.1016/j.addr.2013.09.019 PMID: 24120656
- Ryman-Rasmussen JP, Riviere JE, Monteiro-Riviere NA. Penetration of intact skin by quantum dots with diverse physicochemical properties. Toxicol Sci 2006; 91(1): 159-65. doi: 10.1093/toxsci/kfj122 PMID: 16443688
- Xia T, Kovochich M, Brant J, et al. Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett 2006; 6(8): 1794-807. doi: 10.1021/nl061025k PMID: 16895376
- Penn A, Murphy G, Barker S, Henk W, Penn L. Combustion-derived ultrafine particles transport organic toxicants to target respiratory cells. Environ Health Perspect 2005; 113(8): 956-63. doi: 10.1289/ehp.7661 PMID: 16079063
- Vallhov H, Qin J, Johansson SM, et al. The importance of an endotoxin-free environment during the production of nanoparticles used in medical applications. Nano Lett 2006; 6(8): 1682-6. doi: 10.1021/nl060860z PMID: 16895356
- Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC. Cancer nanotechnology: The impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev 2014; 66: 2-25. doi: 10.1016/j.addr.2013.11.009 PMID: 24270007
- Albanese A, Lam AK, Sykes EA, Rocheleau JV, Chan WCW. Tumour-on-a-chip provides an optical window into nanoparticle tissue transport. Nat Commun 2013; 4(1): 2718. doi: 10.1038/ncomms3718 PMID: 24177351
- Dutta D, Heo I, Clevers H. Disease modeling in stem cell-derived 3D organoid systems. Trends Mol Med 2017; 23(5): 393-410. doi: 10.1016/j.molmed.2017.02.007 PMID: 28341301
- Bleijs M, van de Wetering M, Clevers H, Drost J. Xenograft and organoid model systems in cancer research. EMBO J 2019; 38(15): e101654. doi: 10.15252/embj.2019101654 PMID: 31282586
- Sebak AA, Gomaa IEO, ElMeshad AN, et al. Distinct proteins in protein corona of nanoparticles represent a promising venue for endogenous targeting-part I: In vitro release and intracellular uptake perspective. Int J Nanomed 2020; 15: 8845-62. doi: 10.2147/IJN.S273713 PMID: 33204091
- Vroman L, Adams AL, Fischer GC, Munoz PC. Interaction of high molecular weight kininogen, factor XII, and fibrinogen in plasma at interfaces. Blood 1980; 55(1): 156-9. doi: 10.1182/blood.V55.1.156.156 PMID: 7350935
- Pederzoli F, Tosi G, Vandelli MA, Belletti D, Forni F, Ruozi B. Protein corona and nanoparticles: How can we investigate on? Wiley Interdiscip Rev Nanomed Nanobiotechnol 2017; 9(6): e1467. doi: 10.1002/wnan.1467 PMID: 28296346
- Risha Y, Minic Z, Ghobadloo SM, Berezovski MV. The proteomic analysis of breast cell line exosomes reveals disease patterns and potential biomarkers. Sci Rep 2020; 10(1): 13572. doi: 10.1038/s41598-020-70393-4 PMID: 32782317
- Elzek MA, Rodland KD. Proteomics of ovarian cancer: Functional insights and clinical applications. Cancer Metastasis Rev 2015; 34(1): 83-96. doi: 10.1007/s10555-014-9547-8 PMID: 25736266
- Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000; 100(1): 57-70. doi: 10.1016/S0092-8674(00)81683-9 PMID: 10647931
- Hanahan D, Weinberg RA. Hallmarks of cancer: The next generation. Cell 2011; 144(5): 646-74. doi: 10.1016/j.cell.2011.02.013 PMID: 21376230
- Hartshorn CM, Bradbury MS, Lanza GM, et al. Nanotechnology strategies to advance outcomes in clinical cancer care. ACS Nano 2018; 12(1): 24-43. doi: 10.1021/acsnano.7b05108 PMID: 29257865
- Avula LR, Grodzinski P. Nanotechnology-aided advancement in the combating of cancer metastasis. Cancer Metastasis Rev 2022; 41(2): 383-404. doi: 10.1007/s10555-022-10025-7 PMID: 35366154
- Chaturvedi VK, Singh A, Singh VK, Singh MP. Cancer nanotechnology: A new revolution for cancer diagnosis and therapy. Curr Drug Metab 2019; 20(6): 416-29. doi: 10.2174/1389200219666180918111528 PMID: 30227814
- Sulaiman GM, Waheeb HM, Jabir MS, Khazaal SH, Dewir YH, Naidoo Y. Hesperidin loaded on gold nanoparticles as a drug delivery system for a successful biocompatible, anti-cancer, antiinflammatory and phagocytosis inducer model. Sci Rep 2020; 10(1): 9362. doi: 10.1038/s41598-020-66419-6 PMID: 32518242
- Tomar N. Dendrimers as nanocarriers in cancer chemotherapy. Anticancer Res 2019; 8: 12.
- Pucci C, Martinelli C, Ciofani G. Innovative approaches for cancer treatment: Current perspectives and new challenges. ecancermedicalscience 2019; 13: 961.
- Yao Y, Zhou Y, Liu L, et al. Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance. Front Mol Biosci 2020; 7: 193. doi: 10.3389/fmolb.2020.00193 PMID: 32974385
- Zhao CY, Cheng R, Yang Z, Tian ZM. Nanotechnology for cancer therapy based on chemotherapy. Molecules 2018; 23(4): 826. doi: 10.3390/molecules23040826 PMID: 29617302
- Zhou F, Huang L, Li S, et al. From structural design to delivery: MRNA therapeutics for cancer immunotherapy. Exploration 2024; 4(2): 20210146. doi: 10.1002/EXP.20210146 PMID: 38855617
- Jain P. Acaricidal activity and biochemical analysis of citrus limetta seed oil for controlling ixodid tick rhipicephalus microplus infesting cattle. Syst Appl Acarol 2021; 26(7): 1350-60.
- Ma J, Wu C. Bioactive inorganic particles-based biomaterials for skin tissue engineering. Exploration 2022; 2(5): 20210083. doi: 10.1002/EXP.20210083 PMID: 37325498
- Jain P, Satapathy T, Pandey RK. First report on efficacy of Citrus limetta seed oil in controlling cattle tick Rhipicephalus microplus in red Sahiwal calves. Vet Parasitol 2021; 296(June): 109508. doi: 10.1016/j.vetpar.2021.109508 PMID: 34218174
- Yang C, Xiong W, Qiu Q, et al. Anti-proliferative and anti-tumour effects of lymphocyte-derived microparticles are neither species- nor tumour-type specific. J Extracell Vesicles 2014; 3(1): 23034. doi: 10.3402/jev.v3.23034 PMID: 24834146
- Singh R, Prasad J, Satapathy T, Jain P, Singh S. Pharmacological evaluation for anti-bacterial and anti-inflammatory potential of polymeric microparticles. Indian J Biochem Biophys 2021 58(2): 156-61.
- Lee R, Ko HJ, Kim K, et al. Anti-melanogenic effects of extracellular vesicles derived from plant leaves and stems in mouse melanoma cells and human healthy skin. J Extracell Vesicles 2020; 9(1): 1703480. doi: 10.1080/20013078.2019.1703480 PMID: 32002169
- Patel R, Kuwar U, Dhote N, et al. Natural polymers as a carrier for the effective delivery of antineoplastic drugs. Curr Drug Deliv 2024; 21(2): 193-210. doi: 10.2174/1567201820666230112170035 PMID: 36644864
Supplementary files
