Biological and Photocatalytic Activities of Silver Nanoparticles Synthesized from the Leaf Extract of Euphorbia royleana Boiss


如何引用文章

全文:

详细

Introduction:Silver nanoparticles (AgNPs) have gained significance due to their practical use in the medicinal field, especially in the treatment of tumors and cancer. The current article explores a green synthetic method for the preparation of AgNPs using leaf extract of Euphorbia royleanas.

Methods:The synthesis was conducted at different parameters like concentration of AgNO3, pH, salt concentration, temperature and time to optimize best results for their biochemical applications. It was validated through UV-V spectroscopy (400-450 nm) with 1:3 (concentration ratio of leaf ethanolic extract and 1 mM AgNO3 solution) at a pH value of 8 at 35oC, which were the best optimization conditions. The FTIR spectral bands showed the presence of C-N and –OH functional groups, indicating that –OH stretching and the aliphatic -C-H stretching were involved in the reduction of Ag ions. The XRD pattern showed the face-centered cubic structure of silver nanoparticles. The results of SEM revealed that AgNPs were predominantly spherical in shape, mono-dispersed, and arranged in scattered form. EDX analysis testified the presence of metallic silver along with other elements like Cl, C, and O.

Results:The investigation of biochemical parameters showed that AgNPs were influential in the discoloration of dye wastewater (methylene blue ), where 80% of dye color was removed in 20 min, followed by the significant (p < 0.05) analgesic activity with an inhibition percentage of 86.45% at a dose of 500 mg/kg.

Conclusion:Similarly, the antioxidant activity with the highest percent inhibition was 55.4% (p < 0.0001), shown by the AgNPs at 500 µg/mL. AgNPs showed a 30 mm zone of inhibition at 100 µl/mL against Aspergillus niger. It was concluded that AgNPs provide a baseline in medical technology for the treatment of simple to chronic diseases.

作者简介

Hussan Begum

Department of Botany, Abdul Wali Khan University Mardan

Email: info@benthamscience.net

Sana Yaseen

Department of Botany, Abdul Wali Khan University Mardan

Email: info@benthamscience.net

Amir Zada

Department of Chemistry, Abdul Wali Khan University Mardan

Email: info@benthamscience.net

Muhammad Musa

Department of Botany, Abdul Wali Khan University Mardan

Email: info@benthamscience.net

Asif Khan

Department of Pharmacy, State University of Maringa

Email: info@benthamscience.net

Sheheryar

Department of Animal Sciences, Federal University of Ceará

Email: info@benthamscience.net

Abdulwahed Alrefaei

Department of Zoology, College of Science, King Saud University

Email: info@benthamscience.net

Mikhlid Almutairi

Department of Zoology, College of Science, King Saud University

Email: info@benthamscience.net

Sajid Ali

Department of Horticulture and Life Science, Yeungnam University

编辑信件的主要联系方式.
Email: info@benthamscience.net

Rafia Azmat

Department of Chemistry, University of Karachi

Email: info@benthamscience.net

Muhammad Hamayun

Department of Botany, Abdul Wali Khan University Mardan

编辑信件的主要联系方式.
Email: info@benthamscience.net

参考

  1. Singh J, Dutta T, Kim KH, Rawat M, Samddar P, Kumar P. ‘Green’ synthesis of metals and their oxide nanoparticles: Applications for environmental remediation. J Nanobiotechnol 2018; 16(1): 84. doi: 10.1186/s12951-018-0408-4 PMID: 30373622
  2. Saqib S, Faryad S, Afridi MI, et al. Bimetallic assembled silver nanoparticles impregnated in Aspergillus fumigatus extract damage the bacterial membrane surface and release cellular contents. Coatings 2022; 12(10): 1505. doi: 10.3390/coatings12101505
  3. Alelwani W, Taj MB, Algheshairy RM, et al. Synthesis and potential of bio fabricated silver nanoparticles for use as functional material against foodborne pathogens. Chem Africa 2022; 5(5): 1527-43. doi: 10.1007/s42250-022-00402-8
  4. Sharma VK, Yngard RA, Lin Y. Silver nanoparticles: Green synthesis and their antimicrobial activities. Adv Colloid Interface Sci 2009; 145(1-2): 83-96. doi: 10.1016/j.cis.2008.09.002 PMID: 18945421
  5. Danish MSS, Estrella-Pajulas LL, Alemaida IM, Grilli ML, Mikhaylov A, Senjyu T. Green synthesis of silver oxide nanoparticles for photocatalytic environmental remediation and biomedical applications. Metals (Basel) 2022; 12(5): 769. doi: 10.3390/met12050769
  6. El-Seedi HR, El-Shabasy RM, Khalifa SAM, et al. Metal nanoparticles fabricated by green chemistry using natural extracts: Biosynthesis, mechanisms, and applications. RSC Advances 2019; 9(42): 24539-59. doi: 10.1039/C9RA02225B PMID: 35527869
  7. Aravind M, Ahmad A, Ahmad I, et al. Critical green routing synthesis of silver NPs using jasmine flower extract for biological activities and photocatalytical degradation of methylene blue. J Environ Chem Eng 2021; 9(1): 104877. doi: 10.1016/j.jece.2020.104877
  8. Javed B, Raja NI, Nadhman A, Mashwani Z-R. Understanding the potential of bio-fabricated non-oxidative silver nanoparticles to eradicate Leishmania and plant bacterial pathogens. Appl Nanosci 2020; 10(6): 2057-67. doi: 10.1007/s13204-020-01355-5
  9. Azmat R, Altaf I, Moin S, Ahmed W, Alrefaei AF, Ali S. A study of photo-biological reactions under TiO2 nanoparticle accumulation in Spinacia oleracea. Pak J Bot 2023; 55(4): 1359-64. doi: 10.30848/PJB2023-4(25)
  10. Merkoçi A. Nanoparticles-based strategies for DNA, protein and cell sensors. Biosens Bioelectron 2010; 26(4): 1164-77. doi: 10.1016/j.bios.2010.07.028 PMID: 20678915
  11. Ullah H, Ullah I, Rehman G, et al. Magnesium and zinc oxide nanoparticles from datura alba improve cognitive impairment and blood brain barrier leakage. Molecules 2022; 27(15): 4753. doi: 10.3390/molecules27154753 PMID: 35897930
  12. Bansal SA, Kumar V, Karimi J, Singh AP, Kumar S. Role of gold nanoparticles in advanced biomedical applications. Nanoscale Adv 2020; 2(9): 3764-87. doi: 10.1039/D0NA00472C PMID: 36132791
  13. Kanniah P, Radhamani J, Chelliah P, et al. Green synthesis of multifaceted silver nanoparticles using the flower extract of Aerva lanata and evaluation of its biological and environmental applications. ChemistrySelect 2020; 5(7): 2322-31. doi: 10.1002/slct.201903228
  14. Thakkar KN, Mhatre SS, Parikh RY. Biological synthesis of metallic nanoparticles. Nanomedicine 2010; 6(2): 257-62. doi: 10.1016/j.nano.2009.07.002 PMID: 19616126
  15. Linic S, Aslam U, Boerigter C, Morabito M. Photochemical transformations on plasmonic metal nanoparticles. Nat Mater 2015; 14(6): 567-76. doi: 10.1038/nmat4281 PMID: 25990912
  16. Yoon WJ, Jung K-Y, Liu J, et al. Plasmon-enhanced optical absorption and photocurrent in organic bulk heterojunction photovoltaic devices using self-assembled layer of silver nanoparticles. Sol Energy Mater Sol Cells 2010; 94(2): 128-32. doi: 10.1016/j.solmat.2009.08.006
  17. Yang L, Kuang H, Zhang W, Aguilar ZP, Wei H, Xu H. Comparisons of the biodistribution and toxicological examinations after repeated intravenous administration of silver and gold nanoparticles in mice. Sci Rep 2017; 7(1): 3303. doi: 10.1038/s41598-017-03015-1 PMID: 28607366
  18. Sathishkumar P, Preethi J, Vijayan R, et al. Anti-acne, anti-dandruff and anti-breast cancer efficacy of green synthesised silver nanoparticles using Coriandrum sativum leaf extract. J Photochem Photobiol B 2016; 163: 69-76. doi: 10.1016/j.jphotobiol.2016.08.005 PMID: 27541567
  19. Arvizo RR, Bhattacharyya S, Kudgus RA, Giri K, Bhattacharya R, Mukherjee P. Intrinsic therapeutic applications of noble metal nanoparticles: Past, present and future. Chem Soc Rev 2012; 41(7): 2943-70. doi: 10.1039/c2cs15355f PMID: 22388295
  20. Gan BK, Yong CY, Ho KL, Omar AR, Alitheen NB, Tan WS. Targeted delivery of cell penetrating peptide virus-like nanoparticles to skin cancer cells. Sci Rep 2018; 8(1): 8499. doi: 10.1038/s41598-018-26749-y PMID: 29855618
  21. Eom S, Choi G, Nakamura H, Choy J-H. 2-Dimensional nanomaterials with imaging and diagnostic functions for nanomedicine; A review. Bull Chem Soc Jpn 2020; 93(1): 1-12. doi: 10.1246/bcsj.20190270
  22. Rahman A, Rehman G, Shah N, et al. Biosynthesis and characterization of silver nanoparticles using Tribulus terrestris seeds: Revealed promising antidiabetic potentials. Molecules 2023; 28(10): 4203. doi: 10.3390/molecules28104203 PMID: 37241943
  23. Minnich AJ, Dresselhaus MS, Ren ZF, Chen G. Bulk nanostructured thermoelectric materials: Current research and future prospects. Energy Environ Sci 2009; 2(5): 466-79. doi: 10.1039/b822664b
  24. Varghese RJ, Zikalala N, Oluwafemi OS. Green synthesis protocol on metal oxide nanoparticles using plant extracts Colloidal metal oxide nanoparticles. Amsterdam: Elsevier 2020; pp. 67-82. doi: 10.1016/B978-0-12-813357-6.00006-1
  25. Behravan M, Hossein Panahi A, Naghizadeh A, Ziaee M, Mahdavi R, Mirzapour A. Facile green synthesis of silver nanoparticles using Berberis vulgaris leaf and root aqueous extract and its antibacterial activity. Int J Biol Macromol 2019; 124: 148-54. doi: 10.1016/j.ijbiomac.2018.11.101 PMID: 30447360
  26. Parveen K, Banse V, Ledwani L. Green synthesis of nanoparticles: Their advantages and disadvantages. Open J Appl Sci 2020; 10: 4945168. doi: 10.1063/1.4945168
  27. Palithya S, Gaddam SA, Kotakadi VS, et al. Green synthesis of silver nanoparticles using flower extracts of Aerva lanata and their biomedical applications. Particul Sci Technol 2022; 40(1): 84-96. doi: 10.1080/02726351.2021.1919259
  28. Samuggam S, Chinni SV, Mutusamy P, et al. Green synthesis and characterization of silver nanoparticles using Spondias mombin extract and their antimicrobial activity against biofilm-producing bacteria. Molecules 2021; 26(9): 2681. doi: 10.3390/molecules26092681 PMID: 34063685
  29. Sundeep D, Vijaya Kumar T, Rao PSS, Ravikumar RVSSN, Gopala Krishna A. Green synthesis and characterization of Ag nanoparticles from Mangifera indica leaves for dental restoration and antibacterial applications. Prog Biomater 2017; 6(1-2): 57-66. doi: 10.1007/s40204-017-0067-9 PMID: 28470622
  30. Qasim Nasar M, Zohra T, Khalil AT, et al. Seripheidium quettense mediated green synthesis of biogenic silver nanoparticles and their theranostic applications. Green Chem Lett Rev 2019; 12(3): 310-22. doi: 10.1080/17518253.2019.1643929
  31. Rao L, Cai B, Bu LL, et al. Microfluidic electroporation-facilitated synthesis of erythrocyte membrane-coated magnetic nanoparticles for enhanced imaging-guided cancer therapy. ACS Nano 2017; 11(4): 3496-505. doi: 10.1021/acsnano.7b00133 PMID: 28272874
  32. Murali Krishna I, Bhagavanth Reddy G, Veerabhadram G, Madhusudhan A. Eco-friendly green synthesis of silver nanoparticles using salmalia malabarica: Synthesis, characterization, antimicrobial, and catalytic activity studies. Appl Nanosci 2016; 6(5): 681-9. doi: 10.1007/s13204-015-0479-6
  33. Cruz D, Falé PL, Mourato A, Vaz PD, Luisa Serralheiro M, Lino ARL. Preparation and physicochemical characterization of Ag nanoparticles biosynthesized by Lippia citriodora (Lemon Verbena). Colloids Surf B Biointerfaces 2010; 81(1): 67-73. doi: 10.1016/j.colsurfb.2010.06.025 PMID: 20655710
  34. Corciova A, Ivanescu B. Biosynthesis, characterisation and therapeutic applications of plant-mediated silver nanoparticles. J Serb Chem Soc 2018; 83(5): 515-38. doi: 10.2298/JSC170731021C
  35. Yasmin S, Nouren S, Bhatti HN, et al. Green synthesis, characterization and photocatalytic applications of silver nanoparticles using Diospyros lotus. Green Process Synth 2020; 9(1): 87-96. doi: 10.1515/gps-2020-0010
  36. Azizi S, Mahdavi Shahri M, Rahman H, Abdul Rahim R, Rasedee A, Mohamad R. Green synthesis palladium nanoparticles mediated by white tea (Camellia sinensis) extract with antioxidant, antibacterial, and antiproliferative activities toward the human leukemia (MOLT-4) cell line Retraction.. Int J Nanomed 2022; 17: 1227-8. doi: 10.2147/IJN.S366532 PMID: 35330696
  37. Bhakya S, Muthukrishnan S, Sukumaran M, Muthukumar M. Biogenic synthesis of silver nanoparticles and their antioxidant and antibacterial activity. Appl Nanosci 2016; 6(5): 755-66. doi: 10.1007/s13204-015-0473-z
  38. Keshari A. Fabrication and characterization of biosynthesized silver nanoparticles using cymbopogon citratus and evaluation of its antioxidant, free radicals and reducing power activity. Nanomed Res J 2020; 5(2): 132-42.
  39. Yugandhar P, Savithramma N. Biosynthesis, characterization and antimicrobial studies of green synthesized silver nanoparticles from fruit extract of Syzygium alternifolium (Wt.) Walp. an endemic, endangered medicinal tree taxon. Appl Nanosci 2016; 6(2): 223-33. doi: 10.1007/s13204-015-0428-4
  40. Vanaja M, Paulkumar K, Baburaja M, et al. Degradation of methylene blue using biologically synthesized silver nanoparticles. Bioinorg Chem Appl 2014; 2014(1): 1-8. doi: 10.1155/2014/742346 PMID: 24772055
  41. Hayat K, Khan A, Bibi F, et al. Effect of cadmium and copper exposure on growth, physio-Chemicals and medicinal properties of Cajanus cajan L. (Pigeon pea). Metabolites 2021; 11(11): 769. doi: 10.3390/metabo11110769 PMID: 34822427
  42. Liaqat N, Jahan N. Khalil-ur-Rahman, Anwar T, Qureshi H. Green synthesized silver nanoparticles: Optimization, characterization, antimicrobial activity, and cytotoxicity study by hemolysis assay. Front Chem 2022; 10: 952006. doi: 10.3389/fchem.2022.952006 PMID: 36105303
  43. Gavamukulya Y, Maina EN, Meroka AM, et al. Green synthesis and characterization of highly stable silver nanoparticles from ethanolic extracts of fruits of Annona muricata. J Inorg Organomet Polym Mater 2020; 30(4): 1231-42. doi: 10.1007/s10904-019-01262-5
  44. Begum HA. Antifungal activity of six medicinal plants of Pakistan against selected fungi. Bangladesh J Botany 2021; 50(2): 441-3. doi: 10.3329/bjb.v50i2.54105
  45. Latha D, Arulvasu CD, Prabu PD, Narayanan VD. Photocatalytic activity of biosynthesized silver nanoparticle from leaf extract of Justicia adhatoda. Mech Mater Sci Eng J (NY) 2017; 9(1)
  46. Ravi SS, Christena LR. SaiSubramanian N, Anthony SP. Green synthesized silver nanoparticles for selective colorimetric sensing of Hg2+ in aqueous solution at wide pH range. Analyst (Lond) 2013; 138(15): 4370-7. doi: 10.1039/c3an00320e PMID: 23741735
  47. Vijayaraj V, Liné C, Cadarsi S, et al. Transfer and ecotoxicity of titanium dioxide nanoparticles in terrestrial and aquatic ecosystems: A microcosm study. Environ Sci Technol 2018; 52(21): 12757-64. doi: 10.1021/acs.est.8b02970 PMID: 30335981
  48. Krishnadhas L, Santhi R, Annapurani S. Green synthesis of silver nanoparticles from the leaf extract of Volkameria inermis. Int J Pharmaceut Clin Res 2017; 9(8): 610-6. doi: 10.25258/ijpcr.v9i08.9587
  49. Perea Vélez YS, Carrillo-González R, González-Chávez MCA. Interaction of metal nanoparticles-plants-microorganisms in agriculture and soil remediation. J Nanopart Res 2021; 23(9): 206. doi: 10.1007/s11051-021-05269-3
  50. Jahan I, Erci F, Isildak I. Rapid green synthesis of non-cytotoxic silver nanoparticles using aqueous extracts of ‘Golden Delicious’ apple pulp and cumin seeds with antibacterial and antioxidant activity. SN Appl Sci 2021; 3(1): 94. doi: 10.1007/s42452-020-04046-6
  51. Zada A, Khan M, Qureshi MN, Liu S, Wang R. Accelerating photocatalytic hydrogen production and pollutant degradation by functionalizing g-C3N4 with SnO2. Front Chem 2020; 7: 941. doi: 10.3389/fchem.2019.00941 PMID: 32133336
  52. Rauf A, Ahmad T, Khan A, et al. Green synthesis and biomedicinal applications of silver and gold nanoparticles functionalized with methanolic extract of Mentha longifolia. Artif Cells Nanomed Biotechnol 2021; 49(1): 194-203. doi: 10.1080/21691401.2021.1890099 PMID: 33629627
  53. Chiguvare H, Oyedeji O, Matewu R, et al. Synthesis of silver nanoparticles using Buchu plant extracts and their analgesic properties. Molecules 2016; 21(6): 774. doi: 10.3390/molecules21060774 PMID: 27314316
  54. Ravichandran V, Vasanthi S, Shalini S, Ali Shah SA, Harish R. Green synthesis of silver nanoparticles using Atrocarpus altilis leaf extract and the study of their antimicrobial and antioxidant activity. Mater Lett 2016; 180: 264-7. doi: 10.1016/j.matlet.2016.05.172
  55. Kumar B, Smita K. Aqueous phase lavender leaf mediated green synthesis of gold nanoparticles and evaluation of its antioxidant activity. Biol Med (Aligarh) 2016; 8(3): 1. doi: 10.4172/0974-8369.1000290
  56. Nguyen DH, Vo TNN, Le NTT, Thi DPN, Thi TTH. Evaluation of saponin-rich/poor leaf extract-mediated silver nanoparticles and their antifungal capacity. Green Process Synth 2020; 9(1): 429-39. doi: 10.1515/gps-2020-0044
  57. Al-Zahrani SS, Al-Garni SM. Biosynthesis of silver nanoparticles from Allium ampeloprasum leaves extract and its antifungal activity. J Biomater Nanobiotechnol 2019; 10(1): 11-25. doi: 10.4236/jbnb.2019.101002
  58. Vorobyova V. Synthesis of silver nanoparticles using ionic liquid solvent-based Grape Pomace extracts Nanoelectronics, Nanooptics, Nanochemistry and Nanobiotechnology, and Their Applications. Cham: Springer 2022.
  59. Cittrarasu V, Balasubramanian B, Kaliannan D, et al. Biological mediated Ag nanoparticles from Barleria longiflora for antimicrobial activity and photocatalytic degradation using methylene blue. Artif Cells Nanomed Biotechnol 2019; 47(1): 2424-30. doi: 10.1080/21691401.2019.1626407 PMID: 31187650

补充文件

附件文件
动作
1. JATS XML

版权所有 © Bentham Science Publishers, 2024