3D Printed Nanosensors for Cancer Diagnosis: Advances and Future Perspective


Дәйексөз келтіру

Толық мәтін

Аннотация

:Cancer is the leading cause of mortality worldwide, requiring continuous advancements in diagnosis and treatment. Traditional methods often lack sensitivity and specificity, leading to the need for new methods. 3D printing has emerged as a transformative tool in cancer diagnosis, offering the potential for precise and customizable nanosensors. These advancements are critical in cancer research, aiming to improve early detection and monitoring of tumors. In current times, the usage of the 3D printing technique has been more prevalent as a flexible medium for the production of accurate and adaptable nanosensors characterized by exceptional sensitivity and specificity. The study aims to enhance early cancer diagnosis and prognosis by developing advanced 3D-printed nanosensors using 3D printing technology. The research explores various 3D printing techniques, design strategies, and functionalization strategies for cancer-specific biomarkers. The integration of these nanosensors with detection modalities like fluorescence, electrochemical, and surface-enhanced Raman spectroscopy is also evaluated. The study explores the use of inkjet printing, stereolithography, and fused deposition modeling to create nanostructures with enhanced performance. It also discusses the design and functionalization methods for targeting cancer indicators. The integration of 3D-printed nanosensors with multiple detection modalities, including fluorescence, electrochemical, and surface-enhanced Raman spectroscopy, enables rapid and reliable cancer diagnosis. The results show improved sensitivity and specificity for cancer biomarkers, enabling early detection of tumor indicators and circulating cells. The study highlights the potential of 3D-printed nanosensors to transform cancer diagnosis by enabling highly sensitive and specific detection of tumor biomarkers. It signifies a pivotal step forward in cancer diagnostics, showcasing the capacity of 3D printing technology to produce advanced nanosensors that can significantly improve early cancer detection and patient outcomes.

Авторлар туралы

Babita Gupta

Pharmacy, School of Medical and Allied Sciences, Galgotias University

Email: info@benthamscience.net

Rishabha Malviya

Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Saurabh Srivastava

School of Pharmacy,, KPJ Healthcare University College (KPJUC),

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Irfan Ahmad

Department of Clinical Laboratory Science, College of Applied Medical Sciences,, King Khalid University

Email: info@benthamscience.net

Safia Rab

Department of Clinical Laboratory Science, King Khalid University

Email: info@benthamscience.net

Deependra Singh

School of Pharmacy, Graphic Era Hill University

Email: info@benthamscience.net

Әдебиет тізімі

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin 2015; 65(1): 5-29. doi: 10.3322/caac.21254 PMID: 25559415
  2. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68(6): 394-424. doi: 10.3322/caac.21492 PMID: 30207593
  3. Vockley JG, Niederhuber JE. Diagnosis and treatment of cancer using genomics. BMJ 2015; 350(may28 9): h1832. doi: 10.1136/bmj.h1832 PMID: 26022222
  4. Jones M. Non-communicable diseases. Striving for equity: Healthcare in Sri Lanka from independence to the millennium, 1948-2000. Orient Blackswan 2020; 156.
  5. Boloker G, Wang C, Zhang J. Updated statistics of lung and bronchus cancer in United States (2018). J Thorac Dis 2018; 10(3): 1158-61. doi: 10.21037/jtd.2018.03.15 PMID: 29708136
  6. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin 2019; 69(1): 7-34. doi: 10.3322/caac.21551 PMID: 30620402
  7. Sohrabi H, Bolandi N, Hemmati A, et al. State-of-the-art cancer biomarker detection by portable (Bio) sensing technology: A critical review. Microchem J 2022; 177: 107248. doi: 10.1016/j.microc.2022.107248
  8. Safhi AY. Three-dimensional (3D) printing in cancer therapy and diagnostics: Current status and future perspectives. Pharmaceuticals (Basel) 2022; 15(6): 678. doi: 10.3390/ph15060678 PMID: 35745597
  9. Chinnakorn A, Nuansing W, Bodaghi M, Rolfe B, Zolfagharian A. Recent progress of 4D printing in cancer therapeutics studies. SLAS Technol 2023; 28(3): 127-41. doi: 10.1016/j.slast.2023.02.002 PMID: 36804175
  10. Huber F, Lang HP, Zhang J, Rimoldi D, Gerber C. Nanosensors for cancer detection. Swiss Med Wkly 2015; 145: w14092. PMID: 25664868
  11. Cash KJ, Clark HA. Nanosensors and nanomaterials for monitoring glucose in diabetes. Trends Mol Med 2010; 16(12): 584-93. doi: 10.1016/j.molmed.2010.08.002 PMID: 20869318
  12. Bird DT, Ravindra NM. Additive manufacturing of sensors for military monitoring applications. Polymers (Basel) 2021; 13(9): 1455. doi: 10.3390/polym13091455 PMID: 33946226
  13. Sui X, Downing JR, Hersam MC, Chen J. Additive manufacturing and applications of nanomaterial-based sensors. Mater Today 2021; 48: 135-54. doi: 10.1016/j.mattod.2021.02.001
  14. Sollini M, Bartoli F, Marciano A, Zanca R, Slart RHJA, Erba PA. Artificial intelligence and hybrid imaging: The best match for personalized medicine in oncology. Eur J Hybrid Imaging 2020; 4(1): 24. doi: 10.1186/s41824-020-00094-8 PMID: 34191197
  15. Serrano DR, Kara A, Yuste I, et al. 3D printing technologies in personalized medicine, nanomedicines, and biopharmaceuticals. Pharmaceutics 2023; 15(2): 313.
  16. Muldoon K, Song Y, Ahmad Z, Chen X, Chang MW. High precision 3D printing for micro to nano scale biomedical and electronic devices. Micromachines (Basel) 2022; 13(4): 642. doi: 10.3390/mi13040642 PMID: 35457946
  17. Padash M, Enz C, Carrara S. Microfluidics by additive manufacturing for wearable biosensors: A review. Sensors (Basel) 2020; 20(15): 4236. doi: 10.3390/s20154236 PMID: 32751404
  18. Kumari M, Gupta V, Kumar N, Arun RK. Microfluidics-based nano biosensors for healthcare monitoring. Mol Biotechnol 2024; 66(3): 378-401. doi: 10.1007/s12033-023-00760-9 PMID: 37166577
  19. Kumar A, Panda U. Chapter 12 - Microfluidics-based devices and their role on point-of-care testing. Biosensor Based Advanced Cancer Diagnostics - From Lab to Clinics. Academic Press 2022; pp. 197-224. doi: 10.1016/B978-0-12-823424-2.00011-9
  20. Hohmann JK, Renner M, Waller EH, von Freymann G. Three-dimensional µ-printing: An enabling technology. Adv Opt Mater 2015; 3(11): 1488-507. doi: 10.1002/adom.201500328
  21. Tumbleston JR, Shirvanyants D, Ermoshkin N, et al. Continuous liquid interface production of 3D objects. Science 2015; 347(6228): 1349-52. doi: 10.1126/science.aaa2397 PMID: 25780246
  22. Sun K, Wei TS, Ahn BY, Seo JY, Dillon SJ, Lewis JA. 3D printing of interdigitated Li-ion microbattery architectures. Adv Mater 2013; 25(33): 4539-43. doi: 10.1002/adma.201301036 PMID: 23776158
  23. Xu Y, Wu X, Guo X, et al. The boom in 3D-printed sensor technology. Sensors (Basel) 2017; 17(5): 1166. doi: 10.3390/s17051166 PMID: 28534832
  24. Ren Y, Sun X, Liu J. Advances in liquid metal-enabled flexible and wearable sensors. Micromachines (Basel) 2020; 11(2): 200. doi: 10.3390/mi11020200 PMID: 32075215
  25. Ni Y, Ji R, Long K, Bu T, Chen K, Zhuang S. A review of 3D-printed sensors. Appl Spectrosc Rev 2017; 52(7): 623-52. doi: 10.1080/05704928.2017.1287082
  26. Khosravani MR, Reinicke T. 3D-printed sensors: Current progress and future challenges. Sens Actuators A Phys 2020; 305: 111916. doi: 10.1016/j.sna.2020.111916
  27. Ozbolat IT, Hospodiuk M. Current advances and future perspectives in extrusion-based bioprinting. Biomaterials 2016; 76: 321-43. doi: 10.1016/j.biomaterials.2015.10.076 PMID: 26561931
  28. Ning F, Cong W, Hu Y, Wang H, Zhang H. 3D printing of thermoplastic composites: A review. Compos, Part B Eng 2018; 143: 172-96.
  29. Gong H, Beauchamp M, Perry S, Woolley AT, Nordin GP. Optical approach to resin formulation for 3D printed microfluidics. RSC Advances 2016; 6(54): 48547-51. PMID: 26744624
  30. Usha SP, Manoharan H, Deshmukh R, et al. Attomolar analyte sensing techniques (AttoSens): A review on a decade of progress on chemical and biosensing nanoplatforms. Chem Soc Rev 2021; 50(23): 13012-89. doi: 10.1039/D1CS00137J PMID: 34673860
  31. Yildirim DU, Ghobadi A, Ozbay E. Nanosensors based on localized surface plasmon resonance. Plasmonic Sensors and their Applications. Wiley 2021. doi: 10.1002/9783527830343.ch2
  32. Nocerino V, Miranda B, Tramontano C, et al. Plasmonic nanosensors: design, fabrication, and applications in biomedicine. Chemosensors (Basel) 2022; 10(5): 150. doi: 10.3390/chemosensors10050150
  33. Khazaei M, Hosseini MS, Haghighi AM, Misaghi M. Nanosensors and their applications in early diagnosis of cancer. Sens Biosensing Res 2023; 41: 100569. doi: 10.1016/j.sbsr.2023.100569
  34. Norizan MN, Moklis MH, Ngah Demon SZ, et al. Carbon nanotubes: Functionalisation and their application in chemical sensors. RSC Advances 2020; 10(71): 43704-32. doi: 10.1039/D0RA09438B PMID: 35519676
  35. Nardi-Agmon I, Abud-Hawa M, Liran O, et al. Exhaled breath analysis for monitoring response to treatment in advanced lung cancer. J Thorac Oncol 2016; 11(6): 827-37. doi: 10.1016/j.jtho.2016.02.017 PMID: 26968885
  36. Chen Y, Wang X, Hong MK, et al. Nanoelectronic detection of breast cancer biomarker. Appl Phys Lett 2010; 97(23): 233702. doi: 10.1063/1.3519983
  37. Lyu Q, Zhai Q, Dyson J, et al. Real-time and in-situ monitoring of H2O2 release from living cells by a stretchable electrochemical biosensor based on vertically aligned gold nanowires. Anal Chem 2019; 91(21): 13521-7. doi: 10.1021/acs.analchem.9b02610 PMID: 31549803
  38. Butova VV, Soldatov MA, Guda AA, Lomachenko KA, Lamberti C. Metal-organic frameworks: structure, properties, methods of synthesis and characterization. Russ Chem Rev 2016; 85(3): 280-307. doi: 10.1070/RCR4554
  39. Zhu QL, Xu Q. Metal–organic framework composites. Chem Soc Rev 2014; 43(16): 5468-512. doi: 10.1039/C3CS60472A PMID: 24638055
  40. Li Y, Liu J, Wang Z, et al. Optimizing energy transfer in nanostructures enables in vivo cancer lesion tracking via near-infrared excited hypoxia imaging. Adv Mater 2020; 32(14): 1907718. doi: 10.1002/adma.201907718 PMID: 32091152
  41. Carrasco S. Metal-organic frameworks for the development of biosensors: A current overview. Biosensors (Basel) 2018; 8(4): 92. doi: 10.3390/bios8040092 PMID: 30332786
  42. Borini S, White R, Wei D, et al. Ultrafast graphene oxide humidity sensors. ACS Nano 2013; 7(12): 11166-73. doi: 10.1021/nn404889b PMID: 24206232
  43. Peña-Bahamonde J, Nguyen HN, Fanourakis SK, Rodrigues DF. Recent advances in graphene-based biosensor technology with applications in life sciences. J Nanobiotechnol 2018; 16(1): 75. doi: 10.1186/s12951-018-0400-z PMID: 30243292
  44. Li W, Wang H, Zhao Z, et al. Emerging nanotechnologies for liquid biopsy: The detection of circulating tumor cells and extracellular vesicles. Adv Mater 2019; 31(45): 1805344. doi: 10.1002/adma.201805344 PMID: 30589111
  45. Salvati E, Stellacci F, Krol S. Nanosensors for early cancer detection and for therapeutic drug monitoring. Nanomedicine (Lond) 2015; 10(23): 3495-512. doi: 10.2217/nnm.15.180 PMID: 26606949
  46. Soda N, Rehm BHA, Sonar P, Nguyen NT, Shiddiky MJA. Advanced liquid biopsy technologies for circulating biomarker detection. J Mater Chem B Mater Biol Med 2019; 7(43): 6670-704. doi: 10.1039/C9TB01490J PMID: 31646316
  47. Iftikhar FJ, Shah A, Akhter MS, Kurbanoglu S, Ozkan SA. Introduction to nanosensors. New Developments in Nanosensors for Pharmaceutical Analysis. Academic Press 2019; pp. 1-46. doi: 10.1016/B978-0-12-816144-9.00001-8
  48. Nimal R, Selcuk O, Kurbanoglu S, Shah A, Siddiq M, Uslu B. Trends in electrochemical nanosensors for the analysis of antioxidants. Trends Analyt Chem 2022; 153: 116626. doi: 10.1016/j.trac.2022.116626
  49. Oliveira ON Jr, Iost RM, Siqueira JR Jr, Crespilho FN, Caseli L. Nanomaterials for diagnosis: challenges and applications in smart devices based on molecular recognition. ACS Appl Mater Interfaces 2014; 6(17): 14745-66. doi: 10.1021/am5015056 PMID: 24968359
  50. John SA, Chattree A, Ramteke PW, Shanthy P, Nguyen TA, Rajendran S. 20 - Nanosensors for plant health monitoring. Nanosensors for Smart Agriculture - Micro and Nano Technologies. Elsevier 2022; pp. 449-61. doi: 10.1016/B978-0-12-824554-5.00012-4
  51. Butt Z, Aziz MS, Aamir M, Syed AS, Akhtar J. Chapter 21- Next- generation self-powered nanosensors. Nanosensors for Smart Manufacturing - Micro and Nano Technologies. Elsevier 2021; pp. 487-515. doi: 10.1016/B978-0-12-823358-0.00023-X
  52. McFarland AD, Van Duyne RP. Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Lett 2003; 3(8): 1057-62. doi: 10.1021/nl034372s
  53. Haes AJ, Van Duyne RP. A unified view of propagating and localized surface plasmon resonance biosensors. Anal Bioanal Chem 2004; 379(7-8): 920-30. doi: 10.1007/s00216-004-2708-9 PMID: 15338088
  54. Lee H, Kang T, Yoon KA, Lee SY, Joo SW, Lee K. Colorimetric detection of mutations in epidermal growth factor receptor using gold nanoparticle aggregation. Biosens Bioelectron 2010; 25(7): 1669-74. doi: 10.1016/j.bios.2009.12.002 PMID: 20036793
  55. Baker GA, Moore DS. Progress in plasmonic engineering of surface-enhanced Raman-scattering substrates toward ultra-trace analysis. Anal Bioanal Chem 2005; 382(8): 1751-70. doi: 10.1007/s00216-005-3353-7 PMID: 16049671
  56. Israelsen ND, Hanson C, Vargis E. Nanoparticle properties and synthesis effects on surface-enhanced Raman scattering enhancement factor: An introduction. ScientificWorldJournal 2015; 2015: 1-12. doi: 10.1155/2015/124582 PMID: 25884017
  57. Marsich L, Bonifacio A, Mandal S, Krol S, Beleites C, Sergo V. Poly-L-lysine-coated silver nanoparticles as positively charged substrates for surface-enhanced Raman scattering. Langmuir 2012; 28(37): 13166-71. doi: 10.1021/la302383r PMID: 22958086
  58. Hayat A, Catanante G, Marty J. Current trends in nanomaterial-based amperometric biosensors. Sensors (Basel) 2014; 14(12): 23439-61. doi: 10.3390/s141223439 PMID: 25494347
  59. Munge BS, Krause CE, Malhotra R, Patel V, Silvio Gutkind J, Rusling JF. Electrochemical immunosensors for interleukin-6. Comparison of carbon nanotube forest and gold nanoparticle platforms. Electrochem Commun 2009; 11(5): 1009-12. doi: 10.1016/j.elecom.2009.02.044 PMID: 20046945
  60. Florea A, Guo Z, Cristea C, et al. Anticancer drug detection using a highly sensitive molecularly imprinted electrochemical sensor based on an electropolymerized microporous metal organic framework. Talanta 2015; 138: 71-6. doi: 10.1016/j.talanta.2015.01.013 PMID: 25863374
  61. Swierczewska M, Liu G, Lee S, Chen X. High-sensitivity nanosensors for biomarker detection. Chem Soc Rev 2012; 41(7): 2641-55. doi: 10.1039/C1CS15238F PMID: 22187721
  62. Perfézou M, Turner A, Merkoçi A. Cancer detection using nanoparticle-based sensors. Chem Soc Rev 2012; 41(7): 2606-22. doi: 10.1039/C1CS15134G PMID: 21796315
  63. Shiddiky MJA, Rauf S, Kithva PH, Trau M. Graphene/quantum dot bionanoconjugates as signal amplifiers in stripping voltammetric detection of EpCAM biomarkers. Biosens Bioelectron 2012; 35(1): 251-7. doi: 10.1016/j.bios.2012.02.057 PMID: 22465446
  64. Liu X, Liu W, Ren Z, et al. Progress of optomechanical micro/nano sensors: A review. Int J Optomechatron 2021; 15(1): 120-59. doi: 10.1080/15599612.2021.1986612
  65. Arlett JL, Myers EB, Roukes ML. Comparative advantages of mechanical biosensors. Nat Nanotechnol 2011; 6(4): 203-15. doi: 10.1038/nnano.2011.44 PMID: 21441911
  66. Fedi A, Vitale C, Giannoni P, Caluori G, Marrella A. Biosensors to monitor cell activity in 3D hydrogel-based tissue models. Sensors (Basel) 2022; 22(4): 1517. doi: 10.3390/s22041517 PMID: 35214418
  67. Wu J, Liang B, Lu S, et al. Application of 3D printing technology in tumor diagnosis and treatment. Biomed Mater 2024; 19(1): 012002. doi: 10.1088/1748-605X/ad08e1 PMID: 37918002
  68. Johnson BN, Mutharasan R. Biosensing using dynamic-mode cantilever sensors: A review. Biosens Bioelectron 2012; 32(1): 1-18. doi: 10.1016/j.bios.2011.10.054 PMID: 22119230
  69. Melli M, Scoles G, Lazzarino M. Fast detection of biomolecules in diffusion-limited regime using micromechanical pillars. ACS Nano 2011; 5(10): 7928-35. doi: 10.1021/nn202224g PMID: 21955070
  70. Munawar A, Ong Y, Schirhagl R, Tahir MA, Khan WS, Bajwa SZ. Nanosensors for diagnosis with optical, electric and mechanical transducers. RSC Advances 2019; 9(12): 6793-803. doi: 10.1039/C8RA10144B PMID: 35518460
  71. Javaid M, Haleem A, Singh RP, Rab S, Suman R. Exploring the potential of nanosensors: A brief overview. Sensors Int 2021; 2: 100130. doi: 10.1016/j.sintl.2021.100130
  72. Bhuskute H, Shende P, Prabhakar B. 3D printed personalized medicine for cancer: Applications for the betterment of diagnosis, prognosis and treatment. AAPS PharmSciTech 2021; 23(1): 8. doi: 10.1208/s12249-021-02153-0 PMID: 34853934
  73. Galstyan A, Bunker MJ, Lobo F, et al. Applications of 3D printing in breast cancer management. 3D Print Med 2021; 7: 19. PMID: 34232424
  74. Haleem A, Javaid M, Vaishya R. 3D printing applications for the treatment of cancer. Clin Epidemiol Glob Health 2020; 8(4): 1072-6. doi: 10.1016/j.cegh.2020.03.022
  75. Chiadò A, Palmara G, Chiappone A, et al. A modular 3D printed lab-on-a-chip for early cancer detection. Lab Chip 2020; 20(3): 665-74. doi: 10.1039/C9LC01108K PMID: 31939966
  76. Sheil CJ, Khan U, Zakharov YN, et al. Two-photon polymerization nanofabrication of ultracompact light scattering spectroscopic probe for detection of pre-cancer in pancreatic cyst. Opt Lasers Eng 2021; 142: 106616. doi: 10.1016/j.optlaseng.2021.106616 PMID: 34305200
  77. Jiao Z, Zhao L, Tang C, Shi H, Wang F, Hu B. Droplet-based PCR in a 3D-printed microfluidic chip for miRNA-21 detection. Anal Methods 2019; 11(26): 3286-93. doi: 10.1039/C9AY01108K
  78. Wang L, Pumera M. Covalently modified enzymatic 3D-printed bioelectrode. Mikrochim Acta 2021; 188(11): 374. doi: 10.1007/s00604-021-05006-6 PMID: 34628520
  79. Wang P, Sun L, Li C, et al. Study on drug screening multicellular model for colorectal cancer constructed by three-dimensional bioprinting technology. Int J Bioprint 2023; 9(3): 694. doi: 10.18063/ijb.694 PMID: 37273979
  80. Somers N, Jean F, Lasgorceix M, et al. Fabrication of doped β-tricalcium phosphate bioceramics by Direct Ink Writing for bone repair applications. J Eur Ceram Soc 2023; 43(2): 629-38. doi: 10.1016/j.jeurceramsoc.2022.10.018
  81. Heidari-Rarani M, Rafiee-Afarani M, Zahedi AM. Mechanical characterization of FDM 3D printing of continuous carbon fiber reinforced PLA composites. Compos, Part B Eng 2019; 175: 107147. doi: 10.1016/j.compositesb.2019.107147
  82. Liu C, Huang N, Xu F, et al. 3D printing technologies for flexible tactile sensors toward wearable electronics and electronic skin. Polymers (Basel) 2018; 10(6): 629. doi: 10.3390/polym10060629 PMID: 30966663
  83. Kamyshny A, Magdassi S. Conductive nanomaterials for 2D and 3D printed flexible electronics. Chem Soc Rev 2019; 48(6): 1712-40. doi: 10.1039/C8CS00738A PMID: 30569917
  84. Leigh SJ, Bradley RJ, Purssell CP, Billson DR, Hutchins DA. A simple, low-cost conductive composite material for 3D printing of electronic sensors. PLoS One 2012; 7(11): e49365. doi: 10.1371/journal.pone.0049365 PMID: 23185319
  85. Roberson D, Shemelya CM, MacDonald E, Wicker R. Expanding the applicability of FDM-type technologies through materials development. Rapid Prototyping J 2015; 21(2): 137-43. doi: 10.1108/RPJ-12-2014-0165
  86. Zhang Y. 3D printing for cancer diagnosis: What unique advantages are gained? ACS Materials Au 2023; 3(6): 620-35. doi: 10.1021/acsmaterialsau.3c00046 PMID: 38089653
  87. Varghese G, Moral M, Castro-García M, et al. Fabrication and characterisation of ceramics via low-cost DLP 3D printing. Boletin de la Sociedad Espanola de Ceramica y Vidrio 2018; 57(1): 1-18.
  88. Khashayar P, Al-Madhagi S, Azimzadeh M, Scognamiglio V, Arduini F. New frontiers in microfluidics devices for miRNA analysis. Trends Analyt Chem 2022; 156: 116706. doi: 10.1016/j.trac.2022.116706
  89. Ahrberg CD, Manz A, Chung BG. Polymerase chain reaction in microfluidic devices. Lab Chip 2016; 16(20): 3866-84. doi: 10.1039/C6LC00984K PMID: 27713993
  90. Khaing MW, Fuh JYH, Lu L. Direct metal laser sintering for rapid tooling: Processing and characterisation of EOS parts. J Mater Process Technol 2001; 113(1-3): 269-72. doi: 10.1016/S0924-0136(01)00584-2
  91. Kumar S. Selective laser sintering: A qualitative and objective approach. J Miner Met Mater Soc 2003; 55(10): 43-7. doi: 10.1007/s11837-003-0175-y
  92. Schmid M, Amado A, Wegener K. Polymer powders for selective laser sintering (SLS). AIP Conference proceedings 1664; 1664(1)
  93. Zhang L, Yang G, Johnson BN, Jia X. Three-dimensional (3D) printed scaffold and material selection for bone repair. Acta Biomater 2019; 84: 16-33. doi: 10.1016/j.actbio.2018.11.039 PMID: 30481607
  94. Zhang Y, Thakkar R, Zhang J, et al. Investigating the use of magnetic nanoparticles as alternative sintering agents in selective laser sintering (SLS) 3D printing of oral tablets. ACS Biomater Sci Eng 2023; 9(6): 2924-36. doi: 10.1021/acsbiomaterials.2c00299 PMID: 36744796
  95. Farsari M, Chichkov B N. Two-photon fabrication. Nature Photonics 2009; 3(8): 450-2. doi: 10.1038/nphoton.2009.131
  96. Xing JF, Zheng ML, Duan XM. Two-photon polymerization microfabrication of hydrogels: an advanced 3D printing technology for tissue engineering and drug delivery. Chem Soc Rev 2015; 44(15): 5031-9. doi: 10.1039/C5CS00278H PMID: 25992492
  97. Saadi MASR, Maguire A, Pottackal NT, et al. Direct ink writing: A 3D printing technology for diverse materials. Adv Mater 2022; 34(28): 2108855. doi: 10.1002/adma.202108855 PMID: 35246886
  98. Samavedi S, Joy N III. 3D printing for the development of in vitro cancer models. Curr Opin Biomed Eng 2017; 2: 35-42. doi: 10.1016/j.cobme.2017.06.003
  99. Lee SY, Koo IS, Hwang HJ, Lee DW. In vitro three-dimensional (3D) cell culture tools for spheroid and organoid models. SLAS Discov 2023; 28(4): 119-37. doi: 10.1016/j.slasd.2023.03.006 PMID: 36997090
  100. Shen Y, Tang H, Huang X, et al. DLP printing photocurable chitosan to build bio-constructs for tissue engineering. Carbohydr Polym 2020; 235: 115970. doi: 10.1016/j.carbpol.2020.115970 PMID: 32122504
  101. Li X, Liu B, Pei B, et al. Inkjet bioprinting of biomaterials. Chem Rev 2020; 120(19): 10793-833. doi: 10.1021/acs.chemrev.0c00008 PMID: 32902959
  102. Singh M, Haverinen HM, Dhagat P, Jabbour GE. Inkjet printing-process and its applications. Adv Mater 2010; 22(6): 673-85. doi: 10.1002/adma.200901141 PMID: 20217769
  103. Zub K, Hoeppener S, Schubert US. Inkjet printing and 3D printing strategies for biosensing, analytical, and diagnostic applications. Adv Mater 2022; 34(31): 2105015. doi: 10.1002/adma.202105015 PMID: 35338719
  104. Salmoria G, Espíndola Vieira F. 3D printing of PCL/fluorouracil tablets by selective laser sintering: Properties of implantable drug delivery for cartilage cancer treatment. Rheumatol Orthoped Med 2017; 2: 1-7.
  105. Almela T, Tayebi L, Moharamzadeh K. 3D bioprinting for in vitro models of oral cancer: Toward development and validation. Bioprinting 2021; 22: e00132. doi: 10.1016/j.bprint.2021.e00132 PMID: 34368488
  106. Sharma R, Restan Perez M, da Silva VA, et al. 3D bioprinting complex models of cancer. Biomater Sci 2023; 11(10): 3414-30. doi: 10.1039/D2BM02060B PMID: 37000528
  107. Damiati S, Küpcü S, Peacock M, et al. Acoustic and hybrid 3D-printed electrochemical biosensors for the real-time immunodetection of liver cancer cells (HepG2). Biosens Bioelectron 2017; 94: 500-6. doi: 10.1016/j.bios.2017.03.045 PMID: 28343102
  108. An L, Wang G, Han Y, Li T, Jin P, Liu S. Electrochemical biosensor for cancer cell detection based on a surface 3D micro-array. Lab Chip 2018; 18(2): 335-42. doi: 10.1039/C7LC01117B PMID: 29260185
  109. Tang CK, Vaze A, Rusling JF. Automated 3D-printed unibody immunoarray for chemiluminescence detection of cancer biomarker proteins. Lab Chip 2017; 17(3): 484-9. doi: 10.1039/C6LC01238H PMID: 28067370
  110. Motaghi H, Ziyaee S, Mehrgardi MA, Kajani AA, Bordbar AK. Electrochemiluminescence detection of human breast cancer cells using aptamer modified bipolar electrode mounted into 3D printed microchannel. Biosens Bioelectron 2018; 118: 217-23. doi: 10.1016/j.bios.2018.07.066 PMID: 30092457
  111. Park C, Abafogi AT, Ponnuvelu DV, Song I, Ko K, Park S. Enhanced luminescent detection of circulating tumor cells by a 3D printed immunomagnetic concentrator. Biosensors (Basel) 2021; 11(8): 278. doi: 10.3390/bios11080278 PMID: 34436080
  112. Kadimisetty K, Malla S, Bhalerao KS, et al. Automated 3D-printed microfluidic array for rapid nanomaterial-enhanced detection of multiple proteins. Anal Chem 2018; 90(12): 7569-77. doi: 10.1021/acs.analchem.8b01198 PMID: 29779368
  113. Chen J, Liu CY, Wang X, et al. 3D printed microfluidic devices for circulating tumor cells (CTCs) isolation. Biosens Bioelectron 2020; 150: 111900. doi: 10.1016/j.bios.2019.111900 PMID: 31767348
  114. Wang J, Li Y, Wang R, et al. A fully automated and integrated microfluidic system for efficient CTC detection and its application in hepatocellular carcinoma screening and prognosis. ACS Appl Mater Interfaces 2021; 13(25): 30174-86. doi: 10.1021/acsami.1c06337 PMID: 34142547
  115. Kadimisetty K, Mosa IM, Malla S, et al. 3D-printed supercapacitor-powered electrochemiluminescent protein immunoarray. Biosens Bioelectron 2016; 77: 188-93. doi: 10.1016/j.bios.2015.09.017 PMID: 26406460
  116. Heger Z, Žitka J, Cernei N, et al. 3D-printed biosensor with poly(dimethylsiloxane) reservoir for magnetic separation and quantum dots-based immunolabeling of metallothionein. Electrophoresis 2015; 36(11-12): 1256-64. doi: 10.1002/elps.201400559 PMID: 25735231
  117. Damiati S, Peacock M, Leonhardt S, et al. Embedded disposable functionalized electrochemical biosensor with a 3D-printed flow cell for detection of hepatic oval cells (HOCs). Genes (Basel) 2018; 9(2): 89. doi: 10.3390/genes9020089 PMID: 29443890
  118. Diamandis EP. Cancer biomarkers: Can we turn recent failures into success? J Natl Cancer Inst 2010; 102(19): 1462-7. doi: 10.1093/jnci/djq306 PMID: 20705936
  119. Ahmed SM. Patient Care Management of Cancer. Thesis, Brac University 2019.
  120. Wu X, Luo L, Yang S, et al. Improved SERS nanoparticles for direct detection of circulating tumor cells in the blood. ACS Appl Mater Interfaces 2015; 7(18): 9965-71. doi: 10.1021/acsami.5b02276 PMID: 25875511
  121. Bajaj A, Miranda OR, Kim IB, et al. Detection and differentiation of normal, cancerous, and metastatic cells using nanoparticle-polymer sensor arrays. Proc Natl Acad Sci USA 2009; 106(27): 10912-6. doi: 10.1073/pnas.0900975106 PMID: 19549846
  122. Rahman APH, Misra AJ, Panda S, et al. Sonophotocatalysis-mediated morphological transition modulates virulence and antibiotic resistance in Salmonella typhimurium. Environ Sci Water Res Technol 2020; 6(7): 1917-30. doi: 10.1039/D0EW00224K
  123. Chong H, Zhu C, Song J, et al. Preparation and optical property of new fluorescent nanoparticles. Macromol Rapid Commun 2013; 34(9): 736-42. doi: 10.1002/marc.201200755 PMID: 23468167
  124. Diamantides N, Wang L, Pruiksma T, et al. Correlating rheological properties and printability of collagen bioinks: The effects of riboflavin photocrosslinking and pH. Biofabrication 2017; 9(3): 034102. doi: 10.1088/1758-5090/aa780f PMID: 28677597
  125. Cui X, Li J, Hartanto Y, et al. Advances in extrusion 3D bioprinting: A focus on multicomponent hydrogel-based bioinks. Adv Health Mater 2020; 9(15): 1901648.
  126. Kashte S, Jaiswal AK, Kadam S. Artificial bone via bone tissue engineering: current scenario and challenges. Tissue Eng Regen Med 2017; 14(1): 1-14. doi: 10.1007/s13770-016-0001-6 PMID: 30603457
  127. Hughes AM, Kolb AD, Shupp AB, Shine KM, Bussard KM. Printing the pathway forward in bone metastatic cancer research: Applications of 3D engineered models and bioprinted scaffolds to recapitulate the bone–tumor niche. Cancers (Basel) 2021; 13(3): 507. doi: 10.3390/cancers13030507 PMID: 33572757
  128. Rana S, Singla AK, Bajaj A, et al. Array-based sensing of metastatic cells and tissues using nanoparticle-fluorescent protein conjugates. ACS Nano 2012; 6(9): 8233-40. doi: 10.1021/nn302917e PMID: 22920837
  129. Roco MC, Hersam MC, Mirkin CA, Mirkin CA, Nel A, Thaxton CS. Applications: Nanobiosystems, medicine, and health. Nanotechnology Research Directions for Societal Needs in 2020: Retrospective and Outlook. Dordrecht: Springer 2011.
  130. Li Z, Shum HC. Nanotechnology and Microfluidics for Biosensing and Biophysical Property Assessment. Nanotechnology and Microfluidics. Wiley 2020. doi: 10.1002/9783527818341.ch3
  131. Darwish MA, Abd-Elaziem W, Elsheikh A, Zayed AA. Advancements in nanomaterials for nanosensors: A comprehensive review. Nanoscale Adv 2024; 6: 4015-4046. doi: 10.1039/D4NA00214H
  132. Ligon SC, Liska R, Stampfl J, Gurr M, Mülhaupt R. Polymers for 3D printing and customized additive manufacturing. Chem Rev 2017; 117(15): 10212-90. doi: 10.1021/acs.chemrev.7b00074 PMID: 28756658
  133. Zhang J, Huang H, Song G, et al. Intelligent biosensing strategies for rapid detection in food safety: A review. Biosens Bioelectron 2022; 202: 114003. doi: 10.1016/j.bios.2022.114003 PMID: 35065479
  134. Raghu HV, Parkunan T, Kumar N. Application of nano biosensors for food safety monitoring. Environ Nanotechnol 2020; 4: 93-129.
  135. Xiang L, Zeng X, Xia F, Jin W, Liu Y, Hu Y. Recent advances in flexible and stretchable sensing systems: From the perspective of system integration. ACS Nano 2020; 14(6): 6449-69. doi: 10.1021/acsnano.0c01164 PMID: 32479071
  136. Yi Q, Najafikhoshnoo S, Das P, et al. All-3D-printed, flexible, and hybrid wearable bioelectronic tactile sensors using biocompatible nanocomposites for health monitoring. Adv Mater Technol 2022; 7(5): 2101034. doi: 10.1002/admt.202101034
  137. Lutz W, de Jong K, Rubel JA, Delgadillo J. Measuring, predicting, and tracking change in psychotherapy. Bergin and Garfield’s Handbook of Psychotherapy and Behavior Change. Wiley 2021; pp. 89-133.
  138. Tovar-Lopez FJ. Recent progress in micro-and nanotechnology-enabled sensors for biomedical and environmental challenges. Sensors (Basel) 2023; 23(12): 5406. doi: 10.3390/s23125406 PMID: 37420577
  139. Han T, Kundu S, Nag A, Xu Y. 3D printed sensors for biomedical applications: A review. Sensors (Basel) 2019; 19(7): 1706. doi: 10.3390/s19071706 PMID: 30974757
  140. Parupelli SK, Desai S. The 3D printing of nanocomposites for wearable biosensors: Recent advances, challenges, and prospects. Bioengineering (Basel) 2023; 11(1): 32. doi: 10.3390/bioengineering11010032 PMID: 38247910

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Bentham Science Publishers, 2024