Evaluation of the Hypoglycemic and Hypolipidemic Potential of Extract Fraction of Quercus baloot Griff Seeds in Alloxan-induced Diabetic Mice
- Authors: Musa M.1, Rahman S.2, Ali N.3, Hamayun M.2, Alrefai A.4, Almutairi M.4, Azmat R.5, Ali S.6, Hussain S.7, Gul Jan F.2, Jan G.2, Irfan M.1
-
Affiliations:
- Department of Botany, Abdul Wali Khan University Mardan
- Department of Botany,, Abdul Wali Khan University Mardan
- Department of Botany,, Hazara University
- Department of Zoology, King Saud University
- Department of Chemistry,, University of Karachi
- Department of Horticulture and Life Science,, Yeungnam University
- Department of Botany, Abdul Wali Khan University
- Issue: Vol 30, No 37 (2024)
- Pages: 2978-2991
- Section: Immunology, Inflammation & Allergy
- URL: https://vestnikugrasu.org/1381-6128/article/view/645960
- DOI: https://doi.org/10.2174/0113816128319184240827070016
- ID: 645960
Cite item
Full Text
Abstract
Introduction:The discovery and development of new phytomedicines can be greatly aided by plants because of their tremendous therapeutic benefits, efficiency, cost-effectiveness, lack of side effects, and cheaper therapies. In this regard, Quercus baloot, generally known as oak, is used in folkloric medicine for treating and preventing various human disorders, including diabetes.
Aim:For this purpose, the present study aimed to evaluate crude methanolic extract and various fractions of Quercus baloot for antihyperlipidemic and antihyperglycemic potential followed by the analysis of active compounds.
Methods:The hypoglycemic and hypolipidemic activity was evaluated in Swiss male Albino mice by administering an oral dose of 150-300 mg/kg of Q. baloot extracts in alloxan induced diabetic mice for 14 days.
Results:The results revealed that crude methanolic extract at a dose of 300 mg/kg exhibited a significant reduction in the blood glucose level (198.50 ± 1.99 mg/dl) at day 14 and the same treatment significantly increased the body weight (31.26 ± 0.27 g) at day 14 in comparison to the control group. Moreover, the biochemical parameters were investigated which presented an increase in high-density lipids (HDL) (30.33 ± 0.33 mg/dl), whereas low-density lipids (LDL) showed a significant decrease (105.66 ± 0.26 mg/dl). Additionally, triglyceride levels 104.83 ± 0.70 mg/dl, and total cholesterol 185.50 ± 0.76 mg/dl are significantly decreased. In serum biochemical analysis creatinine and hepatic enzyme markers, like serum glutamate pyruvate transaminase (32.00 ± 0.36 U/mg), serum glutamate oxaloacetate transaminase (34.33 ± 0.61 U/mg), and alkaline phosphatase (157.00 ± 0.73 U/mg), were significantly reduced by the crude methanolic extract at a dose of 300 mg/kg as compared to the control group. The antioxidant enzymes like Superoxide dismutase (4.57 ± 0.011), peroxidases dismutase (6.53 ± 0.014, and catalase (8.38 ± 0.014) at a dosage of 300 mg/kg of methanolic extract exhibited a significant increase. The histopathological study of the diabetic heart, liver, and pancreas showed substantial restoration of damaged tissues in the methanolic extract 150 and 300 mg/kg treated group, which supports the effectiveness of Q. baloot seeds. The gas chromatography-mass spectrometry analysis of methanolic extract identified 10 antidiabetic active compounds in the Q. baloot seeds, validating the antihyperglycemic activity. Thus, methanolic crude extract at the doses 150 and 300 mg/kg of Q. baloot showed significant antihyperlipidemic and antihyperglycemic activities, which validate the folkloric utilization of Q. baloot as a remedy in diabetes.
Conclusion:In conclusion, the 300 mg/kg methanolic extract of Q. baloot has notable hypoglycemic and hypolipidemic potential, supporting the plant's traditional medicinal usage in the treatment of diabetes and its complications. Further studies are needed for the purification, characterization, and structural clarification of bioactive compounds.
About the authors
Muhammad Musa
Department of Botany, Abdul Wali Khan University Mardan
Email: info@benthamscience.net
Shahid Rahman
Department of Botany,, Abdul Wali Khan University Mardan
Email: info@benthamscience.net
Niaz Ali
Department of Botany,, Hazara University
Email: info@benthamscience.net
Muhammad Hamayun
Department of Botany,, Abdul Wali Khan University Mardan
Email: info@benthamscience.net
Abdulwahed Alrefai
Department of Zoology, King Saud University
Email: info@benthamscience.net
Mikhlid Almutairi
Department of Zoology, King Saud University
Email: info@benthamscience.net
Rafia Azmat
Department of Chemistry,, University of Karachi
Email: info@benthamscience.net
Sajid Ali
Department of Horticulture and Life Science,, Yeungnam University
Author for correspondence.
Email: info@benthamscience.net
Sheheryar Hussain
Department of Botany, Abdul Wali Khan University
Email: info@benthamscience.net
Farzana Gul Jan
Department of Botany,, Abdul Wali Khan University Mardan
Author for correspondence.
Email: info@benthamscience.net
Gul Jan
Department of Botany,, Abdul Wali Khan University Mardan
Email: info@benthamscience.net
Muhammad Irfan
Department of Botany, Abdul Wali Khan University Mardan
Email: info@benthamscience.net
References
- Poznyak A, Grechko AV, Poggio P, Myasoedova VA, Alfieri V, Orekhov AN. The diabetes mellitus-atherosclerosis connection: The role of lipid and glucose metabolism and chronic inflammation. Int J Mol Sci 2020; 21(5): 1835. doi: 10.3390/ijms21051835 PMID: 32155866
- Parhofer KG. Interaction between glucose and lipid metabolism: More than diabetic dyslipidemia. Diabetes Metab J 2015; 39(5): 353-62. doi: 10.4093/dmj.2015.39.5.353 PMID: 26566492
- Sarma B. Survey of medicinal plants with potential antidiabetic activity used by villagers in lower Assam districts of North East, India. Int J Herb Med 2020; 8: 1-6.
- Vijayan M, Jose R, Jose S, Abraham S, Joy J. Study on quality of life assessment in diabetic retinopathy among patients with type 2 diabetic patients. Asian J Pharm Clin Res 2017; 10(7): 116-9. doi: 10.22159/ajpcr.2017.v10i7.18095
- Hu C, Sun L, Xiao L, et al. Insights into the mechanisms involved in the expression and regulation of extracellular matrix proteins in diabetic nephropathy. Curr Med Chem 2015; 22(24): 2858-70. doi: 10.2174/0929867322666150625095407 PMID: 26119175
- Alam F, Islam MA, Kamal MA, Gan SH. Updates on managing type 2 diabetes mellitus with natural products: Towards antidiabetic drug development. Curr Med Chem 2019; 25(39): 5395-431. doi: 10.2174/0929867323666160813222436 PMID: 27528060
- Huang Y, Hao J, Tian D, et al. Antidiabetic activity of a flavonoid-rich extract from Sophora davidii (Franch.) Skeels in KK-Ay mice via activation of AMP-activated protein kinase. Front Pharmacol 2018; 9: 760. doi: 10.3389/fphar.2018.00760 PMID: 30061831
- Balaraman AK, Singh J, Dash S, Maity TK. Antihyperglycemic and hypolipidemic effects of Melothria maderaspatana and Coccinia indica in Streptozotocin induced diabetes in rats. Saudi Pharm J 2010; 18(3): 173-8. doi: 10.1016/j.jsps.2010.05.009 PMID: 23964177
- Putta S, Yarla NS, Kumar KE, et al. Preventive and therapeutic potentials of anthocyanins in diabetes and associated complications. Curr Med Chem 2019; 25(39): 5347-71. doi: 10.2174/0929867325666171206101945 PMID: 29210634
- Arumugam G, Manjula P, Paari N. A review: Anti diabetic medicinal plants used for diabetes mellitus. J Acute Dis 2013; 2(3): 196-200. doi: 10.1016/S2221-6189(13)60126-2
- Khurram M, Hameed A, Amin MU, et al. Evaluation of anticandidal potential of Quercus baloot Griff. using contact bioautography technique. Afr J Pharm Pharmacol 2011; 5(12): 1538-42. doi: 10.5897/AJPP11.386
- Malviya N, Jain S, Malviya S. Antidiabetic potential of medicinal plants. Acta Pol Pharm 2010; 67(2): 113-8. PMID: 20369787
- Khan MT, Khan I, Khan MI, Hussain Z, Ayub S, Khan N. Ethnobotanical study of wild flora in the remote areas of Nothern Pakistan. Wulfenia J 2016; 23(10): 31601844.
- Aziz MA, Khan AH, Adnan M, Izatullah I. Traditional uses of medicinal plants reported by the indigenous communities and local herbal practitioners of Bajaur Agency, Federally Administrated Tribal Areas, Pakistan. J Ethnopharmacol 2017; 198: 268-81. doi: 10.1016/j.jep.2017.01.024 PMID: 28108383
- Kumar M, Prakash S, Radha, et al. Beneficial role of antioxidant secondary metabolites from medicinal plants in maintaining oral health. Antioxidants 2021; 10(7): 1061. doi: 10.3390/antiox10071061 PMID: 34209152
- Lee YM, Gweon OC, Seo YJ, et al. Antioxidant effect of garlic and aged black garlic in animal model of type 2 diabetes mellitus. Nutr Res Pract 2009; 3(2): 156-61. doi: 10.4162/nrp.2009.3.2.156 PMID: 20016716
- Rahman S, Jan G, Jan FG, Rahim HU. Phytochemical screening and antidiabetic, antihyperlipidemic, and antioxidant effects of Leptopus cordifolius Decne. in diabetic mice. Front Pharmacol 2021; 12: 643242. doi: 10.3389/fphar.2021.643242 PMID: 33897432
- Vadivel E, Gopalakrishnan S. GC-MS analysis of some bioactive constituents of Mussaenda frondosa Linn. Int J Pharma Bio Sci 2011; 2(1): 313-20.
- Zhang F, Yuan J, Yang X, et al. Putative Trichoderma harzianum mutant promotes cucumber growth by enhanced production of indole acetic acid and plant colonization. Plant Soil 2013; 368(1-2): 433-44. doi: 10.1007/s11104-012-1519-6
- Germoush MO, Elgebaly HA, Hassan S, Kamel EM, Bin-Jumah M, Mahmoud AM. Consumption of terpenoids-rich Padina pavonia extract attenuates hyperglycemia, insulin resistance and oxidative stress, and upregulates PPARγ in a rat model of type 2 diabetes. Antioxidants 2019; 9(1): 22. doi: 10.3390/antiox9010022 PMID: 31887984
- Sahreen S, Khan MR, Khan RA, Alkreathy HM. Cardioprotective role of leaves extracts of Carissa opaca against CCl4 induced toxicity in rats. BMC Res Notes 2014; 7(1): 224. doi: 10.1186/1756-0500-7-224 PMID: 24716654
- David G, Guihéry N, Ferré N. What are the physical contents of hubbard and heisenberg hamiltonian interactions extracted from broken symmetry DFT calculations in magnetic compounds? J Chem Theory Comput 2017; 13(12): 6253-65. doi: 10.1021/acs.jctc.7b00976 PMID: 29039936
- Sharma B, Salunke R, Balomajumder C, Daniel S, Roy P. Anti-diabetic potential of alkaloid rich fraction from Capparis decidua on diabetic mice. J Ethnopharmacol 2010; 127(2): 457-62. doi: 10.1016/j.jep.2009.10.013 PMID: 19837152
- Grover JK, Yadav S, Vats V. Medicinal plants of India with anti-diabetic potential. J Ethnopharmacol 2002; 81(1): 81-100. doi: 10.1016/S0378-8741(02)00059-4 PMID: 12020931
- Hema R, Kumaravel S, Alagusundaram K. GC/MS determination of bioactive components of Murraya koenigii. J Am Sci 2011; 7(1): 80-3.
- Kumar PP, Kumaravel S, Lalitha C. Screening of antioxidant activity, total phenolics and GC-MS study of Vitex negundo. Afr J Biochem Res 2010; 4(7): 191-5.
- Maruthupandian A, Mohan V. Antidiabetic, antihyperlipidaemic and antioxidant activity of Pterocarpus marsupium Roxb. in alloxan induced diabetic rats. Int J Pharm Tech Res 2011; 3(3): 1681-7.
- Zeb A, Ullah F, Ayaz M, Ahmad S, Sadiq A. Demonstration of biological activities of extracts from Isodon rugosus Wall. Ex Benth: Separation and identification of bioactive phytoconstituents by GC-MS analysis in the ethyl acetate extract. BMC Complement Altern Med 2017; 17(1): 284. doi: 10.1186/s12906-017-1798-9 PMID: 28558679
- Musa M, Jan G, Jan FG, et al. Pharmacological activities and gas chromatography-mass spectrometry analysis for the identification of bioactive compounds from Justicia adhatoda L. Front Pharmacol 2022; 13: 922388. doi: 10.3389/fphar.2022.922388 PMID: 36172192
- OECD. OECD Guidelines for the Testing of Chemicals. 1994. Available from: https://www.oecd-ilibrary.org/environment/oecd-guidelines-for-the-testing-of-chemicals-section-4-health-effects_20745788
- Guideline OO. 425: Acute oral toxicity-up-and-down procedure. OECD Guidelines for the Testing of Chemicals 2001; 2: 12-6.
- Asif M, Saleem M, Yousaf S, et al. Antidiabetic activity of aqueous extract of Sigesbeckia orientalis (St. Pauls Wort) in alloxan-induced diabetes model. Braz J Pharm Sci 2019; 55: e18408. doi: 10.1590/s2175-97902019000218408
- Szkudelski T. The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol Res 2001; 50(6): 537-46. PMID: 11829314
- Tzeng T-F, Liou S-S, Chang CJ, Liu I-M. The ethanol extract of Lonicera japonica (Japanese honeysuckle) attenuates diabetic nephropathy by inhibiting p-38 MAPK activity in streptozotocin-induced diabetic rats. Planta Medica 2014; 80(02/03): 121-9.
- Sornalakshmi V, Tresina Soris P, Paulpriya K, Packia Lincy M, Mohan V. Oral glucose tolerance test (OGTT) in normal control and glucose induced hyperglycemic rats with Hedyotis leschenaultiana DC. Group 2016; 1: 9.
- Tafesse TB, Hymete A, Mekonnen Y, Tadesse M. Antidiabetic activity and phytochemical screening of extracts of the leaves of Ajuga remota Benth on alloxan-induced diabetic mice. BMC Complement Altern Med 2017; 17(1): 243. doi: 10.1186/s12906-017-1757-5 PMID: 28464813
- Parasuraman S, Balamurugan S, Christapher P, et al. Evaluation of antidiabetic and antihyperlipidemic effects of hydroalcoholic extract of leaves of Ocimum tenuiflorum (Lamiaceae) and prediction of biological activity of its phytoconstituents. Pharmacognosy Res 2015; 7(2): 156-65. doi: 10.4103/0974-8490.151457 PMID: 25829789
- Li J, Wang Y, Guo R, Bao B, Wu W. Progress in bioactivities of phlorotannins from Sargassumi. Med Res 2018; 2(1): 20180001-. doi: 10.21127/yaoyimr20180001
- Yonezawa T, Kurata R, Yoshida K, Murayama M, Cui X, Hasegawa A. Free fatty acids-sensing G protein-coupled receptors in drug targeting and therapeutics. Curr Med Chem 2013; 20(31): 3855-71. doi: 10.2174/09298673113209990168 PMID: 23862620
- Shah M, Al-Housni SK, Khan F, et al. First report on comparative essential oil profile of stem and leaves of Blepharispermum hirtum Oliver and their antidiabetic and anticancer effects. Metabolites 2022; 12(10): 907. doi: 10.3390/metabo12100907 PMID: 36295808
- Mozaffarian D, Cao H, King IB, et al. Trans-palmitoleic acid, metabolic risk factors, and new-onset diabetes in U.S. adults: A cohort study. Ann Intern Med 2010; 153(12): 790-9. doi: 10.7326/0003-4819-153-12-201012210-00005 PMID: 21173413
- Colorado Yohar SM, Zheng JS, Sharp SJ, et al. Association between plasma phospholipid saturated fatty acids and metabolic markers of lipid, hepatic, inflammation and glycaemic pathways in eight European countries: A cross-sectional analysis in the EPIC-InterAct study. BMC Med 2017; 17(1): 203.
- Mensink RP. Effects of saturated fatty acids on serum lipids and lipoproteins: A systematic review and regression analysis. 2016. Available from: https://iris.who.int/bitstream/handle/10665/246104/9789241565349-eng.pdf
- Zhu L, Xue F, Cui Y, et al. miR-155-5p and miR-760 mediate radiation therapy suppressed malignancy of non-small cell lung cancer cells. Biofactors 2019; 45(3): 393-400. doi: 10.1002/biof.1500 PMID: 30901121
- Richter C, Skulas-Ray A, Kris-Etherton P. The role of diet in the prevention and treatment of cardiovascular disease. Nutrition in the Prevention and Treatment of Disease (Fourth Edition). Massachusetts, United States: Academic Press 2017. doi: 10.1016/B978-0-12-802928-2.00027-8
- Micha R, Mozaffarian D. Saturated fat and cardiometabolic risk factors, coronary heart disease, stroke, and diabetes: A fresh look at the evidence. Lipids 2010; 45(10): 893-905. doi: 10.1007/s11745-010-3393-4 PMID: 20354806
- Stanely P, Prince M, Menon VP. Hypoglycaemic and other related actions of Tinospora cordifolia roots in alloxan-induced diabetic rats. J Ethnopharmacol 2000; 70(1): 9-15. doi: 10.1016/S0378-8741(99)00136-1 PMID: 10720784
- Bajaj S, Khan A. Antioxidants and diabetes. Indian J Endocrinol Metab 2012; 16(8) (Suppl. 2): 267. doi: 10.4103/2230-8210.104057 PMID: 23565396
- Ramkumar KM, Vanitha P, Uma C, Suganya N, Bhakkiyalakshmi E, Sujatha J. Antidiabetic activity of alcoholic stem extract of Gymnema montanum in streptozotocin-induced diabetic rats. Food Chem Toxicol 2011; 49(12): 3390-4. doi: 10.1016/j.fct.2011.09.027 PMID: 21978819
- Umer S, Tekewe A, Kebede N. Antidiarrhoeal and antimicrobial activity of Calpurnia aurea leaf extract. BMC Complement Altern Med 2013; 13(1): 21. doi: 10.1186/1472-6882-13-21 PMID: 23351272
- Hammeso WW, Emiru YK, Ayalew Getahun K, Kahaliw W. Antidiabetic and antihyperlipidemic activities of the leaf latex extract of Aloe megalacantha Baker (Aloaceae) in streptozotocin-induced diabetic model. Evid Based Complement Alternat Med 2019; 2019(1): 8263786. PMID: 31178917
- Patel DK, Prasad SK, Kumar R, Hemalatha S. An overview on antidiabetic medicinal plants having insulin mimetic property. Asian Pac J Trop Biomed 2012; 2(4): 320-30. doi: 10.1016/S2221-1691(12)60032-X PMID: 23569923
- Alema NM, Periasamy G, Sibhat GG, Tekulu GH, Hiben MG. Antidiabetic activity of extracts of Terminalia brownii Fresen. Stem bark in mice. J Exp Pharmacol 2020; 12: 61-71. doi: 10.2147/JEP.S240266 PMID: 32110120
- Wu KK, Huan Y. Streptozotocin-induced diabetic models in mice and rats. Curr Protoc Pharmacol 2008; 47 doi: 10.1002/0471141755.ph0547s40
- Mestry SN, Dhodi JB, Kumbhar SB, Juvekar AR. Attenuation of diabetic nephropathy in streptozotocin-induced diabetic rats by Punica granatum Linn. leaves extract. J Tradit Complement Med 2017; 7(3): 273-80. doi: 10.1016/j.jtcme.2016.06.008 PMID: 28725620
- Pushparaj PN, Low HK, Manikandan J, Tan BKH, Tan CH. Anti-diabetic effects of Cichorium intybus in streptozotocin-induced diabetic rats. J Ethnopharmacol 2007; 111(2): 430-4. doi: 10.1016/j.jep.2006.11.028 PMID: 17197141
- Gao D, Li Q, Li Y, et al. Antidiabetic and antioxidant effects of oleanolic acid from Ligustrum lucidum Ait in alloxan-induced diabetic rats. Phytother Res 2009; 23(9): 1257-62. doi: 10.1002/ptr.2603 PMID: 19274687
- Preethi KC, Kuttan R. Hepato and reno protective action of Calendula officinalis L. flower extract. Indian J Exp Biol 2009; 47(3): 163-8. PMID: 19405380
- Pari L, Latha M. Effect of Cassia auriculata flowers on blood sugar levels, serum and tissue lipids in streptozotocin diabetic rats. Singapore Med J 2002; 43(12): 617-21. PMID: 12693765
- Sharma UK, Kumar R, Gupta A, et al. Ameliorating efficacy of eugenol against metanil yellow induced toxicity in Albino Wistar rats. Food Chem Toxicol 2019; 126: 34-40. doi: 10.1016/j.fct.2019.01.032 PMID: 30738991
- Halliwell B. Antioxidant defence mechanisms: From the beginning to the end (of the beginning). Free Radic Res 1999; 31(4): 261-72. doi: 10.1080/10715769900300841 PMID: 10517532
- Oyedapo O, Akinpelu B, Orefuwa S. Anti-inflammatory effect of Theobroma cacao root extract. J Trop Med Plants 2004; 5(2): 161-6.
- Sezik E, Aslan M, Yesilada E, Ito S. Hypoglycaemic activity of Gentiana olivieri and isolation of the active constituent through bioassay-directed fractionation techniques. Life Sci 2005; 76(11): 1223-38. doi: 10.1016/j.lfs.2004.07.024 PMID: 15642593
- Chaitanya R, Sandhya S, Banji D, Vinod K, Murali S. HRBC membrane stabilizing property of root, stem and leaf of Glochidion velutinum. Int J Res Pharmaceut BiomedSci 2011; 2: 86334165.
- Gupta A, Saleh NM, Das R, et al. Synergistic antimicrobial therapy using nanoparticles and antibiotics for the treatment of multidrug-resistant bacterial infection. Nano Futures 2017; 1(1): 015004. doi: 10.1088/2399-1984/aa69fb
- Jaghthmi O, Zeid I. Hypoglycemic and hepatoprotective effect of Rhizophora mucronata and Avicennia marina against streptozotocin-induced diabetes in male rats. J Adv Vet Anim Res 2020; 7(1): 177-85. doi: 10.5455/javar.2020.g408 PMID: 32219125
- Kalita H, Boruah DC, Deori M, et al. Antidiabetic and antilipidemic effect of Musa balbisiana root extract: A potent agent for glucose homeostasis in streptozotocin-induced diabetic rat. Front Pharmacol 2016; 7: 102. doi: 10.3389/fphar.2016.00102 PMID: 27199747
- Nahid S, Mazumder K, Rahman Z, Islam S, Rashid MH, Kerr PG. Cardio- and hepato-protective potential of methanolic extract of Syzygium cumini (L.) Skeels seeds: A diabetic rat model study. Asian Pac J Trop Biomed 2017; 7(2): 126-33. doi: 10.1016/j.apjtb.2016.11.025
- Goyal RK, Bhadada SV. Effect of aqueous extract of Tephrosia purpurea on cardiovascular complications and cataract associated with streptozotocin-induced diabetes in rats. Indian J Pharm Sci 2015; 77(5): 522-9. doi: 10.4103/0250-474X.169037 PMID: 26798165
- Rahman A, Rehman G, Shah N, et al. Biosynthesis and characterization of silver nanoparticles using Tribulus terrestris seeds: Revealed promising antidiabetic potentials. Molecules 2023; 28(10): 4203. doi: 10.3390/molecules28104203 PMID: 37241943
Supplementary files
