Active Ingredients and Mechanism of Gegen Qinlian Decoction in the Treatment of Diabetic Cardiomyopathy: A Network Pharmacology Study


Cite item

Full Text

Abstract

Background:Diabetic cardiomyopathy (DCM) is a common diabetes complication with limited medications. Gegen Qinlian decoction (GQD) has been used in the treatment of diabetes and its related complications in China for several decades.

Objective:In this study, network pharmacology was employed to predict the active ingredients, key targets, and pathways involved in the treatment of DCM by GQD and to validate it by animal experiments.

Methods:The active ingredients of GQD were retrieved from TCMSP and published literature. DCM-related gene targets were searched in Drugbank, Genecards, Disgenet, and OMIM disease databases. Protein-protein interaction networks were constructed using the STRING database and Cytoscape. GO analysis and KEGG pathway enrichment analysis were performed using the Metascape platform. Moreover, a diabetic mouse model was established to evaluate the therapeutic effects of GQD by measuring serum biochemical markers and inflammation levels. Finally, the expression of predicted key target genes was determined using real-time quantitative PCR.

Results:A total of 129 active ingredients were screened from GQD. Moreover, 146 intersecting genes related to DCM were obtained, with key targets, including AKT1, TNF, IL6, and VEGFA. Lipid and atherosclerosis, AGE-RAGE, PI3K-AKT, and MAPK pathways were identified. Blood glucose control, decreased inflammatory factors, and serum CK-MB levels were restored after GQD intervention, and the same occurred with the expressions of PPAR-γ, AKT1, APOB, and GSK3B genes.

Conclusion:Quercetin, kaempferol, wogonin, 7-methoxy-2-methyl isoflavone, and formononetin may exert major therapeutic effects by regulating key factors, such as AKT1, APOB, and GSK3B, in the inflammatory reaction, glycolipid oxidation, and glycogen synthesis related signaling pathways.

About the authors

Min Wang

Institute of Basic Medical Sciences, Guilin Medical University

Email: info@benthamscience.net

Yanbin Liang

College of Pharmacy, Guilin Medical University

Email: info@benthamscience.net

Yuce Qin

College of Pharmacy, Guilin Medical University

Email: info@benthamscience.net

Ruimian Ma

Institute of Basic Medical Sciences, Guilin Medical University

Email: info@benthamscience.net

Huanting Yu

College of Clinical Medicine, Guilin Medical University

Email: info@benthamscience.net

Weixue Wang

Department of Traditional Chinese Medicine, Huai'an No.3 People's Hospital

Author for correspondence.
Email: info@benthamscience.net

Xiaoxi Zhang

Institute of Basic Medical Sciences, Guilin Medical University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Reusch JEB, Manson JE. Management of type 2 diabetes in 2017. JAMA 2017; 317(10): 1015-6. doi: 10.1001/jama.2017.0241 PMID: 28249081
  2. Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pr 2019; 157: 107843. doi: 10.1016/j.diabres.2019.107843
  3. Mendis S, Davis S, Norrving B. Organizational update. Stroke 2015; 46(5): e121-2. doi: 10.1161/STROKEAHA.115.008097 PMID: 25873596
  4. Jia G, Hill MA, Sowers JR. Diabetic cardiomyopathy. Circ Res 2018; 122(4): 624-38. doi: 10.1161/CIRCRESAHA.117.311586 PMID: 29449364
  5. Surguchov A, Bernal L, Surguchev AA. Phytochemicals as regulators of genes involved in synucleinopathies. Biomolecules 2021; 11(5): 624. doi: 10.3390/biom11050624 PMID: 33922207
  6. Yao Y, Wang DF, Xiang F, Luo YP. Research progress of traditional Chinese medicine in the treatment of diabetes complicated with osteoporosis. MEDS Chinese Med 2022; 4(4): 8-14. doi: 10.23977/medcm.2022.040402
  7. Xu Y, Huang J, Wang N, et al. Network pharmacology-based analysis and experimental exploration of antidiabetic mechanisms of Gegen Qinlian decoction. Front Pharmacol 2021; 12: 649606. doi: 10.3389/fphar.2021.649606 PMID: 34381354
  8. Tong X, Zhao L, Lian F, et al. Clinical observations on the dose-effect relationship of Gegen Qin Lian decoction on 54 out-patients with type 2 diabetes. J Tradit Chin Med 2011; 31(1): 56-9. doi: 10.1016/S0254-6272(11)60013-7 PMID: 21563509
  9. He L, Bao T, Yang Y, et al. Exploring the pathogenesis of type 2 diabetes mellitus intestinal damp-heat syndrome and the therapeutic effect of Gegen Qinlian decoction from the perspective of exosomal miRNA. J Ethnopharmacol 2022; 285: 114786. doi: 10.1016/j.jep.2021.114786 PMID: 34763043
  10. Xiong XJ. Gegen Qinlian decoction formula syndrome and its application in diabetes, hypertension, hyperlipidemia and obesity. Zhongguo Zhongyao Zazhi 2020; 45(12): 2760-4. doi: 10.19540/j.cnki.cjcmm.20190829.501 PMID: 32627448
  11. Chinese Pharmacopoeia Commission. In: Pharmacopoeia of the People’s Republic of China. Beijing, China: People’s Medical Publishing 2015.
  12. Boudina S, Abel ED. Diabetic cardiomyopathy revisited. Circulation 2007; 115(25): 3213-23. doi: 10.1161/CIRCULATIONAHA.106.679597 PMID: 17592090
  13. Tan Y, Zhang Z, Zheng C, Wintergerst KA, Keller BB, Cai L. Mechanisms of diabetic cardiomyopathy and potential therapeutic strategies: Preclinical and clinical evidence. Nat Rev Cardiol 2020; 17(9): 585-607. doi: 10.1038/s41569-020-0339-2 PMID: 32080423
  14. Xia W, Li X, Wu Q, Xu A, Zhang L, Xia Z. The importance of caveolin as a target in the prevention and treatment of diabetic cardiomyopathy. Front Immunol 2022; 13: 951381. doi: 10.3389/fimmu.2022.951381 PMID: 36405687
  15. Xu X, Niu L, Liu Y, et al. Study on the mechanism of Gegen Qinlian decoction for treating type II diabetes mellitus by integrating network pharmacology and pharmacological evaluation. J Ethnopharmacol 2020; 262: 113129. doi: 10.1016/j.jep.2020.113129 PMID: 32730886
  16. Liu W, Xiong X, Feng B, Yuan R, Chu F, Liu H. Classic herbal formula Zhigancao decoction for the treatment of premature ventricular contractions (PVCs): A systematic review of randomized controlled trials. Complement Ther Med 2015; 23(1): 100-15. doi: 10.1016/j.ctim.2014.12.008 PMID: 25637158
  17. Wang N, Zhang J, Xu H, Wang G, Chu L. Effects of Buzhong Yiqi decoction on adriamycin induced heart failure in rats. Zhongguo Zhongyao Zazhi 2011; 36(4): 508-10. doi: 10.4268/cjcmm20110430 PMID: 21598554
  18. Zhen Z, Chang B, Li M, et al. Anti-diabetic effects of a Coptis chinensis containing new traditional Chinese medicine formula in type 2 diabetic rats. Am J Chin Med 2011; 39(1): 53-63. doi: 10.1142/S0192415X11008646 PMID: 21213398
  19. Moosavi-Movahedi AA, Hakimelahi S, Chamani J, et al. Design, synthesis, and anticancer activity of phosphonic acid diphosphate derivative of adenine-containing butenolide and its water-soluble derivatives of paclitaxel with high antitumor activity. Bioorg Med Chem 2003; 11(20): 4303-13. doi: 10.1016/S0968-0896(03)00524-8 PMID: 13129566
  20. Kalhori F, Yazdyani H, Khademorezaeian F, et al. Enzyme activity inhibition properties of new cellulose nanocrystals from Citrus medica L. pericarp: A perspective of cholesterol lowering. Luminescence 2022; 37(11): 1836-45. doi: 10.1002/bio.4360 PMID: 35946171
  21. Malek-Esfandiari Z, Rezvani-Noghani A, Sohrabi T, Mokaberi P, Amiri-Tehranizadeh Z, Chamani J. Molecular dynamics and multi-spectroscopic of the interaction behavior between bladder cancer cells and calf thymus DNA with rebeccamycin: Apoptosis through the down regulation of PI3K/AKT signaling pathway. J Fluoresc 2023; 33(4): 1537-57. doi: 10.1007/s10895-023-03169-4 PMID: 36787038
  22. Kabiri M, Amiri-Tehranizadeh Z, Baratian A, Saberi MR, Chamani J. Use of spectroscopic, zeta potential and molecular dynamic techniques to study the interaction between human holo-transferrin and two antagonist drugs: Comparison of binary and ternary systems. Molecules 2012; 17(3): 3114-47. doi: 10.3390/molecules17033114 PMID: 22410420
  23. Hamid M, Fatemeh H, Niloofar S, Elahe K, Bizhan MN, Parisa M. Glucokinase activity enhancement by cellulose nanocrystals isolated from jujube seed: A novel perspective for type II diabetes mellitus treatment (In vitro). J Mol Struct 2022; 1269(2022): 133803.
  24. Solinas G, Vilcu C, Neels JG, et al. JNK1 in hematopoietically derived cells contributes to diet-induced inflammation and insulin resistance without affecting obesity. Cell Metab 2007; 6(5): 386-97. doi: 10.1016/j.cmet.2007.09.011 PMID: 17983584
  25. Khalid M, Alkaabi J, Khan MAB, Adem A. Insulin signal transduction perturbations in insulin resistance. Int J Mol Sci 2021; 22(16): 8590. doi: 10.3390/ijms22168590 PMID: 34445300
  26. Chavali V, Tyagi SC, Mishra PK. Differential expression of dicer, miRNAs, and inflammatory markers in diabetic Ins2+/- Akita hearts. Cell Biochem Biophys 2014; 68(1): 25-35. doi: 10.1007/s12013-013-9679-4 PMID: 23797610
  27. Gonzalez Rodriguez A, Schroeder ME, Grim JC, et al. Tumor necrosis factor-α promotes and exacerbates calcification in heart valve myofibroblast populations. FASEB J 2021; 35(3): e21382. doi: 10.1096/fj.202002013RR PMID: 33554387
  28. Fang G, Li Y, Yuan J, et al. Cadherin-11-interleukin-6 signaling between cardiac fibroblast and cardiomyocyte promotes ventricular remodeling in a mouse pressure overload-induced heart failure model. Int J Mol Sci 2023; 24(7): 6549. doi: 10.3390/ijms24076549 PMID: 37047522
  29. Zhang Y, Wang JH, Zhang YY, et al. Deletion of interleukin-6 alleviated interstitial fibrosis in streptozotocin-induced diabetic cardiomyopathy of mice through affecting TGFβ1 and miR-29 pathways. Sci Rep 2016; 6(1): 23010. doi: 10.1038/srep23010 PMID: 26972749
  30. Wei C, Li L, Kim IK, Sun P, Gupta S. NF-κB mediated miR-21 regulation in cardiomyocytes apoptosis under oxidative stress. Free Radic Res 2014; 48(3): 282-91. doi: 10.3109/10715762.2013.865839 PMID: 24237305
  31. Wang Y, Jiang C, Shang Z, et al. AGEs/RAGE promote osteogenic differentiation in rat bone marrow-derived endothelial progenitor cells via MAPK signaling. J Diabetes Res 2022; 2022: 1-11. doi: 10.1155/2022/4067812 PMID: 35155684
  32. Mishra RK. Potential role of nuclear factor κB in cardiovascular disease. In: Emerging applications, perspectives, and discoveries in cardiovascular research. IGI Global 2017. doi: 10.4018/978-1-5225-2092-4.ch003
  33. Li F, Chen L, Zheng J, et al. Mechanism of Gegen Qinlian decoction regulating ABTB1 expression in colorectal cancer metastasis based on PI3K/AKT/FOXO1 pathway. BioMed Res Int 2022; 2022: 1-7. doi: 10.1155/2022/8131531 PMID: 35111848
  34. Manning BD, Toker A. AKT/PKB signaling: Navigating the network. Cell 2017; 169(3): 381-405. doi: 10.1016/j.cell.2017.04.001 PMID: 28431241
  35. Yanai H, Yoshida H. Beneficial effects of adiponectin on glucose and lipid metabolism and atherosclerotic progression: Mechanisms and perspectives. Int J Mol Sci 2019; 20(5): 1190. doi: 10.3390/ijms20051190 PMID: 30857216
  36. Jing X, Zhou J, Zhang N, et al. A review of the effects of puerarin on glucose and lipid metabolism in metabolic syndrome: Mechanisms and opportunities. Foods 2022; 11(23): 3941. doi: 10.3390/foods11233941 PMID: 36496749
  37. Beurel E, Grieco SF, Jope RS. Glycogen synthase kinase-3 (GSK3): Regulation, actions, and diseases. Pharmacol Ther 2015; 148: 114-31. doi: 10.1016/j.pharmthera.2014.11.016 PMID: 25435019
  38. Fernandez AM, Torres-Alemán I. The many faces of insulin-like peptide signalling in the brain. Nat Rev Neurosci 2012; 13(4): 225-39. doi: 10.1038/nrn3209 PMID: 22430016
  39. Saraswati AP, Ali Hussaini SM, Krishna NH, Babu BN, Kamal A. Glycogen synthase kinase-3 and its inhibitors: Potential target for various therapeutic conditions. Eur J Med Chem 2018; 144: 843-58. doi: 10.1016/j.ejmech.2017.11.103 PMID: 29306837
  40. Ikebukuro K, Adachi Y, Yamada Y, et al. Treatment of streptozotocin-induced diabetes mellitus by transplantation of islet cells plus bone marrow cells via portal vein in rats1. Transplantation 2002; 73(4): 512-8. doi: 10.1097/00007890-200202270-00004 PMID: 11889421
  41. Xu M, Wang X, Li Y, et al. Arachidonic acid metabolism controls macrophage alternative activation through regulating oxidative phosphorylation in PPARγ dependent manner. Front Immunol 2021; 12: 618501. doi: 10.3389/fimmu.2021.618501 PMID: 34149684
  42. Oikonomou E, Mourouzis K, Fountoulakis P, et al. Interrelationship between diabetes mellitus and heart failure: The role of peroxisome proliferator-activated receptors in left ventricle performance. Heart Fail Rev 2018; 23(3): 389-408. doi: 10.1007/s10741-018-9682-3 PMID: 29453696
  43. Kongthitilerd P, Suantawee T, Cheng H, Thilavech T, Marnpae M, Adisakwattana S. Anthocyanin-enriched riceberry rice extract inhibits cell proliferation and adipogenesis in 3T3-L1 preadipocytes by downregulating adipogenic transcription factors and their targeting genes. Nutrients 2020; 12(8): 2480. doi: 10.3390/nu12082480 PMID: 32824545
  44. Mutlu AS, Duffy J, Wang MC. Lipid metabolism and lipid signals in aging and longevity. Dev Cell 2021; 56(10): 1394-407. doi: 10.1016/j.devcel.2021.03.034 PMID: 33891896

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers