Evaluation of the Hypoglycemic and Hypolipidemic Potential of Extract Fraction of Quercus baloot Griff Seeds in Alloxan-induced Diabetic Mice


Cite item

Full Text

Abstract

Introduction:The discovery and development of new phytomedicines can be greatly aided by plants because of their tremendous therapeutic benefits, efficiency, cost-effectiveness, lack of side effects, and cheaper therapies. In this regard, Quercus baloot, generally known as oak, is used in folkloric medicine for treating and preventing various human disorders, including diabetes.

Aim:For this purpose, the present study aimed to evaluate crude methanolic extract and various fractions of Quercus baloot for antihyperlipidemic and antihyperglycemic potential followed by the analysis of active compounds.

Methods:The hypoglycemic and hypolipidemic activity was evaluated in Swiss male Albino mice by administering an oral dose of 150-300 mg/kg of Q. baloot extracts in alloxan induced diabetic mice for 14 days.

Results:The results revealed that crude methanolic extract at a dose of 300 mg/kg exhibited a significant reduction in the blood glucose level (198.50 ± 1.99 mg/dl) at day 14 and the same treatment significantly increased the body weight (31.26 ± 0.27 g) at day 14 in comparison to the control group. Moreover, the biochemical parameters were investigated which presented an increase in high-density lipids (HDL) (30.33 ± 0.33 mg/dl), whereas low-density lipids (LDL) showed a significant decrease (105.66 ± 0.26 mg/dl). Additionally, triglyceride levels 104.83 ± 0.70 mg/dl, and total cholesterol 185.50 ± 0.76 mg/dl are significantly decreased. In serum biochemical analysis creatinine and hepatic enzyme markers, like serum glutamate pyruvate transaminase (32.00 ± 0.36 U/mg), serum glutamate oxaloacetate transaminase (34.33 ± 0.61 U/mg), and alkaline phosphatase (157.00 ± 0.73 U/mg), were significantly reduced by the crude methanolic extract at a dose of 300 mg/kg as compared to the control group. The antioxidant enzymes like Superoxide dismutase (4.57 ± 0.011), peroxidases dismutase (6.53 ± 0.014, and catalase (8.38 ± 0.014) at a dosage of 300 mg/kg of methanolic extract exhibited a significant increase. The histopathological study of the diabetic heart, liver, and pancreas showed substantial restoration of damaged tissues in the methanolic extract 150 and 300 mg/kg treated group, which supports the effectiveness of Q. baloot seeds. The gas chromatography-mass spectrometry analysis of methanolic extract identified 10 antidiabetic active compounds in the Q. baloot seeds, validating the antihyperglycemic activity. Thus, methanolic crude extract at the doses 150 and 300 mg/kg of Q. baloot showed significant antihyperlipidemic and antihyperglycemic activities, which validate the folkloric utilization of Q. baloot as a remedy in diabetes.

Conclusion:In conclusion, the 300 mg/kg methanolic extract of Q. baloot has notable hypoglycemic and hypolipidemic potential, supporting the plant's traditional medicinal usage in the treatment of diabetes and its complications. Further studies are needed for the purification, characterization, and structural clarification of bioactive compounds.

About the authors

Muhammad Musa

Department of Botany, Abdul Wali Khan University Mardan

Email: info@benthamscience.net

Shahid Rahman

Department of Botany,, Abdul Wali Khan University Mardan

Email: info@benthamscience.net

Niaz Ali

Department of Botany,, Hazara University

Email: info@benthamscience.net

Muhammad Hamayun

Department of Botany,, Abdul Wali Khan University Mardan

Email: info@benthamscience.net

Abdulwahed Alrefai

Department of Zoology, King Saud University

Email: info@benthamscience.net

Mikhlid Almutairi

Department of Zoology, King Saud University

Email: info@benthamscience.net

Rafia Azmat

Department of Chemistry,, University of Karachi

Email: info@benthamscience.net

Sajid Ali

Department of Horticulture and Life Science,, Yeungnam University

Author for correspondence.
Email: info@benthamscience.net

Sheheryar Hussain

Department of Botany, Abdul Wali Khan University

Email: info@benthamscience.net

Farzana Gul Jan

Department of Botany,, Abdul Wali Khan University Mardan

Author for correspondence.
Email: info@benthamscience.net

Gul Jan

Department of Botany,, Abdul Wali Khan University Mardan

Email: info@benthamscience.net

Muhammad Irfan

Department of Botany, Abdul Wali Khan University Mardan

Email: info@benthamscience.net

References

  1. Poznyak A, Grechko AV, Poggio P, Myasoedova VA, Alfieri V, Orekhov AN. The diabetes mellitus-atherosclerosis connection: The role of lipid and glucose metabolism and chronic inflammation. Int J Mol Sci 2020; 21(5): 1835. doi: 10.3390/ijms21051835 PMID: 32155866
  2. Parhofer KG. Interaction between glucose and lipid metabolism: More than diabetic dyslipidemia. Diabetes Metab J 2015; 39(5): 353-62. doi: 10.4093/dmj.2015.39.5.353 PMID: 26566492
  3. Sarma B. Survey of medicinal plants with potential antidiabetic activity used by villagers in lower Assam districts of North East, India. Int J Herb Med 2020; 8: 1-6.
  4. Vijayan M, Jose R, Jose S, Abraham S, Joy J. Study on quality of life assessment in diabetic retinopathy among patients with type 2 diabetic patients. Asian J Pharm Clin Res 2017; 10(7): 116-9. doi: 10.22159/ajpcr.2017.v10i7.18095
  5. Hu C, Sun L, Xiao L, et al. Insights into the mechanisms involved in the expression and regulation of extracellular matrix proteins in diabetic nephropathy. Curr Med Chem 2015; 22(24): 2858-70. doi: 10.2174/0929867322666150625095407 PMID: 26119175
  6. Alam F, Islam MA, Kamal MA, Gan SH. Updates on managing type 2 diabetes mellitus with natural products: Towards antidiabetic drug development. Curr Med Chem 2019; 25(39): 5395-431. doi: 10.2174/0929867323666160813222436 PMID: 27528060
  7. Huang Y, Hao J, Tian D, et al. Antidiabetic activity of a flavonoid-rich extract from Sophora davidii (Franch.) Skeels in KK-Ay mice via activation of AMP-activated protein kinase. Front Pharmacol 2018; 9: 760. doi: 10.3389/fphar.2018.00760 PMID: 30061831
  8. Balaraman AK, Singh J, Dash S, Maity TK. Antihyperglycemic and hypolipidemic effects of Melothria maderaspatana and Coccinia indica in Streptozotocin induced diabetes in rats. Saudi Pharm J 2010; 18(3): 173-8. doi: 10.1016/j.jsps.2010.05.009 PMID: 23964177
  9. Putta S, Yarla NS, Kumar KE, et al. Preventive and therapeutic potentials of anthocyanins in diabetes and associated complications. Curr Med Chem 2019; 25(39): 5347-71. doi: 10.2174/0929867325666171206101945 PMID: 29210634
  10. Arumugam G, Manjula P, Paari N. A review: Anti diabetic medicinal plants used for diabetes mellitus. J Acute Dis 2013; 2(3): 196-200. doi: 10.1016/S2221-6189(13)60126-2
  11. Khurram M, Hameed A, Amin MU, et al. Evaluation of anticandidal potential of Quercus baloot Griff. using contact bioautography technique. Afr J Pharm Pharmacol 2011; 5(12): 1538-42. doi: 10.5897/AJPP11.386
  12. Malviya N, Jain S, Malviya S. Antidiabetic potential of medicinal plants. Acta Pol Pharm 2010; 67(2): 113-8. PMID: 20369787
  13. Khan MT, Khan I, Khan MI, Hussain Z, Ayub S, Khan N. Ethnobotanical study of wild flora in the remote areas of Nothern Pakistan. Wulfenia J 2016; 23(10): 31601844.
  14. Aziz MA, Khan AH, Adnan M, Izatullah I. Traditional uses of medicinal plants reported by the indigenous communities and local herbal practitioners of Bajaur Agency, Federally Administrated Tribal Areas, Pakistan. J Ethnopharmacol 2017; 198: 268-81. doi: 10.1016/j.jep.2017.01.024 PMID: 28108383
  15. Kumar M, Prakash S, Radha, et al. Beneficial role of antioxidant secondary metabolites from medicinal plants in maintaining oral health. Antioxidants 2021; 10(7): 1061. doi: 10.3390/antiox10071061 PMID: 34209152
  16. Lee YM, Gweon OC, Seo YJ, et al. Antioxidant effect of garlic and aged black garlic in animal model of type 2 diabetes mellitus. Nutr Res Pract 2009; 3(2): 156-61. doi: 10.4162/nrp.2009.3.2.156 PMID: 20016716
  17. Rahman S, Jan G, Jan FG, Rahim HU. Phytochemical screening and antidiabetic, antihyperlipidemic, and antioxidant effects of Leptopus cordifolius Decne. in diabetic mice. Front Pharmacol 2021; 12: 643242. doi: 10.3389/fphar.2021.643242 PMID: 33897432
  18. Vadivel E, Gopalakrishnan S. GC-MS analysis of some bioactive constituents of Mussaenda frondosa Linn. Int J Pharma Bio Sci 2011; 2(1): 313-20.
  19. Zhang F, Yuan J, Yang X, et al. Putative Trichoderma harzianum mutant promotes cucumber growth by enhanced production of indole acetic acid and plant colonization. Plant Soil 2013; 368(1-2): 433-44. doi: 10.1007/s11104-012-1519-6
  20. Germoush MO, Elgebaly HA, Hassan S, Kamel EM, Bin-Jumah M, Mahmoud AM. Consumption of terpenoids-rich Padina pavonia extract attenuates hyperglycemia, insulin resistance and oxidative stress, and upregulates PPARγ in a rat model of type 2 diabetes. Antioxidants 2019; 9(1): 22. doi: 10.3390/antiox9010022 PMID: 31887984
  21. Sahreen S, Khan MR, Khan RA, Alkreathy HM. Cardioprotective role of leaves extracts of Carissa opaca against CCl4 induced toxicity in rats. BMC Res Notes 2014; 7(1): 224. doi: 10.1186/1756-0500-7-224 PMID: 24716654
  22. David G, Guihéry N, Ferré N. What are the physical contents of hubbard and heisenberg hamiltonian interactions extracted from broken symmetry DFT calculations in magnetic compounds? J Chem Theory Comput 2017; 13(12): 6253-65. doi: 10.1021/acs.jctc.7b00976 PMID: 29039936
  23. Sharma B, Salunke R, Balomajumder C, Daniel S, Roy P. Anti-diabetic potential of alkaloid rich fraction from Capparis decidua on diabetic mice. J Ethnopharmacol 2010; 127(2): 457-62. doi: 10.1016/j.jep.2009.10.013 PMID: 19837152
  24. Grover JK, Yadav S, Vats V. Medicinal plants of India with anti-diabetic potential. J Ethnopharmacol 2002; 81(1): 81-100. doi: 10.1016/S0378-8741(02)00059-4 PMID: 12020931
  25. Hema R, Kumaravel S, Alagusundaram K. GC/MS determination of bioactive components of Murraya koenigii. J Am Sci 2011; 7(1): 80-3.
  26. Kumar PP, Kumaravel S, Lalitha C. Screening of antioxidant activity, total phenolics and GC-MS study of Vitex negundo. Afr J Biochem Res 2010; 4(7): 191-5.
  27. Maruthupandian A, Mohan V. Antidiabetic, antihyperlipidaemic and antioxidant activity of Pterocarpus marsupium Roxb. in alloxan induced diabetic rats. Int J Pharm Tech Res 2011; 3(3): 1681-7.
  28. Zeb A, Ullah F, Ayaz M, Ahmad S, Sadiq A. Demonstration of biological activities of extracts from Isodon rugosus Wall. Ex Benth: Separation and identification of bioactive phytoconstituents by GC-MS analysis in the ethyl acetate extract. BMC Complement Altern Med 2017; 17(1): 284. doi: 10.1186/s12906-017-1798-9 PMID: 28558679
  29. Musa M, Jan G, Jan FG, et al. Pharmacological activities and gas chromatography-mass spectrometry analysis for the identification of bioactive compounds from Justicia adhatoda L. Front Pharmacol 2022; 13: 922388. doi: 10.3389/fphar.2022.922388 PMID: 36172192
  30. OECD. OECD Guidelines for the Testing of Chemicals. 1994. Available from: https://www.oecd-ilibrary.org/environment/oecd-guidelines-for-the-testing-of-chemicals-section-4-health-effects_20745788
  31. Guideline OO. 425: Acute oral toxicity-up-and-down procedure. OECD Guidelines for the Testing of Chemicals 2001; 2: 12-6.
  32. Asif M, Saleem M, Yousaf S, et al. Antidiabetic activity of aqueous extract of Sigesbeckia orientalis (St. Paul’s Wort) in alloxan-induced diabetes model. Braz J Pharm Sci 2019; 55: e18408. doi: 10.1590/s2175-97902019000218408
  33. Szkudelski T. The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol Res 2001; 50(6): 537-46. PMID: 11829314
  34. Tzeng T-F, Liou S-S, Chang CJ, Liu I-M. The ethanol extract of Lonicera japonica (Japanese honeysuckle) attenuates diabetic nephropathy by inhibiting p-38 MAPK activity in streptozotocin-induced diabetic rats. Planta Medica 2014; 80(02/03): 121-9.
  35. Sornalakshmi V, Tresina Soris P, Paulpriya K, Packia Lincy M, Mohan V. Oral glucose tolerance test (OGTT) in normal control and glucose induced hyperglycemic rats with Hedyotis leschenaultiana DC. Group 2016; 1: 9.
  36. Tafesse TB, Hymete A, Mekonnen Y, Tadesse M. Antidiabetic activity and phytochemical screening of extracts of the leaves of Ajuga remota Benth on alloxan-induced diabetic mice. BMC Complement Altern Med 2017; 17(1): 243. doi: 10.1186/s12906-017-1757-5 PMID: 28464813
  37. Parasuraman S, Balamurugan S, Christapher P, et al. Evaluation of antidiabetic and antihyperlipidemic effects of hydroalcoholic extract of leaves of Ocimum tenuiflorum (Lamiaceae) and prediction of biological activity of its phytoconstituents. Pharmacognosy Res 2015; 7(2): 156-65. doi: 10.4103/0974-8490.151457 PMID: 25829789
  38. Li J, Wang Y, Guo R, Bao B, Wu W. Progress in bioactivities of phlorotannins from Sargassumi. Med Res 2018; 2(1): 20180001-. doi: 10.21127/yaoyimr20180001
  39. Yonezawa T, Kurata R, Yoshida K, Murayama M, Cui X, Hasegawa A. Free fatty acids-sensing G protein-coupled receptors in drug targeting and therapeutics. Curr Med Chem 2013; 20(31): 3855-71. doi: 10.2174/09298673113209990168 PMID: 23862620
  40. Shah M, Al-Housni SK, Khan F, et al. First report on comparative essential oil profile of stem and leaves of Blepharispermum hirtum Oliver and their antidiabetic and anticancer effects. Metabolites 2022; 12(10): 907. doi: 10.3390/metabo12100907 PMID: 36295808
  41. Mozaffarian D, Cao H, King IB, et al. Trans-palmitoleic acid, metabolic risk factors, and new-onset diabetes in U.S. adults: A cohort study. Ann Intern Med 2010; 153(12): 790-9. doi: 10.7326/0003-4819-153-12-201012210-00005 PMID: 21173413
  42. Colorado Yohar SM, Zheng JS, Sharp SJ, et al. Association between plasma phospholipid saturated fatty acids and metabolic markers of lipid, hepatic, inflammation and glycaemic pathways in eight European countries: A cross-sectional analysis in the EPIC-InterAct study. BMC Med 2017; 17(1): 203.
  43. Mensink RP. Effects of saturated fatty acids on serum lipids and lipoproteins: A systematic review and regression analysis. 2016. Available from: https://iris.who.int/bitstream/handle/10665/246104/9789241565349-eng.pdf
  44. Zhu L, Xue F, Cui Y, et al. miR-155-5p and miR-760 mediate radiation therapy suppressed malignancy of non-small cell lung cancer cells. Biofactors 2019; 45(3): 393-400. doi: 10.1002/biof.1500 PMID: 30901121
  45. Richter C, Skulas-Ray A, Kris-Etherton P. The role of diet in the prevention and treatment of cardiovascular disease. Nutrition in the Prevention and Treatment of Disease (Fourth Edition). Massachusetts, United States: Academic Press 2017. doi: 10.1016/B978-0-12-802928-2.00027-8
  46. Micha R, Mozaffarian D. Saturated fat and cardiometabolic risk factors, coronary heart disease, stroke, and diabetes: A fresh look at the evidence. Lipids 2010; 45(10): 893-905. doi: 10.1007/s11745-010-3393-4 PMID: 20354806
  47. Stanely P, Prince M, Menon VP. Hypoglycaemic and other related actions of Tinospora cordifolia roots in alloxan-induced diabetic rats. J Ethnopharmacol 2000; 70(1): 9-15. doi: 10.1016/S0378-8741(99)00136-1 PMID: 10720784
  48. Bajaj S, Khan A. Antioxidants and diabetes. Indian J Endocrinol Metab 2012; 16(8) (Suppl. 2): 267. doi: 10.4103/2230-8210.104057 PMID: 23565396
  49. Ramkumar KM, Vanitha P, Uma C, Suganya N, Bhakkiyalakshmi E, Sujatha J. Antidiabetic activity of alcoholic stem extract of Gymnema montanum in streptozotocin-induced diabetic rats. Food Chem Toxicol 2011; 49(12): 3390-4. doi: 10.1016/j.fct.2011.09.027 PMID: 21978819
  50. Umer S, Tekewe A, Kebede N. Antidiarrhoeal and antimicrobial activity of Calpurnia aurea leaf extract. BMC Complement Altern Med 2013; 13(1): 21. doi: 10.1186/1472-6882-13-21 PMID: 23351272
  51. Hammeso WW, Emiru YK, Ayalew Getahun K, Kahaliw W. Antidiabetic and antihyperlipidemic activities of the leaf latex extract of Aloe megalacantha Baker (Aloaceae) in streptozotocin-induced diabetic model. Evid Based Complement Alternat Med 2019; 2019(1): 8263786. PMID: 31178917
  52. Patel DK, Prasad SK, Kumar R, Hemalatha S. An overview on antidiabetic medicinal plants having insulin mimetic property. Asian Pac J Trop Biomed 2012; 2(4): 320-30. doi: 10.1016/S2221-1691(12)60032-X PMID: 23569923
  53. Alema NM, Periasamy G, Sibhat GG, Tekulu GH, Hiben MG. Antidiabetic activity of extracts of Terminalia brownii Fresen. Stem bark in mice. J Exp Pharmacol 2020; 12: 61-71. doi: 10.2147/JEP.S240266 PMID: 32110120
  54. Wu KK, Huan Y. Streptozotocin-induced diabetic models in mice and rats. Curr Protoc Pharmacol 2008; 47 doi: 10.1002/0471141755.ph0547s40
  55. Mestry SN, Dhodi JB, Kumbhar SB, Juvekar AR. Attenuation of diabetic nephropathy in streptozotocin-induced diabetic rats by Punica granatum Linn. leaves extract. J Tradit Complement Med 2017; 7(3): 273-80. doi: 10.1016/j.jtcme.2016.06.008 PMID: 28725620
  56. Pushparaj PN, Low HK, Manikandan J, Tan BKH, Tan CH. Anti-diabetic effects of Cichorium intybus in streptozotocin-induced diabetic rats. J Ethnopharmacol 2007; 111(2): 430-4. doi: 10.1016/j.jep.2006.11.028 PMID: 17197141
  57. Gao D, Li Q, Li Y, et al. Antidiabetic and antioxidant effects of oleanolic acid from Ligustrum lucidum Ait in alloxan-induced diabetic rats. Phytother Res 2009; 23(9): 1257-62. doi: 10.1002/ptr.2603 PMID: 19274687
  58. Preethi KC, Kuttan R. Hepato and reno protective action of Calendula officinalis L. flower extract. Indian J Exp Biol 2009; 47(3): 163-8. PMID: 19405380
  59. Pari L, Latha M. Effect of Cassia auriculata flowers on blood sugar levels, serum and tissue lipids in streptozotocin diabetic rats. Singapore Med J 2002; 43(12): 617-21. PMID: 12693765
  60. Sharma UK, Kumar R, Gupta A, et al. Ameliorating efficacy of eugenol against metanil yellow induced toxicity in Albino Wistar rats. Food Chem Toxicol 2019; 126: 34-40. doi: 10.1016/j.fct.2019.01.032 PMID: 30738991
  61. Halliwell B. Antioxidant defence mechanisms: From the beginning to the end (of the beginning). Free Radic Res 1999; 31(4): 261-72. doi: 10.1080/10715769900300841 PMID: 10517532
  62. Oyedapo O, Akinpelu B, Orefuwa S. Anti-inflammatory effect of Theobroma cacao root extract. J Trop Med Plants 2004; 5(2): 161-6.
  63. Sezik E, Aslan M, Yesilada E, Ito S. Hypoglycaemic activity of Gentiana olivieri and isolation of the active constituent through bioassay-directed fractionation techniques. Life Sci 2005; 76(11): 1223-38. doi: 10.1016/j.lfs.2004.07.024 PMID: 15642593
  64. Chaitanya R, Sandhya S, Banji D, Vinod K, Murali S. HRBC membrane stabilizing property of root, stem and leaf of Glochidion velutinum. Int J Res Pharmaceut BiomedSci 2011; 2: 86334165.
  65. Gupta A, Saleh NM, Das R, et al. Synergistic antimicrobial therapy using nanoparticles and antibiotics for the treatment of multidrug-resistant bacterial infection. Nano Futures 2017; 1(1): 015004. doi: 10.1088/2399-1984/aa69fb
  66. Jaghthmi O, Zeid I. Hypoglycemic and hepatoprotective effect of Rhizophora mucronata and Avicennia marina against streptozotocin-induced diabetes in male rats. J Adv Vet Anim Res 2020; 7(1): 177-85. doi: 10.5455/javar.2020.g408 PMID: 32219125
  67. Kalita H, Boruah DC, Deori M, et al. Antidiabetic and antilipidemic effect of Musa balbisiana root extract: A potent agent for glucose homeostasis in streptozotocin-induced diabetic rat. Front Pharmacol 2016; 7: 102. doi: 10.3389/fphar.2016.00102 PMID: 27199747
  68. Nahid S, Mazumder K, Rahman Z, Islam S, Rashid MH, Kerr PG. Cardio- and hepato-protective potential of methanolic extract of Syzygium cumini (L.) Skeels seeds: A diabetic rat model study. Asian Pac J Trop Biomed 2017; 7(2): 126-33. doi: 10.1016/j.apjtb.2016.11.025
  69. Goyal RK, Bhadada SV. Effect of aqueous extract of Tephrosia purpurea on cardiovascular complications and cataract associated with streptozotocin-induced diabetes in rats. Indian J Pharm Sci 2015; 77(5): 522-9. doi: 10.4103/0250-474X.169037 PMID: 26798165
  70. Rahman A, Rehman G, Shah N, et al. Biosynthesis and characterization of silver nanoparticles using Tribulus terrestris seeds: Revealed promising antidiabetic potentials. Molecules 2023; 28(10): 4203. doi: 10.3390/molecules28104203 PMID: 37241943

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers