Huangqi Guizhi Wuwu Decoction Improves Inflammatory Factor Levels in Chemotherapy-induced Peripheral Neuropathy by Regulating the Arachidonic Acid Metabolic Pathway


Cite item

Full Text

Abstract

Background:Chemotherapy-induced Peripheral Neuropathy (CIPN) is a common complication that arises from the use of anticancer drugs. Huangqi Guizhi Wuwu Decoction (HGWWD) is an effective classic prescription for treating CIPN; however, the mechanism of the activity is not entirely understood.

Objective:This study aimed to investigate the remedial effects and mechanisms of HGWWD on CIPN.

Methods:Changes in behavioral, biochemical, histopathological, and biomarker indices were used to evaluate the efficacy of HGWWD treatment. Ultra-high-performance liquid chromatography/mass spectrometry combined with the pattern recognition method was used to screen biomarkers and metabolic pathways related to CIPN. The results of pathway analyses were verified by protein blotting experiments.

Results:A total of 29 potential biomarkers were identified and 13 metabolic pathways were found to be involved in CIPN. In addition HGWWD reversed the levels of 19 biomarkers. Prostaglandin H2 and 17α,21-dihydroxypregnenolone were targeted as core biomarkers.

Conclusion:This study provides scientific evidence to support the finding that HGWWD mainly inhibits the inflammatory response during CIPN by regulating arachidonic acid metabolism.

About the authors

Shanshan Wang

State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese Medicine, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, National Chinmedomics Research Center, Heilongjiang University of Chinese Medicine

Email: info@benthamscience.net

Xiaohui Du

State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese Medicine, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, National Chinmedomics Research Center,, Heilongjiang University of Chinese Medicine

Email: info@benthamscience.net

Guangli Yan

State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese Medicine, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, National Chinmedomics Research Center,, Heilongjiang University of Chinese Medicine

Email: info@benthamscience.net

Le Yang

State Key Laboratory of Dampness Syndrome,, The Second Affiliated Hospital Guangzhou Medical University

Email: info@benthamscience.net

Hui Sun

State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese Medicine, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, National Chinmedomics Research Center, Heilongjiang University of Chinese Medicine

Email: info@benthamscience.net

Xiwu Zhang

State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese Medicine, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, National Chinmedomics Research Center,, Heilongjiang University of Chinese Medicine

Email: info@benthamscience.net

Ling Kong

State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese Medicine, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, National Chinmedomics Research Center,, Heilongjiang University of Chinese Medicine

Email: info@benthamscience.net

Ying Han

State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese Medicine, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, National Chinmedomics Research Center, Heilongjiang University of Chinese Medicine

Email: info@benthamscience.net

Di Han

State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese Medicine, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, National Chinmedomics Research Center,, Heilongjiang University of Chinese Medicine

Email: info@benthamscience.net

Songyuan Tang

State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese Medicine, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, National Chinmedomics Research Center, Heilongjiang University of Chinese Medicine

Email: info@benthamscience.net

Xijun Wang

State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese Medicine, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, National Chinmedomics Research Center, Heilongjiang University of Chinese Medicine

Author for correspondence.
Email: info@benthamscience.net

References

  1. Grisold W, Cavaletti G, Windebank AJ. Peripheral neuropathies from chemotherapeutics and targeted agents: Diagnosis, treatment, and prevention. Neuro-oncol 2012; 14(Suppl 4) (Suppl. 4): iv45-54. doi: 10.1093/neuonc/nos203 PMID: 23095830
  2. Cavaletti G, Pizzamiglio C, Man A, Engber TM, Comi C, Wilbraham D. Studies to assess the utility of serum neurofilament light chain as a biomarker in chemotherapy-induced peripheral neuropathy. Cancers (Basel) 2023; 15(17): 4216. doi: 10.3390/cancers15174216 PMID: 37686492
  3. Molassiotis A, Cheng HL, Lopez V, et al. Are we mis-estimating chemotherapy-induced peripheral neuropathy? Analysis of assessment methodologies from a prospective, multinational, longitudinal cohort study of patients receiving neurotoxic chemotherapy. BMC Cancer 2019; 19(1): 132. doi: 10.1186/s12885-019-5302-4 PMID: 30736741
  4. Wang CY, Lin TT, Hu L, et al. Neutrophil extracellular traps as a unique target in the treatment of chemotherapy-induced peripheral neuropathy. EBioMedicine 2023; 90: 104499. doi: 10.1016/j.ebiom.2023.104499 PMID: 36870200
  5. Postma TJ, Vermorken JB, Liefting AJM, Pinedo HM, Heimans JJ. Paclitaxel-induced neuropathy. Ann Oncol 1995; 6(5): 489-94. doi: 10.1093/oxfordjournals.annonc.a059220 PMID: 7669713
  6. Yang CC, Wang MH, Soung HS, et al. Through its powerful antioxidative properties, L-theanine ameliorates vincristine-induced neuropathy in rats. Antioxidants 2023; 12(4): 803. doi: 10.3390/antiox12040803 PMID: 37107178
  7. Ma J, Kavelaars A, Dougherty PM, Heijnen CJ. Beyond symptomatic relief for chemotherapy-induced peripheral neuropathy: Targeting the source. Cancer 2018; 124(11): 2289-98. doi: 10.1002/cncr.31248 PMID: 29461625
  8. Desforges AD, Hebert CM, Spence AL, et al. Treatment and diagnosis of chemotherapy-induced peripheral neuropathy: An update. Biomed Pharmacother 2022; 147: 112671. doi: 10.1016/j.biopha.2022.112671 PMID: 35104697
  9. Staff NP, Grisold A, Grisold W, Windebank AJ. Chemotherapy-induced peripheral neuropathy: A current review. Ann Neurol 2017; 81(6): 772-81. doi: 10.1002/ana.24951 PMID: 28486769
  10. Quasthoff S, Hartung HP. Chemotherapy-induced peripheral neuropathy. J Neurol 2002; 249(1): 9-17. doi: 10.1007/PL00007853 PMID: 11954874
  11. Zhang S. Chemotherapy-induced peripheral neuropathy and rehabilitation: A review. Semin Oncol 2021; 48(3): 193-207. doi: 10.1053/j.seminoncol.2021.09.004 PMID: 34607709
  12. Malacrida A, Meregalli C, Rodriguez-Menendez V, Nicolini G. Chemotherapy-induced peripheral neuropathy and changes in cytoskeleton. Int J Mol Sci 2019; 20(9): 2287. doi: 10.3390/ijms20092287 PMID: 31075828
  13. Boukelmoune N, Laumet G, Tang Y, et al. Nasal administration of mesenchymal stem cells reverses chemotherapy-induced peripheral neuropathy in mice. Brain Behav Immun 2021; 93: 43-54. doi: 10.1016/j.bbi.2020.12.011 PMID: 33316379
  14. Xu N, Han X, Zhang X, et al. Huangqi-Guizhi-Wuwu decoction regulates differentiation of CD4+ T cell and prevents against experimental autoimmune encephalomyelitis progression in mice. Phytomedicine 2023; 125: 155239. doi: 10.1016/j.phymed.2023.155239 PMID: 38308917
  15. Cheng X, Huo J, Wang D, et al. Herbal medicine AC591 prevents oxaliplatin-induced peripheral neuropathy in animal model and cancer patients. Front Pharmacol 2017; 8: 344. doi: 10.3389/fphar.2017.00344 PMID: 28638341
  16. Chai Y, Zhao F, Ye P, et al. A prospective, randomized, placebo- controlled study assessing the efficacy of Chinese herbal medicine (Huangqi Guizhi Wuwu decoction) in the treatment of albumin-bound paclitaxel-induced peripheral neuropathy. J Clin Med 2023; 12(2): 505. doi: 10.3390/jcm12020505 PMID: 36675434
  17. Lv Z, Shen J, Gao X, et al. Herbal formula Huangqi Guizhi Wuwu decoction attenuates paclitaxel-related neurotoxicity via inhibition of inflammation and oxidative stress. Chin Med 2021; 16(1): 76. doi: 10.1186/s13020-021-00488-1 PMID: 34376246
  18. Zhang Z, Ye J, Liu X, et al. Huangqi Guizhi Wuwu decoction alleviates oxaliplatin-induced peripheral neuropathy via the gut-peripheral nerve axis. Chin Med 2023; 18(1): 114. doi: 10.1186/s13020-023-00826-5 PMID: 37679804
  19. Li M, Li Z, Ma X, et al. Huangqi Guizhi Wuwu decoction can prevent and treat oxaliplatin-induced neuropathic pain by TNFα/IL-1β/IL-6/MAPK/NF-kB pathway. Aging (Albany NY) 2022; 14(12): 5013-22. doi: 10.18632/aging.203794 PMID: 35759577
  20. Ren J, Yang L, Qiu S, Zhang AH, Wang XJ. Efficacy evaluation, active ingredients, and multitarget exploration of herbal medicine. Trends Endocrinol Metab 2023; 34(3): 146-57. doi: 10.1016/j.tem.2023.01.005 PMID: 36710216
  21. Schrimpe-Rutledge AC, Codreanu SG, Sherrod SD, McLean JA. Untargeted metabolomics strategies-challenges and emerging directions. J Am Soc Mass Spectrom 2016; 27(12): 1897-905. doi: 10.1007/s13361-016-1469-y PMID: 27624161
  22. Zhao X, Modur V, Carayannopoulos LN, Laterza OF. Biomarkers in pharmaceutical research. Clin Chem 2015; 61(11): 1343-53. doi: 10.1373/clinchem.2014.231712 PMID: 26408531
  23. Marchev AS, Vasileva LV, Amirova KM, Savova MS, Balcheva-Sivenova ZP, Georgiev MI. Metabolomics and health: From nutritional crops and plant-based pharmaceuticals to profiling of human biofluids. Cell Mol Life Sci 2021; 78(19-20): 6487-503. doi: 10.1007/s00018-021-03918-3 PMID: 34410445
  24. Johnson CH, Ivanisevic J, Siuzdak G. Metabolomics: Beyond biomarkers and towards mechanisms. Nat Rev Mol Cell Biol 2016; 17(7): 451-9. doi: 10.1038/nrm.2016.25 PMID: 26979502
  25. Zhang A, Fang H, Wang Y, et al. Discovery and verification of the potential targets from bioactive molecules by network pharmacology-based target prediction combined with high-throughput metabolomics. RSC Advances 2017; 7(81): 51069-78. doi: 10.1039/C7RA09522H
  26. Xie J, Zhang A, Wang X. Metabolomic applications in hepatocellular carcinoma: toward the exploration of therapeutics and diagnosis through small molecules. RSC Advances 2017; 7(28): 17217-26. doi: 10.1039/C7RA00698E
  27. Li X, Zhang A, Sun H, et al. Metabolic characterization and pathway analysis of berberine protects against prostate cancer. Oncotarget 2017; 8(39): 65022-41. doi: 10.18632/oncotarget.17531 PMID: 29029409
  28. Khamis MM, Adamko DJ, El-Aneed A. Mass spectrometric based approaches in urine metabolomics and biomarker discovery. Mass Spectrom Rev 2017; 36(2): 115-34. doi: 10.1002/mas.21455 PMID: 25881008
  29. Li HY, Sun H, Zhang AH, et al. Therapeutic effect and mechanism of Si-Miao-Yong-An-Tang on thromboangiitis obliterans based on the urine metabolomics approach. Front Pharmacol 2022; 13: 827733. doi: 10.3389/fphar.2022.827733 PMID: 35273504
  30. He Y, Zhang M, Li T, et al. Metabolomics analysis coupled with UPLC/MS on therapeutic effect of jigucao capsule against dampness-heat jaundice syndrome. Front Pharmacol 2022; 13: 822193. doi: 10.3389/fphar.2022.822193 PMID: 35153793
  31. Han D, Wang SS, Tang SY, et al. Chemical composition analysis and characterization of reference sample of Huangqi Guizhi Wuwutang based on UPLC-Q-TOF-MS. Zhongguo Shiyan Fangjixue Zazhi 2021; 28: 141-9.
  32. Mihara Y, Egashira N, Sada H, et al. Involvement of spinal NR2B-containing NMDA receptors in oxaliplatin-induced mechanical allodynia in rats. Mol Pain 2011; 7: 1744-8069-7-8. doi: 10.1186/1744-8069-7-8 PMID: 21247499
  33. Li Q, Ren J, Yang L, et al. Parsing the Q-markers of Baoyin Jian to treat abnormal uterine bleeding by high-throughput chinmedomics strategy. Pharmaceuticals (Basel) 2023; 16(5): 719. doi: 10.3390/ph16050719 PMID: 37242503
  34. Zhang Z, Yi P, Yang J, et al. Integrated network pharmacology analysis and serum metabolomics to reveal the cognitive improvement effect of Bushen Tiansui formula on Alzheimer’s disease. J Ethnopharmacol 2020; 249: 112371. doi: 10.1016/j.jep.2019.112371 PMID: 31683034
  35. Yamamoto S, Ono H, Kume K, Ohsawa M. Oxaliplatin treatment changes the function of sensory nerves in rats. J Pharmacol Sci 2016; 130(4): 189-93. doi: 10.1016/j.jphs.2015.12.004 PMID: 26790975
  36. Friesland A, Weng Z, Duenas M, Massa SM, Longo FM, Lu Q. Amelioration of cisplatin-induced experimental peripheral neuropathy by a small molecule targeting p75NTR. Neurotoxicology 2014; 45: 81-90. doi: 10.1016/j.neuro.2014.09.005 PMID: 25277379
  37. Araldi D, Khomula EV, Bonet IJM, Bogen O, Green PG, Levine JD. Role of pattern recognition receptors in chemotherapy-induced neuropathic pain. Brain 2024; 147(3): 1025-42. doi: 10.1093/brain/awad339 PMID: 37787114
  38. Li Y, North RY, Rhines LD, et al. DRG voltage-gated sodium channel 1.7 is upregulated in paclitaxel-induced neuropathy in rats and in humans with neuropathic pain. J Neurosci 2018; 38(5): 1124-36. doi: 10.1523/JNEUROSCI.0899-17.2017 PMID: 29255002
  39. Cavaletti G, Tredici G, Petruccioli MG, et al. Effects of different schedules of oxaliplatin treatment on the peripheral nervous system of the rat. Eur J Cancer 2001; 37(18): 2457-63. doi: 10.1016/S0959-8049(01)00300-8 PMID: 11720843
  40. Sommer C, Kress M. Recent findings on how proinflammatory cytokines cause pain: Peripheral mechanisms in inflammatory and neuropathic hyperalgesia. Neurosci Lett 2004; 361(1-3): 184-7. doi: 10.1016/j.neulet.2003.12.007 PMID: 15135924
  41. Wang XM, Lehky TJ, Brell JM, Dorsey SG. Discovering cytokines as targets for chemotherapy-induced painful peripheral neuropathy. Cytokine 2012; 59(1): 3-9. doi: 10.1016/j.cyto.2012.03.027 PMID: 22537849
  42. Woolf CJ. Recent advances in the pathophysiology of acute pain. Br J Anaesth 1989; 63(2): 139-46. doi: 10.1093/bja/63.2.139 PMID: 2669905
  43. Kwon J, Choi YI, Jo HJ, et al. The role of prostaglandin E1 as a pain mediator through facilitation of hyperpolarization-activated cyclic nucleotide-gated channel 2 via the EP2 receptor in trigeminal ganglion neurons of mice. Int J Mol Sci 2021; 22(24): 13534. doi: 10.3390/ijms222413534 PMID: 34948328
  44. Zhi-hong L, Qi-bing M. Research progress on the role of cyclooxygenase in neuropathic pain. Foreign Med Sci Sect Pharm 2004; 31: 274.
  45. Wang B, Wu L, Chen J, et al. Metabolism pathways of arachidonic acids: Mechanisms and potential therapeutic targets. Signal Transduct Target Ther 2021; 6(1): 94. doi: 10.1038/s41392-020-00443-w PMID: 33637672
  46. Cavaletti G, Marmiroli P. Chemotherapy-induced peripheral neurotoxicity. Curr Opin Neurol 2015; 28(5): 500-7. doi: 10.1097/WCO.0000000000000234 PMID: 26197027
  47. Tofthagen CS, Cheville AL, Loprinzi CL. The physical consequences of chemotherapy-induced peripheral neuropathy. Curr Oncol Rep 2020; 22(5): 50. doi: 10.1007/s11912-020-00903-0 PMID: 32323068
  48. Balayssac D, Ferrier J, Descoeur J, et al. Chemotherapy-induced peripheral neuropathies: From clinical relevance to preclinical evidence. Expert Opin Drug Saf 2011; 10(3): 407-17. doi: 10.1517/14740338.2011.543417 PMID: 21210753
  49. Cavaletti G, Marmiroli P. Chemotherapy-induced peripheral neurotoxicity. Nat Rev Neurol 2010; 6(12): 657-66. doi: 10.1038/nrneurol.2010.160 PMID: 21060341
  50. Maihöfner C, Diel I, Tesch H, Quandel T, Baron R. Chemotherapy-induced peripheral neuropathy (CIPN): Current therapies and topical treatment option with high-concentration capsaicin. Support Care Cancer 2021; 29(8): 4223-38. doi: 10.1007/s00520-021-06042-x PMID: 33624117
  51. Julius D, Basbaum AI. Molecular mechanisms of nociception. Nature 2001; 413(6852): 203-10. doi: 10.1038/35093019 PMID: 11557989
  52. Branca JJV, Maresca M, Morucci G, et al. Oxaliplatin-induced blood brain barrier loosening: A new point of view on chemotherapy-induced neurotoxicity. Oncotarget 2018; 9(34): 23426-38. doi: 10.18632/oncotarget.25193 PMID: 29805744
  53. Carozzi VA, Canta A, Chiorazzi A. Chemotherapy-induced peripheral neuropathy: What do we know about mechanisms? Neurosci Lett 2015; 596: 90-107. doi: 10.1016/j.neulet.2014.10.014 PMID: 25459280
  54. Abd-Elmawla MA, Abdelalim E, Ahmed KA, Rizk SM. The neuroprotective effect of pterostilbene on oxaliplatin-induced peripheral neuropathy via its anti-inflammatory, anti-oxidative and anti-apoptotic effects: Comparative study with celecoxib. Life Sci 2023; 315: 121364. doi: 10.1016/j.lfs.2022.121364 PMID: 36610639
  55. Meyer-ter-Vehn T, Gebhardt S, Sebald W, et al. p38 inhibitors prevent TGF-beta-induced myofibroblast transdifferentiation in human tenon fibroblasts. Invest Ophthalmol Vis Sci 2006; 47(4): 1500-9. doi: 10.1167/iovs.05-0361 PMID: 16565385
  56. Pierre S, Zhang DD, Suo J, Kern K, Tarighi N, Scholich K. Myc binding protein 2 suppresses M2-like phenotypes in macrophages during zymosan-induced inflammation in mice. Eur J Immunol 2018; 48(2): 239-49. doi: 10.1002/eji.201747129 PMID: 29067676
  57. Ma P, Cui X, Wang S, et al. Nitric oxide post-transcriptionally up- regulates LPS-induced IL-8 expression through p38 MAPK activation. J Leukoc Biol 2004; 76(1): 278-87. doi: 10.1189/jlb.1203653 PMID: 15178710
  58. Baulieu EE. Neurosteroids: A novel function of the brain. Psychoneuroendocrinology 1998; 23(8): 963-87. doi: 10.1016/S0306-4530(98)00071-7 PMID: 9924747
  59. Benarroch EE. Neurosteroids. Neurology 2007; 68(12): 945-7. doi: 10.1212/01.wnl.0000257836.09570.e1 PMID: 17372131
  60. Krisanova N, Sivko R, Kasatkina L, Borisova T. Neuroprotection by lowering cholesterol: A decrease in membrane cholesterol content reduces transporter-mediated glutamate release from brain nerve terminals. Biochim Biophys Acta Mol Basis Dis 2012; 1822(10): 1553-61. doi: 10.1016/j.bbadis.2012.06.005 PMID: 22713486
  61. Ning Y, Chen S, Li X, Ma Y, Zhao F, Yin L. Cholesterol, LDL, and 25-hydroxycholesterol regulate expression of the steroidogenic acute regulatory protein in microvascular endothelial cell line (bEnd.3). Biochem Biophys Res Commun 2006; 342(4): 1249-56. doi: 10.1016/j.bbrc.2006.02.093 PMID: 16516145
  62. Peri A. Neuroprotective effects of estrogens: The role of cholesterol. J Endocrinol Invest 2016; 39(1): 11-8. doi: 10.1007/s40618-015-0332-5 PMID: 26084445
  63. Reyland ME, Evans RM, White EK. Lipoproteins regulate expression of the steroidogenic acute regulatory protein (StAR) in mouse adrenocortical cells. J Biol Chem 2000; 275(47): 36637-44. doi: 10.1074/jbc.M006456200 PMID: 10960482
  64. Chen JH, Sun Y, Ju PJ, Wei JB, Li QJ, Winston JH. Estrogen augmented visceral pain and colonic neuron modulation in a double-hit model of prenatal and adult stress. World J Gastroenterol 2021; 27(30): 5060-75. doi: 10.3748/wjg.v27.i30.5060 PMID: 34497435
  65. Mechanism of estrogen and estrogen receptors in pathologic pain. Chinese General Pract 2023; 1.6.
  66. Dong F, Xie W, Strong JA, Zhang JM. Mineralocorticoid receptor blocker eplerenone reduces pain behaviors in vivo and decreases excitability in small-diameter sensory neurons from local inflamed dorsal root ganglia in vitro. Anesthesiology 2012; 117(5): 1102-12. doi: 10.1097/ALN.0b013e3182700383 PMID: 23023156
  67. Rickard AJ, Young MJ. Corticosteroid receptors, macrophages and cardiovascular disease. J Mol Endocrinol 2009; 42(6): 449-59. doi: 10.1677/JME-08-0144 PMID: 19158233
  68. Li X, Meng Y, Wu P, Zhang Z, Yang X. Angiotensin II and Aldosterone stimulating NF-κB and AP-1 activation in hepatic fibrosis of rat. Regul Pept 2007; 138(1): 15-25. doi: 10.1016/j.regpep.2006.07.011 PMID: 16971004
  69. Neves MF, Amiri F, Virdis A, Diep QN, Schiffrin EL. Role of aldosterone in angiotensin II-induced cardiac and aortic inflammation, fibrosis, and hypertrophy. Can J Physiol Pharmacol 2005; 83(11): 999-1006. doi: 10.1139/y05-068 PMID: 16391708
  70. Zang Y, He XH, Xin WJ, et al. Inhibition of NF-kappaB prevents mechanical allodynia induced by spinal ventral root transection and suppresses the re-expression of Nav1.3 in DRG neurons in vivo and in vitro. Brain Res 2010; 1363: 151-8. doi: 10.1016/j.brainres.2010.09.048 PMID: 20858468
  71. Li WX, Li MM, Niu L, et al. Study on the mechanism of activating blood and removing stasis of naoxintong capsule based on plasma metabolomics and network pharmacology. Chinese J Integ Trad Western Med 2023; 43: 441-8.
  72. Nicholson JK, Wilson ID. Opinion: Understanding ‘global’ systems biology: Metabonomics and the continuum of metabolism. Nat Rev Drug Discov 2003; 2(8): 668-76. doi: 10.1038/nrd1157 PMID: 12904817
  73. Bujak R, Struck-Lewicka W, Markuszewski MJ, Kaliszan R. Metabolomics for laboratory diagnostics. J Pharm Biomed Anal 2015; 113: 108-20. doi: 10.1016/j.jpba.2014.12.017 PMID: 25577715
  74. Pang H, Jia W, Hu Z. Emerging applications of metabolomics in clinical pharmacology. Clin Pharmacol Ther 2019; 106(3): 544-56. doi: 10.1002/cpt.1538 PMID: 31173340
  75. Cao D, Yang L, Gao X, et al. A non-targeted metabolomics reveals therapeutical effect and mechanism of sanmiao pill on adjuvant-induced arthritis rats. Curr Pharm Des 2023; 29(17): 1379-89. doi: 10.2174/1381612829666230511161308 PMID: 37171005

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers