Advancements in the Transdermal Drug Delivery Systems Utilizing Microemulsion-based Gels


Cite item

Full Text

Abstract

:Microemulsion gel, as a promising transdermal nanoparticle delivery system, addresses the limitations of microemulsions and enhances their performance in drug delivery and release. This article aims to discuss the advantages of microemulsion gel, including improved drug bioavailability, reduced drug irritation, enhanced drug penetration and skin adhesion, and increased antimicrobial properties. It explores the methods for selecting microemulsion formulations and the general processes of microemulsion preparation, as well as commonly used oil phases, surfactants, and co-surfactants. Additionally, the biomedical applications of microemulsion gel in treating conditions, such as acne and psoriasis, are also discussed. Overall, this article elucidates the significant potential of microemulsion gel in topical drug delivery, providing insights into future development and clinical applications.

About the authors

Yongjian Song

School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine

Email: info@benthamscience.net

Wei Chen

School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine

Email: info@benthamscience.net

Yu Yin

School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine

Email: info@benthamscience.net

Jiunian Li

School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine

Email: info@benthamscience.net

Meng Wang

Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine

Email: info@benthamscience.net

Yi Liu

School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine

Author for correspondence.
Email: info@benthamscience.net

Xiaoliang Ren

School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine

Author for correspondence.
Email: info@benthamscience.net

References

  1. Cao M, Ren L, Chen G. Formulation optimization and ex vivo and in vivo evaluation of celecoxib microemulsion-based gel for transdermal delivery. AAPS PharmSciTech 2017; 18(6): 1960-71. doi: 10.1208/s12249-016-0667-z PMID: 27914040
  2. Patel N, Baldaniya M, Raval M, Sheth N. Formulation and development of in situ nasal gelling systems for quetiapine fumarate-loaded mucoadhesive microemulsion. J Pharm Innov 2015; 10(4): 357-73. doi: 10.1007/s12247-015-9232-7
  3. Patel HK, Barot BS, Parejiya PB, Shelat PK, Shukla A. Topical delivery of clobetasol propionate loaded microemulsion based gel for effective treatment of vitiligo: Ex vivo permeation and skin irritation studies. Colloids Surf B Biointerfaces 2013; 102: 86-94. doi: 10.1016/j.colsurfb.2012.08.011 PMID: 23000677
  4. Zhang X, Wu Y, Hong Y, Zhu X, Lin L, Lin Q. Preparation and evaluation of dl-praeruptorin A microemulsion based hydrogel for dermal delivery. Drug Deliv 2015; 22(6): 757-64. doi: 10.3109/10717544.2014.898713 PMID: 24724963
  5. Zhao L, Wang Y, Zhai Y, Wang Z, Liu J, Zhai G. Ropivacaine loaded microemulsion and microemulsion-based gel for transdermal delivery: Preparation, optimization, and evaluation. Int J Pharm 2014; 477(1-2): 47-56. doi: 10.1016/j.ijpharm.2014.10.005 PMID: 25304092
  6. Coneac G, Vlaia V, Olariu I, et al. Development and evaluation of new microemulsion-based hydrogel formulations for topical delivery of fluconazole. AAPS PharmSciTech 2015; 16(4): 889-904. doi: 10.1208/s12249-014-0275-8 PMID: 25591952
  7. Gannu R, Palem CR, Yamsani VV, Yamsani SK, Yamsani MR. Enhanced bioavailability of lacidipine via microemulsion based transdermal gels: Formulation optimization, ex vivo and in vivo characterization. Int J Pharm 2010; 388(1-2): 231-41. doi: 10.1016/j.ijpharm.2009.12.050 PMID: 20060457
  8. Shewaiter MA, Hammady TM, El-Gindy A, Hammadi SH, Gad S. Formulation and characterization of leflunomide/diclofenac sodium microemulsion base-gel for the transdermal treatment of inflammatory joint diseases. J Drug Deliv Sci Technol 2021; 61: 102110. doi: 10.1016/j.jddst.2020.102110
  9. Vassiliadi E, Mitsou E, Avramiotis S, et al. Structural study of (Hydroxypropyl)methyl cellulose microemulsion-based gels used for biocompatible encapsulations. Nanomaterials (Basel) 2020; 10(11): 2204. doi: 10.3390/nano10112204 PMID: 33167302
  10. Ghosal K, Ray SD. Alginate/hydrophobic HPMC (60M) particulate systems: New matrix for site-specific and controlled drug delivery. Braz J Pharm Sci 2011; 47(4): 833-44. doi: 10.1590/S1984-82502011000400021
  11. Ghosal K, Nanda A. Development of diclofenac potassium gel from hydrophobically modified HPMC. Iran Polym J 2013; 22(6): 457-64. doi: 10.1007/s13726-013-0145-3
  12. Aswathanarayan JB, Vittal RR. Nanoemulsions and their potential applications in food industry. Front Sustain Food Syst 2019; 3: 95. doi: 10.3389/fsufs.2019.00095
  13. Fathi-Karkan S, Amiri Ramsheh N, Arkaban H, et al. Nanosuspensions in ophthalmology: Overcoming challenges and enhancing drug delivery for eye diseases. Int J Pharm 2024; 658: 124226. doi: 10.1016/j.ijpharm.2024.124226 PMID: 38744414
  14. Mustafa G, Hassan D, Zeeshan M, et al. Advances in nanotechnology versus stem cell therapy for the theranostics of Huntington’s disease. J Drug Deliv Sci Technol 2023; 87: 104774. doi: 10.1016/j.jddst.2023.104774
  15. Fathi-Karkan S, Heidarzadeh M, Narmi MT, et al. Exosome-loaded microneedle patches: Promising factor delivery route. Int J Biol Macromol 2023; 243: 125232. doi: 10.1016/j.ijbiomac.2023.125232 PMID: 37302628
  16. Pourmadadi M, Ostovar S, Ruiz-Pulido G, et al. Novel epirubicin-loaded nanoformulations: Advancements in polymeric nanocarriers for efficient targeted cellular and subcellular anticancer drug delivery. Inorg Chem Commun 2023; 155: 110999. doi: 10.1016/j.inoche.2023.110999
  17. Pourmadadi M, Gerami SE, Ajalli N, et al. Novel pH-responsive hybrid hydrogels for controlled delivery of curcumin: Overcoming conventional constraints and enhancing cytotoxicity in MCF-7 cells. Hybrid Adv 2024; 6: 100210.
  18. Okur ME, Ayla Ş, Yozgatlı V, et al. Evaluation of burn wound healing activity of novel fusidic acid loaded microemulsion based gel in male Wistar albino rats. Saudi Pharm J 2020; 28(3): 338-48. doi: 10.1016/j.jsps.2020.01.015 PMID: 32194336
  19. Zhang Y, Zhang K, Wang Z, et al. Transcutol®P/Cremophor® EL/Ethyl oleate-formulated microemulsion loaded into hyaluronic acid-based hydrogel for improved transdermal delivery and biosafety of ibuprofen. AAPS PharmSciTech 2020; 21(1): 22. doi: 10.1208/s12249-019-1584-8 PMID: 31823083
  20. Pandey SS, Maulvi FA, Patel PS, et al. Cyclosporine laden tailored microemulsion-gel depot for effective treatment of psoriasis: In vitro and in vivo studies. Colloids Surf B Biointerfaces 2020; 186: 110681. doi: 10.1016/j.colsurfb.2019.110681 PMID: 31812077
  21. Mehanna MM, Abla KK, Domiati S, Elmaradny H. Superiority of microemulsion-based hydrogel for non-steroidal anti-inflammatory drug transdermal delivery: A comparative safety and anti-nociceptive efficacy study. Int J Pharm 2022; 622: 121830. doi: 10.1016/j.ijpharm.2022.121830 PMID: 35589005
  22. Ali FR, Shoaib MH, Yousuf RI, et al. Design, development, and optimization of dexibuprofen microemulsion based transdermal reservoir patches for controlled drug delivery. Biomed Res Int 2017; 2017: 4654958.
  23. Ghosal K, Chandra A, Rajabalaya R, Chakraborty S, Nanda A. Mathematical modeling of drug release profiles for modified hydrophobic HPMC based gels. Pharmazie 2012; 67(2): 147-55. PMID: 22512085
  24. You J, Meng S, Ning YK, et al. Development and application of an osthole microemulsion hydrogel for external drug evaluation. J Drug Deliv Sci Technol 2019; 54: 101331. doi: 10.1016/j.jddst.2019.101331
  25. Agrawal V, Patel R, Patel M, Thanki K, Mishra S. Design and evaluation of microemulsion-based efinaconazole formulations for targeted treatment of onychomycosis through transungual route: Ex vivo and nail clipping studies. Colloids Surf B Biointerfaces 2021; 201: 111652. doi: 10.1016/j.colsurfb.2021.111652 PMID: 33740733
  26. Vlaia L, Coneac G, Muţ AM, et al. Topical biocompatible fluconazole-loaded microemulsions based on essential oils and sucrose esters: Formulation design based on pseudo-ternary phase diagrams and physicochemical characterization. Processes (Basel) 2021; 9(1): 144. doi: 10.3390/pr9010144
  27. Froelich A, Osmalek T, Kunstman P, Jadach B, Brzostowska M, Bialas W. Design and study of poloxamer-based microemulsion gels with naproxen. Colloids Surf A Physicochem Eng Aspects 2018; 562(5): 101-22. doi: 10.1016/j.colsurfa.2018.11.006
  28. Shinde UA, Modani SH, Singh KH. Design and development of repaglinide microemulsion gel for transdermal delivery. AAPS PharmSciTech 2018; 19(1): 315-25. doi: 10.1208/s12249-017-0811-4 PMID: 28717973
  29. Kajbafvala A, Salabat A, Salimi A. Formulation, characterization, and in vitro/ex vivo evaluation of quercetin-loaded microemulsion for topical application. Pharm Dev Technol 2018; 23(8): 741-50. doi: 10.1080/10837450.2016.1263995 PMID: 27871215
  30. Atipairin A, Chunhachaichana C, Nakpheng T, Changsan N, Srichana T, Sawatdee S. Development of a sildenafil citrate microemulsion-loaded hydrogel as a potential system for drug delivery to the penis and its cellular metabolic mechanism. Pharmaceutics 2020; 12(11): 1055. doi: 10.3390/pharmaceutics12111055 PMID: 33158184
  31. Zhang J, Michniak-Kohn BB. Investigation of microemulsion and microemulsion gel formulations for dermal delivery of clotrimazole. Int J Pharm 2018; 536(1): 345-52. doi: 10.1016/j.ijpharm.2017.11.041 PMID: 29170117
  32. Das S, Lee SH, Chow PS, Macbeath C. Microemulsion composed of combination of skin beneficial oils as vehicle: Development of resveratrol-loaded microemulsion based formulations for skin care applications. Colloids Surf B Biointerfaces 2020; 194: 111161. doi: 10.1016/j.colsurfb.2020.111161 PMID: 32521462
  33. Špaglová M, Čuchorová M, Čierna M, Poništ S, Bauerová K. Microemulsions as solubilizers and penetration enhancers for minoxidil release from gels. Gels 2021; 7(1): 26. doi: 10.3390/gels7010026 PMID: 33802416
  34. Feng X, Sun Y, Tan H, Ma L, Dai H, Zhang Y. Effect of oil phases on the stability of myofibrillar protein microgel particles stabilized Pickering emulsions: The leading role of viscosity. Food Chem 2023; 413: 135653. doi: 10.1016/j.foodchem.2023.135653 PMID: 36773361
  35. Callender SP, Mathews JA, Kobernyk K, Wettig SD. Microemulsion utility in pharmaceuticals: Implications for multi-drug delivery. Int J Pharm 2017; 526(1-2): 425-42. doi: 10.1016/j.ijpharm.2017.05.005 PMID: 28495500
  36. Fang CW, Tsai LC, Fu YS, Cheng TY, Wu PC. Gel-based microemulsion design and evaluation for topical application of rivastigmine. Curr Pharm Biotechnol 2020; 21(4): 298-304. doi: 10.2174/1389201020666191113144636 PMID: 31729297
  37. Ahmad J, Kohli K, Mir SR, Amin S. 2012; Self-emulsifying nano carriers for improved oral bioavailability of lipophilic drugs. Rev Adv Sci Eng 2012; 1(2): 1009. doi: 10.1166/rase.2012.1009
  38. Kaewbanjong J, Amnuaikit T, Souto EB, Boonme P. Antidermatophytic activity and skin retention of clotrimazole microemulsion and microemulsion-based gel in comparison to conventional cream. Skin Pharmacol Physiol 2018; 31(6): 292-7. doi: 10.1159/000491756 PMID: 30130753
  39. Patel P, Pol A, Kalaria D, Date AA, Kalia Y, Patravale V. Microemulsion-based gel for the transdermal delivery of rasagiline mesylate: In vitro and in vivo assessment for Parkinson’s therapy. Eur J Pharm Biopharm 2021; 165: 66-74. doi: 10.1016/j.ejpb.2021.04.026 PMID: 33971272
  40. Souza de Araujo GR. In situ microemulsion-gel obtained from bioadhesive hydroxypropyl methylcellulose films for transdermal administration of zidovudine. Colloids Surf B Biointerfaces 2020; 2020: 188.
  41. Tabosa MAM, de Andrade ARB, Lira AAM, Sarmento VHV, de Santana DP, Leal LB. Microemulsion formulations for the transdermal delivery of lapachol. AAPS PharmSciTech 2018; 19(4): 1837-46. doi: 10.1208/s12249-018-0995-2 PMID: 29637497
  42. Desai KGH. Enhanced skin permeation of rofecoxib using topical microemulsion gel. Drug Dev Res 2004; 63(1): 33-40. doi: 10.1002/ddr.10386
  43. Ascenso A, Vultos F, Ferrinho D, et al. Effect of tretinoin inclusion in dimethyl-beta-cyclodextrins on release rate from a hydrogel formulation. J Incl Phenom Macrocycl Chem 2012; 73(1-4): 459-65. doi: 10.1007/s10847-011-0002-y
  44. Brime B, Moreno MA, Frutos G, Ballesteros MP, Frutos P. Amphotericin B in oil-water lecithin-based microemulsions: Formulation and toxicity evaluation. J Pharm Sci 2002; 91(4): 1178-85. doi: 10.1002/jps.10065 PMID: 11948556
  45. Marti-Mestres G, Nielloud F. Emulsions in health care applications - An overview. J Dispers Sci Technol 2002; 23(1-3): 419-39. doi: 10.1080/01932690208984214
  46. Fouad SA, Basalious EB, El-Nabarawi MA, Tayel SA. Microemulsion and poloxamer microemulsion-based gel for sustained transdermal delivery of diclofenac epolamine using in-skin drug depot: In vitro/in vivo evaluation. Int J Pharm 2013; 453(2): 569-78. doi: 10.1016/j.ijpharm.2013.06.009 PMID: 23792042
  47. He X, Chen J, Li Y, Meng Y, Fang S, Fang Y. Preparation of water-in-oil (W/O) cinnamaldehyde microemulsion loaded with epsilon-polylysine and its antibacterial properties. Food Biosci 2022; 46: 101586. doi: 10.1016/j.fbio.2022.101586
  48. Scomoroscenco C, Teodorescu M, Raducan A, et al. Novel gel microemulsion as topical drug delivery system for curcumin in dermatocosmetics. Pharmaceutics 2021; 13(4): 505. doi: 10.3390/pharmaceutics13040505 PMID: 33916981
  49. Lim CJ, Lim CK, Ee GCL, Basri M. Formation of liquid crystal/gel emulsions to nano-emulsions constructed by polyalkoxylated fatty alcohol (PAFA)-based mixed surfactant systems. J Dispers Sci Technol 2019; 40(7): 1009-22. doi: 10.1080/01932691.2018.1491859
  50. Carvalho RTR, Oliveira PF, Palermo LCM, Ferreira AAG, Mansur CRE. Prospective acid microemulsions development for matrix acidizing petroleum reservoirs. Fuel 2019; 238: 75-85. doi: 10.1016/j.fuel.2018.10.003
  51. Alam A, Mustafa G, Agrawal GP, et al. A microemulsion-based gel of isotretinoin and erythromycin estolate for the management of acne. J Drug Deliv Sci Technol 2022; 71: 103277. doi: 10.1016/j.jddst.2022.103277
  52. Spaglova M, Papadakos M, Cuchorova M, Matusova D. Release of Tretinoin solubilized in microemulsion from carbopol and xanthan gel: In vitro versus ex vivo permeation study. Polymers 2023; 15(2): 329.
  53. Shinde U, Pokharkar S, Modani S. Design and evaluation of microemulsion gel system of nadifloxacin. Indian J Pharm Sci 2012; 74(3): 237-47. doi: 10.4103/0250-474X.106066 PMID: 23439454
  54. He E, Li H, Li X, Wu X, Lei K, Diao Y. Transdermal delivery of indirubin-loaded microemulsion gel: Preparation, characterization and anti-psoriatic activity. Int J Mol Sci 2022; 23(7): 3798. doi: 10.3390/ijms23073798 PMID: 35409158
  55. Seok SH, Lee SA, Park ES. Formulation of a microemulsion-based hydrogel containing celecoxib. J Drug Deliv Sci Technol 2018; 43: 409-14. doi: 10.1016/j.jddst.2017.11.016
  56. Chhibber T, Wadhwa S, Chadha P, Sharma G, Katare OP. Phospholipid structured microemulsion as effective carrier system with potential in methicillin sensitive Staphylococcus aureus (MSSA) involved burn wound infection. J Drug Target 2015; 23(10): 943-52. doi: 10.3109/1061186X.2015.1048518 PMID: 26004269
  57. Patel MR, Patel RB, Parikh JR, Patel BG. Novel microemulsion-based gel formulation of tazarotene for therapy of acne. Pharm Dev Technol 2016; 21(8): 921-32. doi: 10.3109/10837450.2015.1081610 PMID: 26334480
  58. Shannon JF. Why do humans get acne? A hypothesis. Med Hypotheses 2020; 134: 109412. doi: 10.1016/j.mehy.2019.109412 PMID: 31622924
  59. Singam V, Rastogi S, Patel KR, Lee HH, Silverberg JI. The mental health burden in acne vulgaris and rosacea: An analysis of the US National Inpatient Sample. Clin Exp Dermatol 2019; 44(7): 766-72. doi: 10.1111/ced.13919 PMID: 30706514
  60. Raza K, Singh B, Lohan S, et al. Nano-lipoidal carriers of tretinoin with enhanced percutaneous absorption, photostability, biocompatibility and anti-psoriatic activity. Int J Pharm 2013; 456(1): 65-72. doi: 10.1016/j.ijpharm.2013.08.019 PMID: 23973754
  61. Szymański Ł, Skopek R, Palusińska M, et al. Retinoic acid and its derivatives in skin. Cells 2020; 9(12): 2660. doi: 10.3390/cells9122660 PMID: 33322246
  62. Morales JO, Valdés K, Morales J, Oyarzun-Ampuero F. Lipid nanoparticles for the topical delivery of retinoids and derivatives. Nanomedicine (Lond) 2015; 10(2): 253-69. doi: 10.2217/nnm.14.159 PMID: 25600970
  63. Djordjevic L, Primorac M, Stupar M, Krajisnik D. Characterization of caprylocaproyl macrogolglycerides based microemulsion drug delivery vehicles for an amphiphilic drug. Int J Pharm 2004; 271(1-2): 11-9. doi: 10.1016/j.ijpharm.2003.10.037 PMID: 15129969
  64. Junyaprasert VB, Boonme P, Songkro S, Krauel K, Rades T. Transdermal delivery of hydrophobic and hydrophilic local anesthetics from o/w and w/o Brij 97-based microemulsions. J Pharm Pharm Sci 2007; 10(3): 288-98. PMID: 17727792
  65. Zaenglein AL. Topical retinoids in the treatment of acne vulgaris. Semin Cutan Med Surg 2008; 27(3): 177-82. doi: 10.1016/j.sder.2008.06.001 PMID: 18786495
  66. Patel MR, Patel RB, Parikh JR, Patel BG. HPTLC method for estimation of tazarotene in topical gel formulations and in vitro study. Anal Methods 2010; 2(3): 275-81. doi: 10.1039/b9ay00240e
  67. Russell JJ. Topical therapy for acne. Am Fam Physician 2000; 61(2): 357-66. PMID: 10670502
  68. Ghoreschi K, Thomas P, Breit S, et al. Interleukin-4 therapy of psoriasis induces Th2 responses and improves human autoimmune disease. Nat Med 2003; 9(1): 40-6. doi: 10.1038/nm804 PMID: 12461524
  69. Valdimarsson H, Thorleifsdottir RH, Sigurdardottir SL, Gudjonsson JE, Johnston A. Psoriasis - as an autoimmune disease caused by molecular mimicry. Trends Immunol 2009; 30(10): 494-501. doi: 10.1016/j.it.2009.07.008 PMID: 19781993
  70. Bowcock AM. The genetics of psoriasis and autoimmunity. Annu Rev Genomics Hum Genet 2005; 6(1): 93-122. doi: 10.1146/annurev.genom.6.080604.162324 PMID: 16124855
  71. Naldi L, Addis A, Chimenti S, et al. Psocare Study C. Impact of body mass index and obesity on clinical response to systemic treatment for psoriasis. Dermatology 2008; 217: 365-73. doi: 10.1159/000156599 PMID: 18810241
  72. Kalb RE, Fiorentino DF, Lebwohl MG, et al. Risk of serious infection with biologic and systemic treatment of psoriasis. JAMA Dermatol 2015; 151(9): 961-9. doi: 10.1001/jamadermatol.2015.0718 PMID: 25970800
  73. Pathirana D, Ormerod AD, Saiag P, et al. European S3-Guidelines on the systemic treatment of psoriasis vulgaris. J Eur Acad Dermatol Venereol 2009; 23(s2) (Suppl. 2): 1-70. doi: 10.1111/j.1468-3083.2009.03389.x PMID: 19712190
  74. Zachariae H, Abrams B, Bleehen SS, et al. Conversion of psoriasis patients from the conventional formulation of cyclosporin A to a new microemulsion formulation: A randomized, open, multicentre assessment of safety and tolerability. Dermatology 1998; 196(2): 231-6. doi: 10.1159/000017880 PMID: 9568413
  75. Lallemand F, Felt-Baeyens O, Besseghir K, Behar-Cohen F, Gurny R. Cyclosporine A delivery to the eye: A pharmaceutical challenge. Eur J Pharm Biopharm 2003; 56(3): 307-18. doi: 10.1016/S0939-6411(03)00138-3 PMID: 14602172
  76. Nast A, Gisondi P, Ormerod AD, et al. European S3-Guidelines on the systemic treatment of psoriasis vulgaris - Update 2015 - Short version - EDF in cooperation with EADV and IPC. J Eur Acad Dermatol Venereol 2015; 29(12): 2277-94. doi: 10.1111/jdv.13354 PMID: 26481193
  77. Shu Y, Xue R, Gao Y, Zhang W, Wang J. A thermo-responsive hydrogel loaded with an ionic liquid microemulsion for transdermal delivery of methotrexate. J Mater Chem B Mater Biol Med 2023; 11(24): 5494-502. doi: 10.1039/D2TB02189G PMID: 36458850
  78. Gaitanis G, Magiatis P, Velegraki A, Bassukas ID. A traditional Chinese remedy points to a natural skin habitat: Indirubin (indigo naturalis) for psoriasis and the Malassezia metabolome. Br J Dermatol 2018; 179(3): 800-0. doi: 10.1111/bjd.16807 PMID: 29791716
  79. Gamret AC, Price A, Fertig RM, Lev-Tov H, Nichols AJ. Complementary and alternative medicine therapies for psoriasis. JAMA Dermatol 2018; 154(11): 1330-7. doi: 10.1001/jamadermatol.2018.2972 PMID: 30193251
  80. Gaboriaud-Kolar N, Vougogiannopoulou K, Skaltsounis AL. Indirubin derivatives: A patent review (2010 - present). Expert Opin Ther Pat 2015; 25(5): 583-93. doi: 10.1517/13543776.2015.1019865 PMID: 25887337
  81. Elshaer RE, Tawfik MK, Nosseir N, et al. Leflunomide-induced liver injury in mice: Involvement of TLR4 mediated activation of PI3K/mTOR/NFκB pathway. Life Sci 2019; 235: 116824. doi: 10.1016/j.lfs.2019.116824 PMID: 31476305
  82. Boyd AS. Leflunomide in dermatology. J Am Acad Dermatol 2012; 66(4): 673-9. doi: 10.1016/j.jaad.2011.08.025 PMID: 21962758
  83. Lu Y, Fan L, Yang LY, Huang F, Ouyang X. PEI-modified core-shell/bead-like amino silica enhanced poly (vinyl alcohol)/chitosan for diclofenac sodium efficient adsorption. Carbohydr Polym 2020; 229: 115459. doi: 10.1016/j.carbpol.2019.115459 PMID: 31826399
  84. Hajjar B, Zier KI, Khalid N, Azarmi S, Löbenberg R. Evaluation of a microemulsion-based gel formulation for topical drug delivery of diclofenac sodium. J Pharm Investig 2018; 48(3): 351-62. doi: 10.1007/s40005-017-0327-7
  85. Dolenc A, Kristl J, Baumgartner S, Planinšek O. Advantages of celecoxib nanosuspension formulation and transformation into tablets. Int J Pharm 2009; 376(1-2): 204-12. doi: 10.1016/j.ijpharm.2009.04.038 PMID: 19426794
  86. Abu-Diak OA, Jones DS, Andrews GP. An investigation into the dissolution properties of celecoxib melt extrudates: Understanding the role of polymer type and concentration in stabilizing supersaturated drug concentrations. Mol Pharm 2011; 8(4): 1362-71. doi: 10.1021/mp200157b PMID: 21696180
  87. Gupta V, Mutalik S, Patel M, Jani G. Spherical crystals of celecoxib to improve solubility, dissolution rate and micromeritic properties. Acta Pharm 2007; 57(2): 173-84. doi: 10.2478/v10007-007-0014-8 PMID: 17507314
  88. Lee H, Lee J. Dissolution enhancement of celecoxib via polymer-induced crystallization. J Cryst Growth 2013; 374: 37-42. doi: 10.1016/j.jcrysgro.2013.04.006
  89. Fouad EA, EL-Badry M, Mahrous GM, Alanazi FK, Neau SH, Alsarra IA. The use of spray-drying to enhance celecoxib solubility. Drug Dev Ind Pharm 2011; 37(12): 1463-72. doi: 10.3109/03639045.2011.587428 PMID: 21707230
  90. Reddy MN, Rehana T, Ramakrishna S, Chowdary KPR, Diwan PV. β-cyclodextrin complexes of celecoxib: Molecular-modeling, characterization, and dissolution studies. AAPS PharmSci 2004; 6(1): 68-76. doi: 10.1208/ps060107 PMID: 15198508
  91. Deniz A, Sade A, Severcan F, Keskin D, Tezcaner A, Banerjee S. Celecoxib-loaded liposomes: Effect of cholesterol on encapsulation and in vitro release characteristics. Biosci Rep 2010; 30(5): 365-73. doi: 10.1042/BSR20090104 PMID: 19900165
  92. Morgen M, Bloom C, Beyerinck R, et al. Polymeric nanoparticles for increased oral bioavailability and rapid absorption using celecoxib as a model of a low-solubility, high-permeability drug. Pharm Res 2012; 29(2): 427-40. doi: 10.1007/s11095-011-0558-7 PMID: 21863477
  93. Joshi M, Patravale V. Nanostructured lipid carrier (NLC) based gel of celecoxib. Int J Pharm 2008; 346(1-2): 124-32. doi: 10.1016/j.ijpharm.2007.05.060 PMID: 17651933
  94. Mou D, Chen H, Du D, et al. Hydrogel-thickened nanoemulsion system for topical delivery of lipophilic drugs. Int J Pharm 2008; 353(1-2): 270-6. doi: 10.1016/j.ijpharm.2007.11.051 PMID: 18215479
  95. Bachhav Y, Patravale V. Microemulsion based vaginal gel of fluconazole: Formulation, in vitro and in vivo evaluation. Int J Pharm 2009; 365(1-2): 175-9. doi: 10.1016/j.ijpharm.2008.08.021 PMID: 18790032
  96. Sallam MA, Motawaa AM, Mortada SM. A modern approach for controlled transdermal delivery of diflunisal: Optimization and in vivo evaluation. Drug Dev Ind Pharm 2013; 39(4): 600-10. doi: 10.3109/03639045.2012.692476 PMID: 22697341
  97. Fridkin SK, Hageman JC, Morrison M, et al. Methicillin-resistant Staphylococcus aureus disease in three communities. N Engl J Med 2005; 352(14): 1436-44. doi: 10.1056/NEJMoa043252 PMID: 15814879
  98. Church D, Elsayed S, Reid O, Winston B, Lindsay R. Burn wound infections. Clin Microbiol Rev 2006; 19(2): 403-34. doi: 10.1128/CMR.19.2.403-434.2006 PMID: 16614255
  99. Šiširak M, Zvizdić A, Hukić M. Methicillin-resistant Staphylococcus aureus (MRSA) as a cause of nosocomial wound infections. Bosn J Basic Med Sci 2010; 10(1): 32-7. doi: 10.17305/bjbms.2010.2733 PMID: 20192928
  100. Coombs RR. Fusidic acid in staphylococcal bone and joint infection. J Antimicrob Chemother 1990; 25(Suppl B): 53-60. doi: 10.1093/jac/25.suppl_B.53
  101. Lawrence MJ, Rees GD. Microemulsion-based media as novel drug delivery systems. Adv Drug Deliv Rev 2012; 64: 175-93. doi: 10.1016/j.addr.2012.09.018 PMID: 11104900
  102. Kawakami K, Yoshikawa T, Hayashi T, Nishihara Y, Masuda K. Microemulsion formulation for enhanced absorption of poorly soluble drugs. J Control Release 2002; 81(1-2): 75-82. doi: 10.1016/S0168-3659(02)00050-0 PMID: 11992680
  103. Raza K, Katare OP, Setia A, Bhatia A, Singh B. Improved therapeutic performance of dithranol against psoriasis employing systematically optimized nanoemulsomes. J Microencapsul 2013; 30(3): 225-36. doi: 10.3109/02652048.2012.717115 PMID: 23088318
  104. Schöfer H, Simonsen L. Fusidic acid in dermatology: An updated review. Eur J Dermatol 2010; 20(1): 006-15. doi: 10.1684/ejd.2010.0833 PMID: 20007058
  105. Oryan A, Jalili M, Kamali A, Nikahval B. The concurrent use of probiotic microorganism and collagen hydrogel/scaffold enhances burn wound healing: An in vivo evaluation. Burns 2018; 44(7): 1775-86. doi: 10.1016/j.burns.2018.05.016 PMID: 30078473

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers