Dental Caries: Unveiling the State-of-the-art Insights and Crafting Hypotheses for Oral Health


Cite item

Full Text

Abstract

:The pathophysiological understanding of dental caries explains that the primary factor responsible is linked to an imbalance in microbial composition within the oral cavity, stemming from both artificial and natural sources. Streptococcus mutans (S. mutans) is the most accountable and prevalent pathogen for caries development among the diverse pool. S. mutans, an acidogenic bacterium, lowers oral pH through the metabolic conversion of dietary sugar into organic acids, leading to enamel demineralization and dental caries. Numerous antibacterial interventions have been employed in the past to address this issue. However, adopting such an approach poses the risk of exacerbating concerns related to Antimicrobial Resistance (AMR) and long-term oral cytotoxicity. In response to this, a sustainable strategy is suggested, involving the utilization of L-Arginine (L-Arg) as a probiotic nutrient supplement for non-pathogenic microbes. It will help in creating a natural competitive environment against the pathogenic microbes responsible for initiating dental caries. The hypothesis involves utilizing a combination of a nutrient supplement and the repurposed drug Piceatannol, specifically for its anti-biofilm properties. This combination synergistically improves the effectiveness of the therapy by converting the complex microbial biofilm into a planktonic state.

About the authors

Palwinder Kaur

Department of Pharmaceutical Sciences, Lovely Professional University

Email: info@benthamscience.net

Manish Vyas

Department of Pharmaceutical Sciences, Lovely Professional University

Author for correspondence.
Email: info@benthamscience.net

Sandeep Sharma

Department of Medical Laboratory Sciences, Lovely Professional University

Email: info@benthamscience.net

References

  1. Strużycka I. The oral microbiome in dental caries. Pol J Microbiol 2014; 63(2): 127-35. doi: 10.33073/pjm-2014-018 PMID: 25115106
  2. Malcangi G, Patano A, Morolla R, De Santis M, Piras F, Settanni V. Analysis of dental enamel remineralization: A systematic review of technique comparisons. Bioengineering 2023; 10(4): 472. doi: 10.3390/bioengineering10040472
  3. Global Oral Health Status Report. 2022. Available from: https://www.who.int/team/noncommunicable-diseases/global-status-report-on-oral-health-2022
  4. Arweiler NB, Netuschil L. The oral microbiota. Adv Exp Med Biol 2016; 902: 45-60. doi: 10.1007/978-3-319-31248-4_4 PMID: 27161350
  5. Guo L, Wenyuan S. Salivary biomarkers for caries risk assessment. J Calif Dent Assoc 2013; 41(2): 107-118, 112-118. doi: 10.1080/19424396.2013.12222284 PMID: 23505756
  6. Featherstone JD, Fontana M, Wolff M. Novel anticaries and remineralization agents: Future research needs. J Dent Res 2018; 97(2): 125-7. doi: 10.1177/0022034517746371 PMID: 29355470
  7. Lamont RJ, Koo H, Hajishengallis G. The oral microbiota: Dynamic communities and host interactions. Nat Rev Microbiol 2018; 16(12): 745-59. doi: 10.1038/s41579-018-0089-x PMID: 30301974
  8. Dawes C. What is the critical pH and why does a tooth dissolve in acid? J Can Dent Assoc 2003; 69(11): 722-4. PMID: 14653937
  9. Carvalho TS, Lussi A, Schlueter N, Baumann T. Differences in susceptibility of deciduous and permanent teeth to erosion exist, albeit depending on protocol design and method of assessment. Sci Rep 2022; 12(1): 4153. doi: 10.1038/s41598-022-08116-0 PMID: 35264778
  10. Guo L, McLean JS, Lux R, He X, Shi W. The well-coordinated linkage between acidogenicity and aciduricity via insoluble glucans on the surface of Streptococcus mutans. Sci Rep 2015; 5(1): 18015. doi: 10.1038/srep18015 PMID: 26657939
  11. Kaur P, Vyas M, Verma S. Dental Caries: A review on etiology, therapeutic approaches, novel formulations, and marketed preparations. ECS Trans 2022; 107(1): 8035-48. doi: 10.1149/10701.8035ecst
  12. Lemos JA, Palmer SR, Zeng L, et al. The biology of Streptococcus mutans. Microbiol Spectr 2019; 7(1): 7.1.03. doi: 10.1128/microbiolspec.GPP3-0051-2018 PMID: 30657107
  13. Murray Anderson Annie Reid JT. Guideline: Sugars intake for adults and children. World Heal Organ 2018; 57(6): 1716-22.
  14. Pitts NB, Zero DT, Marsh PD, Ekstrand K, Weintraub JA, Ramos-Gomez F. Dental caries. Nat Rev Dis Primers 2017; 3: 17030. doi: 10.1038/nrdp.2017.30
  15. Lopes PC, Gomes ATPC, Mendes K, Blanco L, Correia MJ. Unlocking the potential of probiotic administration in caries management: A systematic review. BMC Oral Health 2024; 24(1): 216. doi: 10.1186/s12903-024-03893-8 PMID: 38341538
  16. Lagerweij MD, van Loveren C. Declining caries trends: Are we satisfied? Curr Oral Health Rep 2015; 2(4): 212-7. doi: 10.1007/s40496-015-0064-9 PMID: 26523247
  17. Philip N, Suneja B, Walsh LJ. Ecological approaches to dental caries prevention: Paradigm shift or shibboleth? Caries Res 2018; 52(1-2): 153-65. doi: 10.1159/000484985 PMID: 29320767
  18. Twetman S. Prevention of dental caries as a non-communicable disease. Eur J Oral Sci 2018; 126(S1): 19-25. doi: 10.1111/eos.12528 PMID: 30178558
  19. Bessa LJ, Botelho J, Machado V, Alves R, Mendes JJ. Managing oral health in the context of antimicrobial resistance. Int J Environ Res Public Health 2022; 19(24): 16448. doi: 10.3390/ijerph192416448 PMID: 36554332
  20. Featherstone JDB, Chaffee BW. The evidence for caries management by risk assessment (CAMBRA®). Adv Dent Res 2018; 29(1): 9-14. doi: 10.1177/0022034517736500 PMID: 29355423
  21. Curtis MA, Diaz PI, Van Dyke TE. The role of the microbiota in periodontal disease. Periodontol 2000 2020; 83(1): 14-25. doi: 10.1111/prd.12296 PMID: 32385883
  22. Osamudiamen PM, Oluremi BB, Oderinlo OO, Aiyelaagbe OO. Trans-resveratrol, piceatannol and gallic acid: Potent polyphenols isolated from Mezoneuron benthamianum effective as anticaries, antioxidant and cytotoxic agents. Sci Am 2020; 7: e00244. doi: 10.1016/j.sciaf.2019.e00244
  23. Nijampatnam B, Zhang H, Cai X, Michalek SM, Wu H, Velu SE. Inhibition of Streptococcus mutans biofilms by the natural stilbene piceatannol through the inhibition of glucosyltransferases. ACS Omega 2018; 3(7): 8378-85. doi: 10.1021/acsomega.8b00367 PMID: 30087944
  24. Lolayekar N, Kadkhodayan S. Estimation of salivary pH and viability of Streptococcus mutans on chewing of Tulsi leaves in children. J Indian Soc Pedod Prev Dent 2019; 37(1): 87-91. doi: 10.4103/JISPPD.JISPPD_91_17 PMID: 30804313
  25. Kolderman E, Bettampadi D, Samarian D, et al. L-arginine destabilizes oral multi-species biofilm communities developed in human saliva. PLoS One 2015; 10(5): e0121835. doi: 10.1371/journal.pone.0121835 PMID: 25946040
  26. Ccahuana-Vásquez RA, Cury JA. S. mutans biofilm model to evaluate antimicrobial substances and enamel demineralization. Braz Oral Res 2010; 24(2): 135-41. doi: 10.1590/S1806-83242010000200002 PMID: 20658029
  27. Gu M, Wang Q, Fan R, et al. Isolation, characterization and antibacterial activity of 4-allylbenzene-1,2-diol from Piper austrosinense. Molecules 2023; 28(8): 3572. doi: 10.3390/molecules28083572 PMID: 37110806
  28. Ástvaldsdóttir Á, Naimi-Akbar A, Davidson T, et al. Arginine and caries prevention: A systematic review. Caries Res 2016; 50(4): 383-93. doi: 10.1159/000446249 PMID: 27403876
  29. Kim HE, Liu Y, Dhall A, Bawazir M, Koo H, Hwang G. Synergism of Streptococcus mutans and Candida albicans reinforces biofilm maturation and acidogenicity in saliva: An in vitro study. Front Cell Infect Microbiol 2021; 10: 623980. doi: 10.3389/fcimb.2020.623980 PMID: 33680985
  30. Zheng X, He J, Wang L, et al. Ecological effect of arginine on oral microbiota. Sci Rep 2017; 7(1): 7206. doi: 10.1038/s41598-017-07042-w PMID: 28775282
  31. Nascimento MM. Potential uses of arginine in dentistry. Adv Dent Res 2018; 29(1): 98-103. doi: 10.1177/0022034517735294 PMID: 29355411

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers