Nanomaterials in Targeting Cancer Cells with Nanotherapeutics: Transitioning Towards Responsive Systems


Cite item

Full Text

Abstract

:On a global scale, cancer is a difficult and devastating illness. Several problems with current chemotherapies include cytotoxicity, lack of selectivity, stem-like cell growth, and multi-drug resistance. The most appropriate nanomaterials for cancer treatment are those with characteristics, such as cytotoxicity, restricted specificity, and drug capacity and bioavailability; these materials are nanosized (1-100 nm). Nanodrugs are rarely licenced for therapeutic use despite growing research. These compounds need nanocarrier-targeted drug delivery experiments to improve their translation. This review describes new nanomaterials reported in the literature, impediments to their clinical studies, and their beneficial cancer therapeutic use. It also suggests ways to use nanomaterials in cancer therapy more efficiently and describes the intrinsic challenges of cancer treatment and the different nanocarriers and chemicals that can be utilised for specified tumour targeting. Furthermore, it provides a concise overview of cancer theranostics methods, with a focus on those that make use of nanomaterials. Although nanotechnology offers a great source for future advancements in cancer detection and therapy, there is an emerging need for more studies to address the present barriers to clinical translation.

About the authors

Bhawana Jain

Siddhachalam Laboratory, Institute of Life Science Research

Author for correspondence.
Email: info@benthamscience.net

Dakeshwar Verma

Department of Medicinal Chemistry,, Govt. Digvijay P.G. Autonomous College

Email: info@benthamscience.net

Reena Rawat

Department of Chemistry, Echelon Institute of Technology

Email: info@benthamscience.net

Elyor Berdimurodov

Department of Chemistry, National University of Uzbekistan

Email: info@benthamscience.net

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin 2022; 72(1): 7-33. doi: 10.3322/caac.21708 PMID: 35020204
  2. Cao W, Chen HD, Yu YW, Li N, Chen WQ. Changing profiles of cancer burden worldwide and in China: A secondary analysis of the global cancer statistics 2020. Chin Med J 2021; 134(7): 783-91. doi: 10.1097/CM9.0000000000001474 PMID: 33734139
  3. Arnold M, Morgan E, Rumgay H, et al. Current and future burden of breast cancer: Global statistics for 2020 and 2040. Breast 2022; 66: 15-23. doi: 10.1016/j.breast.2022.08.010 PMID: 36084384
  4. Haier J, Schaefers J. Economic perspective of cancer care and its consequences for vulnerable groups. Cancers 2022; 14(13): 3158. doi: 10.3390/cancers14133158 PMID: 35804928
  5. Zhong L, Li Y, Xiong L, et al. Small molecules in targeted cancer therapy: Advances, challenges, and future perspectives. Signal Transduct Target Ther 2021; 6(1): 201. doi: 10.1038/s41392-021-00572-w PMID: 34054126
  6. Xie YH, Chen YX, Fang JY. Comprehensive review of targeted therapy for colorectal cancer. Signal Transduct Target Ther 2020; 5(1): 22. doi: 10.1038/s41392-020-0116-z PMID: 32296018
  7. Anand U, Dey A, Chandel AKS, et al. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics. Genes Dis 2023; 10(4): 1367-401. doi: 10.1016/j.gendis.2022.02.007 PMID: 37397557
  8. Zhu R, Zhang F, Peng Y, Xie T, Wang Y, Lan Y. Current progress in cancer treatment using nanomaterials. Front Oncol 2022; 12: 930125. doi: 10.3389/fonc.2022.930125 PMID: 35912195
  9. Yang Y, Chen Q, Qiu Y, Wang Y, Huang Q, Ai K. Editorial: Nanomaterials and multimodal tumor therapy. Front Oncol 2022; 12: 1081687. doi: 10.3389/fonc.2022.1081687 PMID: 36568218
  10. Chehelgerdi M, Chehelgerdi M, Allela OQB, et al. Progressing nanotechnology to improve targeted cancer treatment: Overcoming hurdles in its clinical implementation. Mol Cancer 2023; 22(1): 169. doi: 10.1186/s12943-023-01865-0 PMID: 37814270
  11. Kyriakides TR, Raj A, Tseng TH, et al. Biocompatibility of nanomaterials and their immunological properties. Biomed Mater 2021; 16(4): 042005. doi: 10.1088/1748-605X/abe5fa PMID: 33578402
  12. Abbasi R, Shineh G, Mobaraki M, Doughty S, Tayebi L. Structural parameters of nanoparticles affecting their toxicity for biomedical applications: A review. J Nanopart Res 2023; 25(3): 43. doi: 10.1007/s11051-023-05690-w PMID: 36875184
  13. Dessale M, Mengistu G, Mengist HM. Nanotechnology: A promising approach for cancer diagnosis, therapeutics and theragnosis. Int J Nanomed 2022; 17: 3735-49. doi: 10.2147/IJN.S378074 PMID: 36051353
  14. Verma J, Warsame C, Seenivasagam RK, Katiyar NK, Aleem E, Goel S. Nanoparticle-mediated cancer cell therapy: Basic science to clinical applications. Cancer Metastasis Rev 2023; 42(3): 601-27. doi: 10.1007/s10555-023-10086-2 PMID: 36826760
  15. Kong X, Gao P, Wang J, Fang Y, Hwang KC. Advances of medical nanorobots for future cancer treatments. J Hematol Oncol 2023; 16(1): 74. doi: 10.1186/s13045-023-01463-z PMID: 37452423
  16. Subhan MA, Yalamarty SSK, Filipczak N, Parveen F, Torchilin VP. Recent advances in tumor targeting via EPR effect for cancer treatment. J Pers Med 2021; 11(6): 571. doi: 10.3390/jpm11060571 PMID: 34207137
  17. Argenziano M, Arpicco S, Brusa P, et al. Developing actively targeted nanoparticles to fight cancer: Focus on italian research. Pharmaceutics 2021; 13(10): 1538. doi: 10.3390/pharmaceutics13101538 PMID: 34683830
  18. Tiwari H, Rai N, Singh S, et al. Recent advances in nanomaterials-based targeted drug delivery for preclinical cancer diagnosis and therapeutics. Bioengineering 2023; 10(7): 760. doi: 10.3390/bioengineering10070760 PMID: 37508788
  19. Malik S, Muhammad K, Waheed Y. Emerging applications of nanotechnology in healthcare and medicine. Molecules 2023; 28(18): 6624. doi: 10.3390/molecules28186624 PMID: 37764400
  20. Kumbhar PR, Kumar P, Lasure A, Velayutham R, Mandal D. An updated landscape on nanotechnology-based drug delivery, immunotherapy, vaccinations, imaging, and biomarker detections for cancers: Recent trends and future directions with clinical success. Discover Nano 2023; 18(1): 156. doi: 10.1186/s11671-023-03913-6 PMID: 38112935
  21. Yusuf A, Almotairy ARZ, Henidi H, Alshehri OY, Aldughaim MS. Nanoparticles as drug delivery systems: A review of the implication of nanoparticles’ physicochemical properties on responses in biological systems. Polymers 2023; 15(7): 1596. doi: 10.3390/polym15071596 PMID: 37050210
  22. Gawali P, Saraswat A, Bhide S, Gupta S, Patel K. Human solid tumors and clinical relevance of the enhanced permeation and retention effect: A ‘golden gate’ for nanomedicine in preclinical studies? Nanomedicine 2023; 18(2): 169-90. doi: 10.2217/nnm-2022-0257 PMID: 37042320
  23. Kashyap BK, Singh VV, Solanki MK, Kumar A, Ruokolainen J, Kesari KK. Smart nanomaterials in cancer theranostics: Challenges and opportunities. ACS Omega 2023; 8(16): 14290-320. doi: 10.1021/acsomega.2c07840 PMID: 37125102
  24. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2007; 2(12): 751-60. doi: 10.1038/nnano.2007.387 PMID: 18654426
  25. Maeda H, Nakamura H, Fang J. The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv Drug Deliv Rev 2013; 65(1): 71-9. doi: 10.1016/j.addr.2012.10.002 PMID: 23088862
  26. Ganta S, Devalapally H, Shahiwala A, Amiji M. A review of stimuli-responsive nanocarriers for drug and gene delivery. J Control Release 2008; 126(3): 187-204. doi: 10.1016/j.jconrel.2007.12.017 PMID: 18261822
  27. Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR. Nanoparticle-based medicines: A review of FDA-approved materials and clinical trials to date. Pharm Res 2016; 33(10): 2373-87. doi: 10.1007/s11095-016-1958-5 PMID: 27299311
  28. Jokerst JV, Gambhir SS. The era of personalized oncology: From diagnosis to treatment with nanomicelles. Int J Nanomed 2011; 6: 211-26.
  29. Farokhzad OC, Langer R. Impact of nanotechnology on drug delivery. ACS Nano 2009; 3(1): 16-20. doi: 10.1021/nn900002m PMID: 19206243
  30. Masood F. Polymeric nanoparticles for targeted drug delivery system for cancer therapy. Mater Sci Eng C 2016; 60: 569-78. doi: 10.1016/j.msec.2015.11.067 PMID: 26706565
  31. Vijayan V, Reddy KR, Sakthivel S, Swetha C. Optimization and charaterization of repaglinide biodegradable polymeric nanoparticle loaded transdermal patchs: In vitro and in vivo studies. Colloids Surf B Biointerfaces 2013; 111: 150-5. doi: 10.1016/j.colsurfb.2013.05.020 PMID: 23792547
  32. Shastri V. Non-degradable biocompatible polymers in medicine: Past, present and future. Curr Pharm Biotechnol 2003; 4(5): 331-7. doi: 10.2174/1389201033489694 PMID: 14529423
  33. Elsabahy M, Wooley KL. Design of polymeric nanoparticles for biomedical delivery applications. Chem Soc Rev 2012; 41(7): 2545-61. doi: 10.1039/c2cs15327k PMID: 22334259
  34. Martín-Saldaña S, Palao-Suay R, Aguilar MR, Ramírez-Camacho R, San Román J. Polymeric nanoparticles loaded with dexamethasone or α-tocopheryl succinate to prevent cisplatin-induced ototoxicity. Acta Biomater 2017; 53: 199-210. doi: 10.1016/j.actbio.2017.02.019 PMID: 28213099
  35. Wang J, Sui L, Huang J, et al. MoS2-based nanocomposites for cancer diagnosis and therapy. Bioact Mater 2021; 6(11): 4209-42. doi: 10.1016/j.bioactmat.2021.04.021 PMID: 33997503
  36. Huang J, Huang Q, Liu M, Chen Q, Ai K. Emerging bismuth chalcogenides based nanodrugs for cancer radiotherapy. Front Pharmacol 2022; 13: 844037. doi: 10.3389/fphar.2022.844037 PMID: 35250594
  37. Lai WF. Non-conjugated polymers with intrinsic luminescence for drug delivery. J Drug Deliv Sci Technol 2020; 59: 101916. doi: 10.1016/j.jddst.2020.101916
  38. Ajorlou E, Khosroushahi AY. Trends on polymer and lipid-based nanostructures for parenteral drug delivery to tumors. Cancer Chemother Pharmacol 2017; 79(2): 251-65. doi: 10.1007/s00280-016-3168-6 PMID: 27744564
  39. Teixeira MC, Carbone C, Souto EB. Beyond liposomes: Recent advances on lipid based nanostructures for poorly soluble/poorly permeable drug delivery. Prog Lipid Res 2017; 68: 1-11. doi: 10.1016/j.plipres.2017.07.001 PMID: 28778472
  40. Andreiuk B, Reisch A, Lindecker M, et al. Fluorescent polymer nanoparticles for cell barcoding in vitro and in vivo. Small 2017; 13(38): 1701582. doi: 10.1002/smll.201701582 PMID: 28791769
  41. Kang EB, Lee JE, Mazrad ZAI, In I, Jeong JH, Park SY. pH-Responsible fluorescent carbon nanoparticles for tumor selective theranostics via pH-turn on/off fluorescence and photothermal effect in vivo and in vitro. Nanoscale 2018; 10(5): 2512-23. doi: 10.1039/C7NR07900A PMID: 29344592
  42. Tang C, Edelstein J, Mikitsh JL, et al. Biodistribution and fate of core-labeled125 I polymeric nanocarriers prepared by Flash NanoPrecipitation (FNP). J Mater Chem B Mater Biol Med 2016; 4(14): 2428-34. doi: 10.1039/C5TB02172C PMID: 27073688
  43. Goel M, Mackeyev Y, Krishnan S. Radiolabeled nanomaterial for cancer diagnostics and therapeutics: Principles and concepts. Cancer Nanotechnol 2023; 14(1): 15. doi: 10.1186/s12645-023-00165-y PMID: 36865684
  44. Dey R, Xia Y, Nieh MP, Burkhard P. Molecular design of a minimal peptide nanoparticle. ACS Biomater Sci Eng 2017; 3(5): 724-32. doi: 10.1021/acsbiomaterials.6b00243 PMID: 33440498
  45. Thakkar D, Gupta R, Mohan P, Monson K, Rapoport N. Overcoming biological barriers with ultrasound. AIP Conf Proc 2012; 1481: 381-7. doi: 10.1063/1.4757365 PMID: 24839333
  46. Barua S, Mitragotri S. Challenges associated with penetration of nanoparticles across cell and tissue barriers: A review of current status and future prospects. Nano Today 2014; 9(2): 223-43. doi: 10.1016/j.nantod.2014.04.008 PMID: 25132862
  47. Zhou Y, Peng Z, Seven ES, Leblanc RM. Crossing the blood- brain barrier with nanoparticles. J Control Release 2018; 270: 290-303. doi: 10.1016/j.jconrel.2017.12.015 PMID: 29269142
  48. Tharkar P, Varanasi R, Wong WSF, Jin CT, Chrzanowski W. Nano-enhanced drug delivery and therapeutic ultrasound for cancer treatment and beyond. Front Bioeng Biotechnol 2019; 7: 324. doi: 10.3389/fbioe.2019.00324 PMID: 31824930
  49. Lockman PR, Mumper RJ, Khan MA, Allen DD. Nanoparticle technology for drug delivery across the blood-brain barrier. Drug Dev Ind Pharm 2002; 28(1): 1-13. doi: 10.1081/DDC-120001481 PMID: 11858519
  50. Ali ES, Sharker SM, Islam MT, et al. Targeting cancer cells with nanotherapeutics and nanodiagnostics: Current status and future perspectives. Semin Cancer Biol 2021; 69: 52-68. doi: 10.1016/j.semcancer.2020.01.011 PMID: 32014609
  51. Rosenblum D, Joshi N, Tao W, Karp JM, Peer D. Progress and challenges towards targeted delivery of cancer therapeutics. Nat Commun 2018; 9(1): 1410. doi: 10.1038/s41467-018-03705-y PMID: 29650952
  52. Shi J, Xiao Z, Kamaly N, Farokhzad OC. Self-assembled targeted nanoparticles: Evolution of technologies and bench to bedside translation. Acc Chem Res 2011; 44(10): 1123-34. doi: 10.1021/ar200054n PMID: 21692448
  53. Sharma P, Bhargava M. Applications and characteristics of nanomaterials in industrial environment. Res Dev 2013; 3(4): 63-72.
  54. Song S, Qin Y, He Y, Huang Q, Fan C, Chen HY. Functional nanoprobes for ultrasensitive detection of biomolecules. Chem Soc Rev 2010; 39(11): 4234-43. doi: 10.1039/c000682n PMID: 20871878
  55. Osaki T, Yokoe I, Sunden Y, et al. Efcacy of 5-aminolevulinic acid in photodynamic detection and photodynamic therapy in veterinary medicine. Cancers 2019; 11(4): 495. doi: 10.3390/cancers11040495 PMID: 30959982
  56. Gao W, Wang Z, Lv L, et al. Photodynamic therapy induced enhancement of tumor vasculature permeability using an upconversion nanoconstruct for improved intratumoral nanoparticle delivery in deep tissues. Theranostics 2016; 6(8): 1131-44. doi: 10.7150/thno.15262 PMID: 27279907
  57. Horst MF, Coral DF, Fernández van Raap MB, Alvarez M, Lassalle V. Hybrid nanomaterials based on gum Arabic and magnetite for hyperthermia treatments. Mater Sci Eng C 2017; 74: 443-50. doi: 10.1016/j.msec.2016.12.035 PMID: 28254315
  58. Samad A, Sultana Y, Aqil M. Liposomal drug delivery systems: An update review. Curr Drug Deliv 2007; 4(4): 297-305. doi: 10.2174/156720107782151269 PMID: 17979650
  59. Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS, Farokhzad OC. Nanoparticles in medicine: Therapeutic applications and developments. Clin Pharmacol Ther 2008; 83(5): 761-9. doi: 10.1038/sj.clpt.6100400 PMID: 17957183
  60. Portney NG, Ozkan M. Nano-oncology: Drug delivery, imaging, and sensing. Anal Bioanal Chem 2006; 384(3): 620-30. doi: 10.1007/s00216-005-0247-7 PMID: 16440195
  61. Cattel L, Ceruti M, Dosio F. From conventional to stealth liposomes: A new frontier in cancer chemotherapy. Tumori 2003; 89(3): 237-49. doi: 10.1177/030089160308900302 PMID: 12908776
  62. James ND, Coker RJ, Tomlinson D, et al. Liposomal doxorubicin (Doxil): An effective new treatment for Kaposi’s sarcoma in AIDS. Clin Oncol (R Coll Radiol) 1994; 6(5): 294-6. doi: 10.1016/S0936-6555(05)80269-9 PMID: 7530036
  63. Laginha KM, Verwoert S, Charrois GJR, Allen TM. Determination of doxorubicin levels in whole tumor and tumor nuclei in murine breast cancer tumors. Clin Cancer Res 2005; 11(19): 6944-9. doi: 10.1158/1078-0432.CCR-05-0343 PMID: 16203786
  64. Sriraman SK, Geraldo V, Luther E, Degterev A, Torchilin V. Cytotoxicity of PEGylated liposomes co-loaded with novel pro-apoptotic drug NCL-240 and the MEK inhibitor cobimetinib against colon carcinoma in vitro. J Control Release 2015; 220(Pt A): 160-8. doi: 10.1016/j.jconrel.2015.10.037 PMID: 26497930
  65. Batist G, Gelmon KA, Chi KN, et al. Safety, pharmacokinetics, and efficacy of CPX-1 liposome injection in patients with advanced solid tumors. Clin Cancer Res 2009; 15(2): 692-700. doi: 10.1158/1078-0432.CCR-08-0515 PMID: 19147776
  66. Deng ZJ, Morton SW, Ben-Akiva E, Dreaden EC, Shopsowitz KE, Hammond PT. Layer-by-layer nanoparticles for systemic codelivery of an anticancer drug and siRNA for potential triple-negative breast cancer treatment. ACS Nano 2013; 7(11): 9571-84. doi: 10.1021/nn4047925 PMID: 24144228
  67. Zhang H, Li R, Lu X, Mou Z, Lin G. Docetaxel-loaded liposomes: Preparation, pH sensitivity, Pharmacokinetics, and tissue distribution. J Zhejiang Univ Sci B 2012; 13(12): 981-9. doi: 10.1631/jzus.B1200098 PMID: 23225853
  68. Zhang N, Su Z, Liang Y, Yao Y. pH-Sensitive carboxymethyl chitosan-modified cationic liposomes for sorafenib and siRNA co-delivery. Int J Nanomed 2015; 10: 6185-97. doi: 10.2147/IJN.S90524 PMID: 26491291
  69. Naseri N, Valizadeh H, Zakeri-Milani P. Solid lipid nanoparticles and nanostructured lipid carriers: Structure, preparation and application. Adv Pharm Bull 2015; 5(3): 305-13. doi: 10.15171/apb.2015.043 PMID: 26504751
  70. Kraft JC, Freeling JP, Wang Z, Ho RJY. Emerging research and clinical development trends of liposome and lipid nanoparticle drug delivery systems. J Pharm Sci 2014; 103(1): 29-52. doi: 10.1002/jps.23773 PMID: 24338748
  71. Das S, Chaudhury A. Recent advances in lipid nanoparticle formulations with solid matrix for oral drug delivery. AAPS PharmSciTech 2011; 12(1): 62-76. doi: 10.1208/s12249-010-9563-0 PMID: 21174180
  72. Selvamuthukumar S, Velmurugan R. Nanostructured lipid carriers: A potential drug carrier for cancer chemotherapy. Lipids Health Dis 2012; 11(1): 159. doi: 10.1186/1476-511X-11-159 PMID: 23167765
  73. Iqbal MA, Md S, Sahni JK, Baboota S, Dang S, Ali J. Nanostructured lipid carriers system: Recent advances in drug delivery. J Drug Target 2012; 20(10): 813-30. doi: 10.3109/1061186X.2012.716845 PMID: 22931500
  74. Ramezani Dana H, Ebrahimi F. Synthesis, properties, and applications of polylactic acid-based polymers. Polym Eng Sci 2023; 63(1): 22-43. doi: 10.1002/pen.26193
  75. Cheng Z, Li M, Dey R, Chen Y. Nanomaterials for cancer therapy: Current progress and perspectives. J Hematol Oncol 2021; 14(1): 85. doi: 10.1186/s13045-021-01096-0 PMID: 34059100
  76. Peltek OO, Muslimov AR, Zyuzin MV, Timin AS. Current outlook on radionuclide delivery systems: From design consideration to translation into clinics. J Nanobiotechnol 2019; 17(1): 90. doi: 10.1186/s12951-019-0524-9 PMID: 31434562
  77. Zhou H, Ge J, Miao Q, et al. Biodegradable inorganic nanoparticles for cancer theranostics: Insights into the degradation behavior. Bioconjug Chem 2020; 31(2): 315-31. doi: 10.1021/acs.bioconjchem.9b00699 PMID: 31765561
  78. Shetty A, Chandra S. Inorganic hybrid nanoparticles in cancer theranostics: Understanding their combinations for better clinical translation. Mater Today Chem 2020; 18: 100381. doi: 10.1016/j.mtchem.2020.100381
  79. Gobbo OL, Sjaastad K, Radomski MW, Volkov Y, Prina-Mello A. Magnetic nanoparticles in cancer theranostics. Theranostics 2015; 5(11): 1249-63. doi: 10.7150/thno.11544 PMID: 26379790
  80. Kaphle A, Navya PN, Umapathi A, Daima HK. Nanomaterials for agriculture, food and environment: Applications, toxicity and regulation. Environ Chem Lett 2018; 16(1): 43-58. doi: 10.1007/s10311-017-0662-y
  81. Youssef FS, El-Banna HA, Elzorba HY, Galal AM. Application of some nanoparticles in the field of veterinary medicine. Int J Vet Sci Med 2019; 7(1): 78-93. doi: 10.1080/23144599.2019.1691379 PMID: 32010725
  82. Madhyastha H, Madhyastha R, Thakur A, et al. c-Phycocyanin primed silver nano conjugates: Studies on red blood cell stress resilience mechanism. Colloids Surf B Biointerfaces 2020; 194: 111211. doi: 10.1016/j.colsurfb.2020.111211 PMID: 32615521
  83. Austin LA, Kang B, Yen CW, El-Sayed MA. Plasmonic imaging of human oral cancer cell communities during programmed cell death by nuclear-targeting silver nanoparticles. J Am Chem Soc 2011; 133(44): 17594-7. doi: 10.1021/ja207807t PMID: 21981727
  84. Liu K, Liu K, Liu J, et al. Copper chalcogenide materials as photothermal agents for cancer treatment. Nanoscale 2020; 12(5): 2902-13. doi: 10.1039/C9NR08737K PMID: 31967164
  85. Yun B, Zhu H, Yuan J, Sun Q, Li Z. Synthesis, modification and bioapplications of nanoscale copper chalcogenides. J Mater Chem B Mater Biol Med 2020; 8(22): 4778-812. doi: 10.1039/D0TB00182A PMID: 32226981
  86. Netam AK, Prasad J, Satapathy T, Jain P. Evaluation for toxicity and improved therapeutic effectiveness of natural polymer co-administered along with venocin in acetic acid-induced colitis using rat model BT - advances in biomedical engineering and technology. In: Rizvanov AA, Singh BK, Ganasala P, Eds. Singapore: Springer Singapore 2021; pp. 207-20.
  87. Zhao Y, Song M, Yang X, et al. Amorphous Ag2-xCuxS quantum dots: "All-in-one" theranostic nanomedicines for near-infrared fluorescence/photoacoustics dual-modal-imaging-guided photothermal therapy. Chem Eng J 2020; 399: 125777. doi: 10.1016/j.cej.2020.125777
  88. Li X, Pan Z, Xiang C, et al. Structure transformable nanoparticles for photoacoustic imaging-guided photothermal ablation of tumors via enzyme-induced multistage delivery. Chem Eng J 2021; 421: 127747. doi: 10.1016/j.cej.2020.127747
  89. Wang S, Zhang L, Zhao J, He M, Huang Y, Zhao S. A tumor microenvironment-induced absorption red-shifted polymer nanoparticle for simultaneously activated photoacoustic imaging and photothermal therapy. Sci Adv 2021; 7(12): eabe3588.
  90. Sievers EL, Senter PD. Antibody-drug conjugates in cancer therapy. Annu Rev Med 2013; 64(1): 15-29. doi: 10.1146/annurev-med-050311-201823 PMID: 23043493
  91. Nieto C, Vega MA, Martín del Valle EM. Trastuzumab: More than a guide in HER2-positive cancer nanomedicine. Nanomaterials 2020; 10(9): 1674. doi: 10.3390/nano10091674 PMID: 32859026
  92. Gavas S, Quazi S, Karpiński TM. Nanoparticles for cancer therapy: Current progress and challenges. Nanoscale Res Lett 2021; 16(1): 173. doi: 10.1186/s11671-021-03628-6 PMID: 34866166
  93. Fu Q, Wang J, Liu H. Chemo-immune synergetic therapy of esophageal carcinoma: Trastuzumab modified, cisplatin and fluorouracil co-delivered lipid–polymer hybrid nanoparticles. Drug Deliv 2020; 27(1): 1535-43. doi: 10.1080/10717544.2020.1837294 PMID: 33118428
  94. Liang S, Sun M, Lu Y, et al. Cytokine-induced killer cells-assisted tumor-targeting delivery of HER-2 monoclonal antibody-conjugated gold nanostars with NIR photosensitizer for enhanced therapy of cancer. J Mater Chem B Mater Biol Med 2020; 8(36): 8368-82. doi: 10.1039/D0TB01391A PMID: 32966532
  95. de Charette M, Marabelle A, Houot R. Turning tumour cells into antigen presenting cells: The next step to improve cancer immunotherapy? Eur J Cancer 2016; 68: 134-47. doi: 10.1016/j.ejca.2016.09.010 PMID: 27755997
  96. Xu P, Wang R, Yang W, et al. A DM1-doped porous gold nanoshell system for NIR accelerated redox-responsive release and triple modal imaging guided photothermal synergistic chemotherapy. J Nanobiotechnol 2021; 19(1): 77. doi: 10.1186/s12951-021-00824-5 PMID: 33741008
  97. Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine: Progress, challenges and opportunities. Nat Rev Cancer 2017; 17(1): 20-37. doi: 10.1038/nrc.2016.108 PMID: 27834398
  98. Kubota T, Kuroda S, Kanaya N, Morihiro T, Aoyama K, Yoshihiko K. HER2-targeted gold nanoparticles potentially overcome resistance to trastuzumab in gastric cancer. Nanomed Nanotechnol Biol Med 2018; 14(6): 1919-29.
  99. György B, Szabó TG, Pásztói M, et al. Membrane vesicles, current state-of-the-art: Emerging role of extracellular vesicles. Cell Mol Life Sci 2011; 68(16): 2667-88. doi: 10.1007/s00018-011-0689-3 PMID: 21560073
  100. Raposo G, Stoorvogel W. Extracellular vesicles: Exosomes, microvesicles, and friends. J Cell Biol 2013; 200(4): 373-83. doi: 10.1083/jcb.201211138 PMID: 23420871
  101. Colombo M, Raposo G, Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 2014; 30(1): 255-89. doi: 10.1146/annurev-cellbio-101512-122326 PMID: 25288114
  102. Batrakova EV, Kim MS. Using exosomes, naturally-equipped nanocarriers, for drug delivery. J Control Release 2015; 219: 396-405. doi: 10.1016/j.jconrel.2015.07.030 PMID: 26241750
  103. Phelps MP, Yang H, Patel S, Rahman MM, McFadden G, Chen E. Oncolytic virus-mediated RAS targeting in rhabdomyosarcoma. Mol Ther Oncolytics 2018; 11: 52-61. doi: 10.1016/j.omto.2018.09.001 PMID: 30364635
  104. Sudhir Dhote N, Dineshbhai Patel R, Kuwar U, Agrawal M, Alexander A, Jain P. Application of thermoresponsive smart polymers based in situ gel as a novel carrier for tumor targeting. Curr Cancer Drug Targets 2024; 24(4): 375-96.
  105. Moss KH, Popova P, Hadrup SR, Astakhova K, Taskova M. Lipid nanoparticles for delivery of therapeutic RNA oligonucleotides. Mol Pharm 2019; 16(6): 2265-77. doi: 10.1021/acs.molpharmaceut.8b01290 PMID: 31063396
  106. Briolay T, Petithomme T, Fouet M, Nguyen-Pham N, Blanquart C, Boisgerault N. Delivery of cancer therapies by synthetic and bio-inspired nanovectors. Mol Cancer 2021; 20(1): 55. doi: 10.1186/s12943-021-01346-2 PMID: 33761944
  107. Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJA. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 2011; 29(4): 341-5. doi: 10.1038/nbt.1807 PMID: 21423189
  108. Kim MS, Haney MJ, Zhao Y, et al. Engineering macrophage-derived exosomes for targeted paclitaxel delivery to pulmonary metastases: In vitro and in vivo evaluations. Nanomedicine 2018; 14(1): 195-204. doi: 10.1016/j.nano.2017.09.011 PMID: 28982587
  109. Jaiswal M, Dudhe R, Sharma PK. Nanoemulsion: An advanced mode of drug delivery system. 3 Biotech 2015; 5: 123-7. doi: 10.1007/s13205-014-0214-0
  110. Gorain B, Choudhury H, Nair AB, Dubey SK, Kesharwani P. Theranostic application of nanoemulsions in chemotherapy. Drug Discov Today 2020; 25(7): 1174-88. doi: 10.1016/j.drudis.2020.04.013 PMID: 32344042
  111. Gadhave DG, Kokare CR. Nanostructured lipid carriers engineered for intranasal delivery of teriflunomide in multiple sclerosis: Optimization and in vivo studies. Drug Dev Ind Pharm 2019; 45(5): 839-51. doi: 10.1080/03639045.2019.1576724 PMID: 30702966
  112. Prasad J, Netam AK, Satapathy T, Prakash Rao S, Jain P. Anti-hyperlipidemic and antioxidant activities of a combination of terminalia arjuna and commiphora mukul on experimental animals BT - advances in biomedical engineering and technology. In: Rizvanov AA, Singh BK, Ganasala P, Eds. Singapore: Springer Singapore 2021; pp. 175-88.
  113. Azambuja JH, Schuh RS, Michels LR, et al. Nasal administration of cationic nanoemulsions as CD73-siRNA delivery system for glioblastoma treatment: A new therapeutical approach. Mol Neurobiol 2020; 57(2): 635-49. doi: 10.1007/s12035-019-01730-6 PMID: 31407144
  114. Du M, Yang Z, Lu W, et al. Design and development of spirulina polysaccharide-loaded nanoemulsions with improved the antitumor effects of paclitaxel. J Microencapsul 2020; 37(6): 403-12. doi: 10.1080/02652048.2020.1767224 PMID: 32401077
  115. Dianzani C, Monge C, Miglio G, et al. Nanoemulsions as delivery systems for poly-chemotherapy aiming at melanoma treatment. Cancers 2020; 12(5): 1198. doi: 10.3390/cancers12051198 PMID: 32397484
  116. Ribeiro EB, de Marchi PGF, Honorio-França AC, França EL, Soler MAG. Interferon-gamma carrying nanoemulsion with immunomodulatory and anti-tumor activities. J Biomed Mater Res A 2020; 108(2): 234-45. doi: 10.1002/jbm.a.36808 PMID: 31587469
  117. Meng L, Xia X, Yang Y, et al. Co-encapsulation of paclitaxel and baicalein in nanoemulsions to overcome multidrug resistance via oxidative stress augmentation and P-glycoprotein inhibition. Int J Pharm 2016; 513(1-2): 8-16. doi: 10.1016/j.ijpharm.2016.09.001 PMID: 27596118
  118. Balachandran P, Pugh ND, Ma G, Pasco DS. Toll-like receptor 2-dependent activation of monocytes by Spirulina polysaccharide and its immune enhancing action in mice. Int Immunopharmacol 2006; 6(12): 1808-14. doi: 10.1016/j.intimp.2006.08.001 PMID: 17052671
  119. Baker JR Jr. Dendrimer-based nanoparticles for cancer therapy. Hematology 2009; 2009(1): 708-19. doi: 10.1182/asheducation-2009.1.708 PMID: 20008257
  120. Bhairam M, Prasad J, Verma K, Jain P, Gidwani B. Formulation of transdermal patch of losartan potassium & glipizide for the treatment of hypertension & diabetes. Mater Today Proc 2023; 83: 59-68. doi: 10.1016/j.matpr.2023.01.147
  121. Lo ST, Kumar A, Hsieh JT, Sun X. Dendrimer nanoscaffolds for potential theranostics of prostate cancer with a focus on radiochemistry. Mol Pharm 2013; 10(3): 793-812. doi: 10.1021/mp3005325 PMID: 23294202
  122. Li D, Fan Y, Shen M, Bányai I, Shi X. Design of dual drug-loaded dendrimer/carbon dot nanohybrids for fluorescence imaging and enhanced chemotherapy of cancer cells. J Mater Chem B Mater Biol Med 2019; 7(2): 277-85. doi: 10.1039/C8TB02723D PMID: 32254552
  123. Pishavar E, Ramezani M, Hashemi M. Co-delivery of doxorubicin and TRAIL plasmid by modified PAMAM dendrimer in colon cancer cells, in vitro and in vivo evaluation. Drug Dev Ind Pharm 2019; 45(12): 1931-9. doi: 10.1080/03639045.2019.1680995 PMID: 31609130
  124. Tarach P, Janaszewska A. Recent advances in preclinical research using PAMAM dendrimers for cancer gene therapy. Int J Mol Sci 2021; 22(6): 2912. doi: 10.3390/ijms22062912 PMID: 33805602
  125. Islam M, Huang Y, Jain P, Fan B, Tong L, Wang F. Enzymatic hydrolysis of soy protein to high moisture textured meat analogue with emphasis on antioxidant effects: As a tool to improve techno- functional property. Biocatal Agric Biotechnol 2023; 50: 102700. doi: 10.1016/j.bcab.2023.102700
  126. Thi TTH, Suys EJA, Lee JS, Nguyen DH, Park KD, Truong NP. Lipid-based nanoparticles in the clinic and clinical trials: From cancer nanomedicine to COVID-19 vaccines. Vaccines 2021; 9(4): 359. doi: 10.3390/vaccines9040359 PMID: 33918072
  127. Olusanya T, Haj Ahmad R, Ibegbu D, Smith J, Elkordy A. Liposomal drug delivery systems and anticancer drugs. Molecules 2018; 23(4): 907. doi: 10.3390/molecules23040907 PMID: 29662019
  128. Lai X, Jiang H, Wang X. Biodegradable metal organic frameworks for multimodal imaging and targeting theranostics. Biosensors 2021; 11(9): 299. doi: 10.3390/bios11090299 PMID: 34562889
  129. Anselmo A C, Mitragotri S. Nanoparticles in the clinic: An update. Bioeng Transl Med 2019; 4(3): e10143.
  130. Chen F, Ehlerding EB, Cai W. Theranostic nanoparticles. J Nucl Med 2014; 55(12): 1919-22. doi: 10.2967/jnumed.114.146019 PMID: 25413134
  131. Rajakumar G, Zhang XH, Gomathi T, et al. Current use of carbon-based materials for biomedical applications. A prospective and review. Processes 2020; 8(3): 355. doi: 10.3390/pr8030355
  132. Dhas N, Pastagia M, Sharma A, et al. Organic quantum dots: An ultrasmall nanoplatform for cancer theranostics. J Control Release 2022; 348: 798-824. doi: 10.1016/j.jconrel.2022.06.033 PMID: 35752250
  133. Saleem J, Wang L, Chen C. Carbon-based nanomaterials for cancer therapy via targeting tumor microenvironment. Adv Healthcare Mater 2018; 7(20): 1800525. doi: 10.1002/adhm.201800525 PMID: 30073803
  134. Fadeel B, Bussy C, Merino S, et al. Safety assessment of graphene-based materials: Focus on human health and the environment. ACS Nano 2018; 12(11): 10582-620. doi: 10.1021/acsnano.8b04758 PMID: 30387986
  135. Ou L, Song B, Liang H, et al. Toxicity of graphene-family nanoparticles: A general review of the origins and mechanisms. Part Fibre Toxicol 2016; 13(1): 57. doi: 10.1186/s12989-016-0168-y PMID: 27799056
  136. Krishna KV, Ménard-Moyon C, Verma S, Bianco A. Graphene-based nanomaterials for nanobiotechnology and biomedical applications. Nanomedicine 2013; 8(10): 1669-88. doi: 10.2217/nnm.13.140 PMID: 24074389
  137. Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomically thin carbon films. Science 2004; 306(5696): 666-9. doi: 10.1126/science.1102896 PMID: 15499015
  138. Liu J, Dong J, Zhang T, Peng Q. Graphene-based nanomaterials and their potentials in advanced drug delivery and cancer therapy. J Control Release 2018; 286: 64-73. doi: 10.1016/j.jconrel.2018.07.034 PMID: 30031155
  139. Verde V, Longo A, Cucci LM, et al. Anti-angiogenic and anti-proliferative graphene oxide nanosheets for tumor cell therapy. Int J Mol Sci 2020; 21(15): 5571. doi: 10.3390/ijms21155571 PMID: 32759830
  140. Rebuttini V, Fazio E, Santangelo S, et al. Chemical modification of graphene oxide through diazonium chemistry and its influence on the structure–property relationships of graphene oxide–iron oxide nanocomposites. Chemistry 2015; 21(35): 12465-74. doi: 10.1002/chem.201500836 PMID: 26178747
  141. Jain A, Jain P, Soni P, Tiwari A, Tiwari SP. Design and characterization of silver nanoparticles of different species of curcuma in the treatment of cancer using human colon cancer cell line (HT-29). J Gastrointest Cancer 2023; 54(1): 90-5. doi: 10.1007/s12029-021-00788-7 PMID: 35043370
  142. Ema M, Gamo M, Honda K. A review of toxicity studies on graphene-based nanomaterials in laboratory animals. Regul Toxicol Pharmacol 2017; 85: 7-24. doi: 10.1016/j.yrtph.2017.01.011 PMID: 28161457
  143. Zhang Z, Liu Q, Gao D, et al. Graphene oxide as a multifunctional platform for raman and fluorescence imaging of cells. Small 2015; 11(25): 3000-5. doi: 10.1002/smll.201403459 PMID: 25708171
  144. Geim AK. Graphene: Status and prospects. Science 2009; 324(5934): 1530-4. doi: 10.1126/science.1158877 PMID: 19541989
  145. Goenka S, Sant V, Sant S. Graphene-based nanomaterials for drug delivery and tissue engineering. J Control Release 2014; 173: 75-88. doi: 10.1016/j.jconrel.2013.10.017 PMID: 24161530
  146. Ma J, Liu R, Wang X, et al. Crucial role of lateral size for graphene oxide in activating macrophages and stimulating pro-inflammatory responses in cells and animals. ACS Nano 2015; 9(10): 10498-515. doi: 10.1021/acsnano.5b04751 PMID: 26389709
  147. Feito MJ, Vila M, Matesanz MC, et al. In vitro evaluation of graphene oxide nanosheets on immune function. J Colloid Interface Sci 2014; 432: 221-8. doi: 10.1016/j.jcis.2014.07.004 PMID: 25086397
  148. Burnett M, Abuetabh Y, Wronski A, et al. Graphene oxide nanoparticles induce apoptosis in wild-type and CRISPR/Cas9-IGF/IGFBP3 knocked-out osteosarcoma cells. J Cancer 2020; 11(17): 5007-23. doi: 10.7150/jca.46464 PMID: 32742448
  149. Najafi M, Mortezaee K, Majidpoor J. Cancer stem cell (CSC) resistance drivers. Life Sci 2019; 234: 116781. doi: 10.1016/j.lfs.2019.116781 PMID: 31430455
  150. Fiorillo M, Verre AF, Iliut M, et al. Graphene oxide selectively targets cancer stem cells, across multiple tumor types: Implications for non-toxic cancer treatment, via "differentiation-based nano-therapy". Oncotarget 2015; 6(6): 3553-62. doi: 10.18632/oncotarget.3348 PMID: 25708684
  151. Meng J, Yang M, Jia F, et al. Subcutaneous injection of water-soluble multi-walled carbon nanotubes in tumor-bearing mice boosts the host immune activity. Nanotechnology 2010; 21(14): 145104. doi: 10.1088/0957-4484/21/14/145104 PMID: 20234075
  152. Meng J, Meng J, Duan J, et al. Carbon nanotubes conjugated to tumor lysate protein enhance the efficacy of an antitumor immunotherapy. Small 2008; 4(9): 1364-70. doi: 10.1002/smll.200701059 PMID: 18720440
  153. Sundaram P, Abrahamse H. Effective photodynamic therapy for colon cancer cells using chlorin e6 coated hyaluronic acid-based carbon nanotubes. Int J Mol Sci 2020; 21(13): 4745. doi: 10.3390/ijms21134745 PMID: 32635295
  154. Park YH, Park SY, In I. Direct noncovalent conjugation of folic acid on reduced graphene oxide as anticancer drug carrier. J Ind Eng Chem 2015; 30: 190-6. doi: 10.1016/j.jiec.2015.05.021
  155. Liu Y, Zhong H, Qin Y, Zhang Y, Liu X, Zhang T. Non-covalent hydrophilization of reduced graphene oxide used as a paclitaxel vehicle. RSC Advances 2016; 6(36): 30184-93. doi: 10.1039/C6RA04349F
  156. Masoudipour E, Kashanian S, Maleki N. A targeted drug delivery system based on dopamine functionalized nano graphene oxide. Chem Phys Lett 2017; 668: 56-63. doi: 10.1016/j.cplett.2016.12.019
  157. Jafarizad A, Aghanejad A, Sevim M, et al. Gold nanoparticles and reduced graphene oxide-gold nanoparticle composite materials as covalent drug delivery systems for breast cancer treatment. ChemistrySelect 2017; 2(23): 6663-72. doi: 10.1002/slct.201701178
  158. Nie X, Tang J, Liu Y, et al. Fullerenol inhibits the cross-talk between bone marrow-derived mesenchymal stem cells and tumor cells by regulating MAPK signaling. Nanomedicine 2017; 13(6): 1879-90. doi: 10.1016/j.nano.2017.03.013 PMID: 28365417
  159. Rao Z, Ge H, Liu L, et al. Carboxymethyl cellulose modifed graphene oxide as pH-sensitive drug delivery system. Int J Biol Macromol 2018; 107(Part A): 1184-92.
  160. Gu YJ, Cheng J, Jin J, Cheng SH, Wong WT. Development and evaluation of pH-responsive single-walled carbon nanotube-doxorubicin complexes in cancer cells. Int J Nanomed 2011; 6: 2889-98. PMID: 22131835
  161. Meng H, Xing G, Sun B, et al. Potent angiogenesis inhibition by the particulate form of fullerene derivatives. ACS Nano 2010; 4(5): 2773-83. doi: 10.1021/nn100448z PMID: 20429577
  162. Zhou L, Li Z, Liu Z, Ren J, Qu X. Luminescent carbon dot-gated nanovehicles for pH-triggered intracellular controlled release and imaging. Langmuir 2013; 29(21): 6396-403. doi: 10.1021/la400479n PMID: 23642102
  163. Dong X, Sun Z, Wang X, Leng X. An innovative MWCNTs/DOX/TC nanosystem for chemo-photothermal combination therapy of cancer. Nanomedicine 2017; 13(7): 2271-80. doi: 10.1016/j.nano.2017.07.002 PMID: 28712919
  164. Dubertret B, Skourides P, Norris DJ, Noireaux V, Brivanlou AH, Libchaber A. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 2002; 298(5599): 1759-62. doi: 10.1126/science.1077194 PMID: 12459582
  165. Gao X, Cui Y, Levenson RM, Chung LWK, Nie S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 2004; 22(8): 969-76. doi: 10.1038/nbt994 PMID: 15258594
  166. Pooresmaeil M, Namazi H, Salehi R. Synthesis of photoluminescent glycodendrimer with terminal β-cyclodextrin molecules as a biocompatible pH-sensitive carrier for doxorubicin delivery. Carbohydr Polym 2020; 246: 116658. doi: 10.1016/j.carbpol.2020.116658 PMID: 32747290
  167. Lin H, Chen Y, Shi J. Nanoparticle-triggered in situ catalytic chemical reactions for tumour-specific therapy. Chem Soc Rev 2018; 47(6): 1938-58. doi: 10.1039/C7CS00471K PMID: 29417106
  168. Han Y, Gao S, Zhang Y, et al. Metal-based nanocatalyst for combined cancer therapeutics. Bioconjug Chem 2020; 31(5): 1247-58. doi: 10.1021/acs.bioconjchem.0c00194 PMID: 32319762
  169. Tang Z, Zhang H, Liu Y, et al. Antiferromagnetic pyrite as the tumor microenvironment-mediated nanoplatform for self-enhanced tumor imaging and therapy. Adv Mater 2017; 29(47): 1701683. doi: 10.1002/adma.201701683 PMID: 29094389
  170. Lee KT, Lu YJ, Mi FL, et al. Catalase-modulated heterogeneous fenton reaction for selective cancer cell eradication: SnFe2O4 nanocrystals as an effective reagent for treating lung cancer cells. ACS Appl Mater Interfaces 2017; 9(2): 1273-9. doi: 10.1021/acsami.6b13529 PMID: 28006093
  171. Zhang X, Zheng Y, Wang Z, et al. Methotrexate-loaded PLGA nanobubbles for ultrasound imaging and synergistic targeted therapy of residual tumor during HIFU ablation. Biomaterials 2014; 35(19): 5148-61. doi: 10.1016/j.biomaterials.2014.02.036 PMID: 24680663
  172. Maghsoudnia N, Baradaran Eftekhari R, Naderi Sohi A, et al. Mitochondrial delivery of microRNA mimic let-7b to NSCLC cells by PAMAM-based nanoparticles. J Drug Target 2020; 28(7-8): 818-30. doi: 10.1080/1061186X.2020.1774594 PMID: 32452217
  173. Jeong K, Yu YJ, You JY, Rhee WJ, Kim JA. Exosome-mediated microRNA-497 delivery for anti-cancer therapy in a microfluidic 3D lung cancer model. Lab Chip 2020; 20(3): 548-57. doi: 10.1039/C9LC00958B PMID: 31942592
  174. Zhang K, Dong C, Chen M, et al. Extracellular vesicle-mediated delivery of miR-101 inhibits lung metastasis in osteosarcoma. Theranostics 2020; 10(1): 411-25. doi: 10.7150/thno.33482 PMID: 31903129
  175. Roy B, Ghose S, Biswas S. Therapeutic strategies for miRNA delivery to reduce hepatocellular carcinoma. Semin Cell Dev Biol 2021. PMID: 33926792
  176. Nicolas J, Mura S, Brambilla D, Mackiewicz N, Couvreur P. Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery. Chem Soc Rev 2013; 42(3): 1147-235. doi: 10.1039/C2CS35265F PMID: 23238558
  177. Wang W, Zhou F, Ge L, Liu X, Kong F. Transferrin-PEG-PE modified dexamethasone conjugated cationic lipid carrier mediated gene delivery system for tumor-targeted transfection. Int J Nanomed 2012; 7: 2513-22. PMID: 22679364
  178. Markman JL, Rekechenetskiy A, Holler E, Ljubimova JY. Nanomedicine therapeutic approaches to overcome cancer drug resistance. Adv Drug Deliv Rev 2013; 65(13-14): 1866-79. doi: 10.1016/j.addr.2013.09.019 PMID: 24120656
  179. Ryman-Rasmussen JP, Riviere JE, Monteiro-Riviere NA. Penetration of intact skin by quantum dots with diverse physicochemical properties. Toxicol Sci 2006; 91(1): 159-65. doi: 10.1093/toxsci/kfj122 PMID: 16443688
  180. Xia T, Kovochich M, Brant J, et al. Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett 2006; 6(8): 1794-807. doi: 10.1021/nl061025k PMID: 16895376
  181. Penn A, Murphy G, Barker S, Henk W, Penn L. Combustion-derived ultrafine particles transport organic toxicants to target respiratory cells. Environ Health Perspect 2005; 113(8): 956-63. doi: 10.1289/ehp.7661 PMID: 16079063
  182. Vallhov H, Qin J, Johansson SM, et al. The importance of an endotoxin-free environment during the production of nanoparticles used in medical applications. Nano Lett 2006; 6(8): 1682-6. doi: 10.1021/nl060860z PMID: 16895356
  183. Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC. Cancer nanotechnology: The impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev 2014; 66: 2-25. doi: 10.1016/j.addr.2013.11.009 PMID: 24270007
  184. Albanese A, Lam AK, Sykes EA, Rocheleau JV, Chan WCW. Tumour-on-a-chip provides an optical window into nanoparticle tissue transport. Nat Commun 2013; 4(1): 2718. doi: 10.1038/ncomms3718 PMID: 24177351
  185. Dutta D, Heo I, Clevers H. Disease modeling in stem cell-derived 3D organoid systems. Trends Mol Med 2017; 23(5): 393-410. doi: 10.1016/j.molmed.2017.02.007 PMID: 28341301
  186. Bleijs M, van de Wetering M, Clevers H, Drost J. Xenograft and organoid model systems in cancer research. EMBO J 2019; 38(15): e101654. doi: 10.15252/embj.2019101654 PMID: 31282586
  187. Sebak AA, Gomaa IEO, ElMeshad AN, et al. Distinct proteins in protein corona of nanoparticles represent a promising venue for endogenous targeting-part I: In vitro release and intracellular uptake perspective. Int J Nanomed 2020; 15: 8845-62. doi: 10.2147/IJN.S273713 PMID: 33204091
  188. Vroman L, Adams AL, Fischer GC, Munoz PC. Interaction of high molecular weight kininogen, factor XII, and fibrinogen in plasma at interfaces. Blood 1980; 55(1): 156-9. doi: 10.1182/blood.V55.1.156.156 PMID: 7350935
  189. Pederzoli F, Tosi G, Vandelli MA, Belletti D, Forni F, Ruozi B. Protein corona and nanoparticles: How can we investigate on? Wiley Interdiscip Rev Nanomed Nanobiotechnol 2017; 9(6): e1467. doi: 10.1002/wnan.1467 PMID: 28296346
  190. Risha Y, Minic Z, Ghobadloo SM, Berezovski MV. The proteomic analysis of breast cell line exosomes reveals disease patterns and potential biomarkers. Sci Rep 2020; 10(1): 13572. doi: 10.1038/s41598-020-70393-4 PMID: 32782317
  191. Elzek MA, Rodland KD. Proteomics of ovarian cancer: Functional insights and clinical applications. Cancer Metastasis Rev 2015; 34(1): 83-96. doi: 10.1007/s10555-014-9547-8 PMID: 25736266
  192. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000; 100(1): 57-70. doi: 10.1016/S0092-8674(00)81683-9 PMID: 10647931
  193. Hanahan D, Weinberg RA. Hallmarks of cancer: The next generation. Cell 2011; 144(5): 646-74. doi: 10.1016/j.cell.2011.02.013 PMID: 21376230
  194. Hartshorn CM, Bradbury MS, Lanza GM, et al. Nanotechnology strategies to advance outcomes in clinical cancer care. ACS Nano 2018; 12(1): 24-43. doi: 10.1021/acsnano.7b05108 PMID: 29257865
  195. Avula LR, Grodzinski P. Nanotechnology-aided advancement in the combating of cancer metastasis. Cancer Metastasis Rev 2022; 41(2): 383-404. doi: 10.1007/s10555-022-10025-7 PMID: 35366154
  196. Chaturvedi VK, Singh A, Singh VK, Singh MP. Cancer nanotechnology: A new revolution for cancer diagnosis and therapy. Curr Drug Metab 2019; 20(6): 416-29. doi: 10.2174/1389200219666180918111528 PMID: 30227814
  197. Sulaiman GM, Waheeb HM, Jabir MS, Khazaal SH, Dewir YH, Naidoo Y. Hesperidin loaded on gold nanoparticles as a drug delivery system for a successful biocompatible, anti-cancer, antiinflammatory and phagocytosis inducer model. Sci Rep 2020; 10(1): 9362. doi: 10.1038/s41598-020-66419-6 PMID: 32518242
  198. Tomar N. Dendrimers as nanocarriers in cancer chemotherapy. Anticancer Res 2019; 8: 12.
  199. Pucci C, Martinelli C, Ciofani G. Innovative approaches for cancer treatment: Current perspectives and new challenges. ecancermedicalscience 2019; 13: 961.
  200. Yao Y, Zhou Y, Liu L, et al. Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance. Front Mol Biosci 2020; 7: 193. doi: 10.3389/fmolb.2020.00193 PMID: 32974385
  201. Zhao CY, Cheng R, Yang Z, Tian ZM. Nanotechnology for cancer therapy based on chemotherapy. Molecules 2018; 23(4): 826. doi: 10.3390/molecules23040826 PMID: 29617302
  202. Zhou F, Huang L, Li S, et al. From structural design to delivery: MRNA therapeutics for cancer immunotherapy. Exploration 2024; 4(2): 20210146. doi: 10.1002/EXP.20210146 PMID: 38855617
  203. Jain P. Acaricidal activity and biochemical analysis of citrus limetta seed oil for controlling ixodid tick rhipicephalus microplus infesting cattle. Syst Appl Acarol 2021; 26(7): 1350-60.
  204. Ma J, Wu C. Bioactive inorganic particles-based biomaterials for skin tissue engineering. Exploration 2022; 2(5): 20210083. doi: 10.1002/EXP.20210083 PMID: 37325498
  205. Jain P, Satapathy T, Pandey RK. First report on efficacy of Citrus limetta seed oil in controlling cattle tick Rhipicephalus microplus in red Sahiwal calves. Vet Parasitol 2021; 296(June): 109508. doi: 10.1016/j.vetpar.2021.109508 PMID: 34218174
  206. Yang C, Xiong W, Qiu Q, et al. Anti-proliferative and anti-tumour effects of lymphocyte-derived microparticles are neither species- nor tumour-type specific. J Extracell Vesicles 2014; 3(1): 23034. doi: 10.3402/jev.v3.23034 PMID: 24834146
  207. Singh R, Prasad J, Satapathy T, Jain P, Singh S. Pharmacological evaluation for anti-bacterial and anti-inflammatory potential of polymeric microparticles. Indian J Biochem Biophys 2021 58(2): 156-61.
  208. Lee R, Ko HJ, Kim K, et al. Anti-melanogenic effects of extracellular vesicles derived from plant leaves and stems in mouse melanoma cells and human healthy skin. J Extracell Vesicles 2020; 9(1): 1703480. doi: 10.1080/20013078.2019.1703480 PMID: 32002169
  209. Patel R, Kuwar U, Dhote N, et al. Natural polymers as a carrier for the effective delivery of antineoplastic drugs. Curr Drug Deliv 2024; 21(2): 193-210. doi: 10.2174/1567201820666230112170035 PMID: 36644864

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers