Methodological Approaches for Increasing the Retroviral Transduction Efficiency of Primary NK Cells


Cite item

Full Text

Abstract

Background:The growing attention to NK cells for cancer cell therapy is associated with the need to establish highly efficient protocols for their genetic modification, particularly by retroviral transduction.

Objective:In this work, we have optimized several stages of the retroviral-based modification process, and determined the distribution of the amino acid transporter ASCT2 between NK cell subsets.

Methods:Retroviral particles were produced using the Phoenix Ampho cell line transfected with the calcium phosphate method . We used RD114-based retroviral transduction for lymphocyte cell lines and primary NK cells.

Results:We have determined the optimal time to collect the RD114-pseudotyped viral supernatants resulting in the titer of viral particles required for efficient NK cell modification to be between 48 and 72 hours. Retroviral modification by retronectin-based method did not alter NK cell functional activity and cell survival. We identified differences in the Multiplicity of Infection (MOI) among cell lines that were partially associated with the ASCT2 surface expression. Cells with higher ASCT2 levels were more susceptible to transduction with RD114-pseudotyped viral particles. Higher ASCT2 expression levels were revealed in activated CD57+ and KIR2DL2DL3+ NK cells compared to their negative counterparts.

Conclusion:Our findings provide a more nuanced understanding of NK cell transduction, offering valuable insights for improving therapeutic applications involving NK cell modification.

About the authors

Maria Streltsova

Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Author for correspondence.
Email: info@benthamscience.net

Anastasia Palamarchuk

Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Email: info@benthamscience.net

Julia Vavilova

Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Email: info@benthamscience.net

Maria Ustiuzhanina

Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Email: info@benthamscience.net

Anna Boyko

Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Email: info@benthamscience.net

Rodion Velichinskii

Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Email: info@benthamscience.net

Nadezhda Alekseeva

Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Email: info@benthamscience.net

Maria Grechikhina

Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Email: info@benthamscience.net

Olga Shustova

Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Email: info@benthamscience.net

Alexander Sapozhnikov

Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Email: info@benthamscience.net

Elena Kovalenko

Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Email: info@benthamscience.net

References

  1. Suerth JD, Morgan MA, Kloess S, et al. Efficient generation of gene-modified human natural killer cells via alpharetroviral vectors. J Mol Med (Berl) 2016; 94(1): 83-93. doi: 10.1007/s00109-015-1327-6 PMID: 26300042
  2. Robbins GM, Wang M, Pomeroy EJ, Moriarity BS. Nonviral genome engineering of natural killer cells. Stem Cell Res Ther 2021; 12(1): 350. doi: 10.1186/s13287-021-02406-6 PMID: 34134774
  3. Palamarchuk AI, Alekseeva NA, Streltsova MA, et al. Increased susceptibility of the CD57− NK cells expressing KIR2DL2/3 and NKG2C to iCasp9 gene retroviral transduction and the relationships with proliferative potential, activation degree, and death induction response. Int J Mol Sci 2021; 22(24): 13326. doi: 10.3390/ijms222413326 PMID: 34948123
  4. Streltsova MA, Boyko AA, Ustiuzhanina MO, et al. Subpopulation heterogeneity of NK cells during the genetic modification for subsequent use in targeted therapy. Dokl Biochem Biophys 2022; 507(1): 380-2. doi: 10.1134/S1607672922340142 PMID: 36787007
  5. Streltsova MA, Ustiuzhanina MO, Barsov EV, Kust SA, Velichinskii RA, Kovalenko EI. Telomerase reverse transcriptase increases proliferation and lifespan of human NK cells without immortalization. Biomedicines 2021; 9(6): 662. doi: 10.3390/biomedicines9060662 PMID: 34207853
  6. Töpfer K, Cartellieri M, Michen S, et al. DAP12-based activating chimeric antigen receptor for NK cell tumor immunotherapy. J Immunol 2015; 194(7): 3201-12. doi: 10.4049/jimmunol.1400330 PMID: 25740942
  7. Liu E, Tong Y, Dotti G, et al. Cord blood NK cells engineered to express IL-15 and a CD19-targeted CAR show long-term persistence and potent antitumor activity. Leukemia 2018; 32(2): 520-31. doi: 10.1038/leu.2017.226 PMID: 28725044
  8. Oelsner S, Waldmann A, Billmeier A, et al. Genetically engineered CAR NK cells display selective cytotoxicity against FLT3- positive B-ALL and inhibit in vivo leukemia growth. Int J Cancer 2019; 145(7): 1935-45. doi: 10.1002/ijc.32269 PMID: 30860598
  9. Nanbakhsh A, Malarkannan S. Dextran enhances the lentiviral transduction efficiency of murine and human primary NK cells. Methods Mol Biol Humana Press Inc 2020; 2097: 107-13. doi: 10.1007/978-1-0716-0203-4_7
  10. Yang YW, Hsieh YC. Protamine sulfate enhances the transduction efficiency of recombinant adeno-associated virus-mediated gene delivery. Pharm Res 2001; 18(7): 922-7. doi: 10.1023/A:1010923924844 PMID: 11496950
  11. Seitz B, Baktanian E, Gordon EM, Anderson WF, LaBree L, McDonnell PJ. Retroviral vector-mediated gene transfer into keratocytes: In vitro effects of polybrene and protamine sulfate. Graefes Arch Clin Exp Ophthalmol 1998; 236(8): 602-12. doi: 10.1007/s004170050129 PMID: 9717657
  12. Bari R, Granzin M, Tsang KS, et al. A distinct subset of highly proliferative and Lentiviral Vector (LV)-transducible NK cells define a readily engineered subset for adoptive cellular therapy. Front Immunol 2019; 10: 2001. doi: 10.3389/fimmu.2019.02001 PMID: 31507603
  13. Rajabzadeh A, Hamidieh AA, Rahbarizadeh F. Spinoculation and retronectin highly enhance the gene transduction efficiency of Mucin-1-specific chimeric antigen receptor (CAR) in human primary T cells. BMC Mol Cell Biol 2021; 22(1): 57. doi: 10.1186/s12860-021-00397-z PMID: 34814824
  14. Colamartino ABL, Lemieux W, Bifsha P, et al. Efficient and robust NK-cell transduction with baboon envelope pseudotyped lentivector. Front Immunol 2019; 10: 2873. doi: 10.3389/fimmu.2019.02873 PMID: 31921138
  15. Müller S, Bexte T, Gebel V, et al. High cytotoxic efficiency of lentivirally and alpharetrovirally engineered CD19-specific chimeric antigen receptor natural killer cells against acute lymphoblastic leukemia. Front Immunol 2020; 10: 3123. doi: 10.3389/fimmu.2019.03123 PMID: 32117200
  16. Holic N, Fenard D. Production of retrovirus-based vectors in mildly acidic pH conditions. Methods Mol Biol 2016; 1448: 41-8. doi: 10.1007/978-1-4939-3753-0_3 PMID: 27317171
  17. O’Keefe EP. Nucleic acid delivery: Lentiviral and retroviral vectors. Labome com 2013; 3: 174. doi: 10.13070/mm.en.3.174
  18. Gutierrez-Guerrero A, Cosset FL, Verhoeyen E. Lentiviral vector pseudotypes: Precious tools to improve gene modification of hematopoietic cells for research and gene therapy. Viruses 2020; 12(9): 1016. doi: 10.3390/v12091016 PMID: 32933033
  19. Frecha C, Costa C, Nègre D, et al. A novel lentiviral vector targets gene transfer into human hematopoietic stem cells in marrow from patients with bone marrow failure syndrome and in vivo in humanized mice. Blood 2012; 119(5): 1139-50. doi: 10.1182/blood-2011-04-346619 PMID: 22117040
  20. Trobridge GD, Wu RA, Hansen M, et al. Cocal-pseudotyped lentiviral vectors resist inactivation by human serum and efficiently transduce primate hematopoietic repopulating cells. Mol Ther 2010; 18(4): 725-33. doi: 10.1038/mt.2009.282 PMID: 19997089
  21. Marin V, Stornaiuolo A, Piovan C, et al. RD-MolPack technology for the constitutive production of self-inactivating lentiviral vectors pseudotyped with the nontoxic RD114-TR envelope. Mol Ther Methods Clin Dev 2016; 3: 16033. doi: 10.1038/mtm.2016.33 PMID: 27222840
  22. Di Nunzio F, Piovani B, Cosset FL, Mavilio F, Stornaiuolo A. Transduction of human hematopoietic stem cells by lentiviral vectors pseudotyped with the RD114-TR chimeric envelope glycoprotein. Hum Gene Ther 2007; 18(9): 811-20. doi: 10.1089/hum.2006.138 PMID: 17824830
  23. Girard-Gagnepain A, Amirache F, Costa C, et al. Baboon envelope pseudotyped LVs outperform VSV-G-LVs for gene transfer into early-cytokine-stimulated and resting HSCs. Blood 2014; 124(8): 1221-31. doi: 10.1182/blood-2014-02-558163 PMID: 24951430
  24. Marin M, Lavillette D, Kelly SM, Kabat D. N-linked glycosylation and sequence changes in a critical negative control region of the ASCT1 and ASCT2 neutral amino acid transporters determine their retroviral receptor functions. J Virol 2003; 77(5): 2936-45. doi: 10.1128/JVI.77.5.2936-2945.2003 PMID: 12584318
  25. Jiang H, Zhang N, Tang T, Feng F, Sun H, Qu W. Target the human Alanine/Serine/Cysteine Transporter 2(ASCT2): Achievement and future for novel cancer therapy. Pharmacol Res 2020; 158: 104844. doi: 10.1016/j.phrs.2020.104844 PMID: 32438035
  26. Jensen H, Potempa M, Gotthardt D, Lanier LL. Cutting edge: IL-2–induced expression of the amino acid transporters SLC1A5 and CD98 is a prerequisite for NKG2D-mediated activation of human NK cells. J Immunol 2017; 199(6): 1967-72. doi: 10.4049/jimmunol.1700497 PMID: 28784848
  27. Dong H, Ham JD, Hu G, et al. Memory-like NK cells armed with a neoepitope-specific CAR exhibit potent activity against NPM1 mutated acute myeloid leukemia. Proc Natl Acad Sci USA 2022; 119(25): e2122379119. doi: 10.1073/pnas.2122379119 PMID: 35696582
  28. Almutairi SM, Ali AK, He W, et al. Interleukin-18 up-regulates amino acid transporters and facilitates amino acid–induced mTORC1 activation in natural killer cells. J Biol Chem 2019; 294(12): 4644-55. doi: 10.1074/jbc.RA118.005892 PMID: 30696773
  29. Fang F, Xie S, Chen M, et al. Advances in NK cell production. Cell Mol Immunol 2022; 19(4): 460-81. doi: 10.1038/s41423-021-00808-3 PMID: 34983953
  30. Streltsova MA, Barsov EV, Erokhina SA, Sapozhnikov AM, Kovalenko EI. Current approaches to engineering of NK cells for cancer immunotherapy. Curr Pharm Des 2018; 24(24): 2810-24. doi: 10.2174/1381612824666180829113013 PMID: 30156154
  31. Velichinskii RA, Streltsova MA, Kust SA, Sapozhnikov AM, Kovalenko EI. The biological role and therapeutic potential of NK cells in hematological and solid tumors. Int J Mol Sci 2021; 22(21): 11385. doi: 10.3390/ijms222111385
  32. Morgan MA, Büning H, Sauer M, Schambach A. Use of cell and genome modification technologies to generate improved "Off- the-Shelf" CAR T and CAR NK cells. Front Immunol 2020; 11: 1965. doi: 10.3389/fimmu.2020.01965 PMID: 32903482
  33. Du S, Xu W, Wang Y, et al. The "LLQY" motif on SARS-CoV-2 spike protein affects S incorporation into virus particles. J Virol 2022; 96(6): e01897-21. doi: 10.1128/jvi.01897-21 PMID: 35045269
  34. Wahlers A, Schwieger M, Li Z, Meier-Tackmann D, Lindemann C, Eckert HG. Influence of multiplicity of infection and protein stability on retroviral vector-mediated gene expression in hematopoietic cells. Gene Ther 2001; 8: 477-86. doi: 10.1038/sj.gt.3301426
  35. Huang S, Kamihira M. Development of hybrid viral vectors for gene therapy. Biotechnol Adv 2013; 31(2): 208-23. doi: 10.1016/j.biotechadv.2012.10.001 PMID: 23070017
  36. Sutlu T, Nyström S, Gilljam M, Stellan B, Applequist SE, Alici E. Inhibition of intracellular antiviral defense mechanisms augments lentiviral transduction of human natural killer cells: Implications for gene therapy. Hum Gene Ther 2012; 23(10): 1090-100. doi: 10.1089/hum.2012.080 PMID: 22779406
  37. Allan DSJ, Chakraborty M, Waller GC, et al. Systematic improvements in lentiviral transduction of primary human natural killer cells undergoing ex vivo expansion. Mol Ther Methods Clin Dev 2021; 20: 559-71. doi: 10.1016/j.omtm.2021.01.008 PMID: 33665226
  38. Chockley P, Patil SL, Gottschalk S. Transient blockade of TBK1/IKKε allows efficient transduction of primary human natural killer cells with vesicular stomatitis virus G-pseudotyped lentiviral vectors. Cytotherapy 2021; 23(9): 787-92. doi: 10.1016/j.jcyt.2021.04.010 PMID: 34119434
  39. Kobyzeva PA, Streltsova MA, Erokhina SA, et al. CD56dimCD57−NKG2C+ NK cells retaining proliferative potential are possible precursors of CD57+NKG2C+ memory-like NK cells. J Leukoc Biol 2020; 108(4): 1379-95. doi: 10.1002/JLB.1MA0720-654RR PMID: 32930385
  40. Lin P, Correa D, Lin Y, Caplan AI. Polybrene inhibits human mesenchymal stem cell proliferation during lentiviral transduction. PLoS One 2011; 6(8): e23891. doi: 10.1371/journal.pone.0023891 PMID: 21887340
  41. Denning W, Das S, Guo S, Xu J, Kappes JC, Hel Z. Optimization of the transductional efficiency of lentiviral vectors: Effect of sera and polycations. Mol Biotechnol 2013; 53(3): 308-14. doi: 10.1007/s12033-012-9528-5 PMID: 22407723
  42. Griukova A, Deryabin P, Sirotkina M, Shatrova A, Nikolsky N, Borodkina A. P38 MAPK inhibition prevents polybrene-induced senescence of human mesenchymal stem cells during viral transduction. PLoS One 2018; 13(12): e0209606. doi: 10.1371/journal.pone.0209606 PMID: 30586456
  43. Deryabin P, Griukova A, Shatrova A, Petukhov A, Nikolsky N, Borodkina A. Optimization of lentiviral transduction parameters and its application for CRISPR-based secretome modification of human endometrial mesenchymal stem cells. Cell Cycle 2019; 18(6-7): 742-58. doi: 10.1080/15384101.2019.1593650 PMID: 30880567
  44. Cornetta K, Anderson WF. Protamine sulfate as an effective alternative to polybrene in retroviral-mediated gene-transfer: Implications for human gene therapy. J Virol Methods 1989; 23(2): 187-94. doi: 10.1016/0166-0934(89)90132-8 PMID: 2786000
  45. Lewis PF, Emerman M. Passage through mitosis is required for oncoretroviruses but not for the human immunodeficiency virus. J Virol 1994; 68(1): 510-6. doi: 10.1128/jvi.68.1.510-516.1994 PMID: 8254763
  46. Thomas LM, Peterson ME, Long EO. Cutting edge: NK cell licensing modulates adhesion to target cells. J Immunol 2013; 191(8): 3981-5. doi: 10.4049/jimmunol.1301159 PMID: 24038086
  47. Hege KM, Bergsland EK, Fisher GA, et al. Safety, tumor trafficking and immunogenicity of chimeric antigen receptor (CAR)-T cells specific for TAG-72 in colorectal cancer. J Immunother Cancer 2017; 5(1): 22. doi: 10.1186/s40425-017-0222-9 PMID: 28344808
  48. Guo Y, Feng K, Liu Y, et al. Phase I study of chimeric antigen receptor–modified T cells in patients with EGFR-positive advanced biliary tract cancers. Clin Cancer Res 2018; 24(6): 1277-86. doi: 10.1158/1078-0432.CCR-17-0432 PMID: 29138340
  49. Rustanti L, Jin H, Li D, Lor M, Sivakumaran H, Harrich D. Differential effects of strategies to improve the transduction efficiency of lentiviral vector that conveys an anti-HIV protein, nullbasic, in human T cells. Virol Sin 2018; 33(2): 142-52. doi: 10.1007/s12250-018-0004-7 PMID: 29541943
  50. Remley VA, Jin J, Sarkar S, et al. High efficiency closed-system gene transfer using automated spinoculation. J Transl Med 2021; 19(1): 474. doi: 10.1186/s12967-021-03126-4 PMID: 34819105
  51. Nasiri F, Muhammadnejad S, Rahbarizadeh F. Effects of polybrene and retronectin as transduction enhancers on the development and phenotypic characteristics of VHH-based CD19-redirected CAR T cells: A comparative investigation. Clin Exp Med 2022; 23(6): 2535-49. doi: 10.1007/s10238-022-00928-8 PMID: 36434173
  52. Quintás-Cardama A, Yeh RK, Hollyman D, et al. Multifactorial optimization of gammaretroviral gene transfer into human T lymphocytes for clinical application. Hum Gene Ther 2007; 18(12): 1253-60. doi: 10.1089/hum.2007.088 PMID: 18052719
  53. Yang Y, Badeti S, Tseng H, et al. Superior expansion and cytotoxicity of human primary NK and CAR-NK cells from various sources via enriched metabolic pathways. Mol Ther Methods Clin Dev 2020; 18: 428-45. doi: 10.1016/j.omtm.2020.06.014 PMID: 32695845
  54. Kremer V, Ligtenberg MA, Zendehdel R, et al. Genetic engineering of human NK cells to express CXCR2 improves migration to renal cell carcinoma. J Immunother Cancer 2017; 5(1): 73. doi: 10.1186/s40425-017-0275-9 PMID: 28923105
  55. Reindl LM, Albinger N, Bexte T, Müller S, Hartmann J, Ullrich E. Immunotherapy with NK cells: Recent developments in gene modification open up new avenues. OncoImmunology 2020; 9(1): 1777651. doi: 10.1080/2162402X.2020.1777651 PMID: 33457093
  56. Williams MD, Chen AT, Stone MR, Guo L, Belmont BJ, Turk R. TRAFfic signals: High-throughput CAR discovery in NK cells reveals novel TRAF-binding endodomains that drive enhanced persistence and cytotoxicity. BioRxiv 2023; 2023-08. doi: 10.1101/2023.08.02.551530
  57. Portillo AL, Hogg R, Ashkar AA. Production of human CAR-NK cells with lentiviral vectors and functional assessment in vitro. STAR Protocols 2021; 2(4): 100956. doi: 10.1016/j.xpro.2021.100956 PMID: 34825217
  58. Kim Y, Lee DY, Choi JU, Park JS, Lee SM, Kang CH. Optimized conditions for gene transduction into primary immune cells using viral vectors. Sci Reports 2023; 13: 1-12. doi: 10.1038/s41598-023-39597-2

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers