Chemoprophylaxis Effect of EGCG on the Recurrence of Colorectal Cancer: A Systematic Review and Meta-Analysis


Cite item

Full Text

Abstract

Background and Aims:The recurrence rate of Colorectal Cancer (CRC) after cure is always high. The purpose of this study was to investigate whether green tea extract (-)-Epigallocatechin gallate (EGCG) has an effective preventive effect on the recurrence of CRC.

Methods:We conducted a systematic literature review and meta-analysis of the effects of taking EGCG or placebo on disease recurrence in patients after colon polyp removal.

Results:Five Randomized Controlled Trials (RCTs) were included in this review. A double-blind drug trial involving 1389 participants involved EGCG and placebo. The results showed no significant publication bias or heterogeneity in the five studies (I2 = 38%; p = 0.17). Patients taking EGCG had a lower recurrence rate of CRC than those in the placebo group. The results were statistically significant (Z=2.83, p < 0.05).

Conclusion:This study demonstrated that long-term EGCG can prevent CRC recurrence to a certain extent.

About the authors

Benyu He

, Zunyi Medical University

Email: info@benthamscience.net

Shuhui Kang

, Zunyi Medical University

Email: info@benthamscience.net

Runze Su

, Zunyi Medical University

Email: info@benthamscience.net

Sha Wu

, Zunyi Medical University

Email: info@benthamscience.net

Xue Liu

School of Nursing, Hebei University

Email: info@benthamscience.net

Maosheng Liu

, Zunyi Medical University

Author for correspondence.
Email: info@benthamscience.net

Si Chen

, Zunyi Medical University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Hamada T, Liu L, Nowak JA, et al. Vitamin D status after colorectal cancer diagnosis and patient survival according to immune response to tumour. Eur J Cancer 2018; 103: 98-107. doi: 10.1016/j.ejca.2018.07.130 PMID: 30219720
  2. Bradbury KE, Appleby PN, Key TJ. Fruit, vegetable, and fiber intake in relation to cancer risk: Findings from the European Prospective Investigation into Cancer and Nutrition (EPIC). Am J Clin Nutr 2014; 100 (Suppl. 1): 394S-8S. doi: 10.3945/ajcn.113.071357 PMID: 24920034
  3. Hughes DJ, Fedirko V, Jenab M, et al. Selenium status is associated with colorectal cancer risk in the European prospective investigation of cancer and nutrition cohort. Int J Cancer 2015; 136(5): 1149-61. doi: 10.1002/ijc.29071 PMID: 25042282
  4. Drew DA, Cao Y, Chan AT. Aspirin and colorectal cancer: The promise of precision chemoprevention. Nat Rev Cancer 2016; 16(3): 173-86. doi: 10.1038/nrc.2016.4 PMID: 26868177
  5. Ju J, Hong J, Zhou J, et al. Inhibition of intestinal tumorigenesis in Apcmin/+ mice by (-)-epigallocatechin-3-gallate, the major catechin in green tea. Cancer Res 2005; 65(22): 10623-31. doi: 10.1158/0008-5472.CAN-05-1949 PMID: 16288056
  6. Suganuma M, Saha A, Fujiki H. New cancer treatment strategy using combination of green tea catechins and anticancer drugs. Cancer Sci 2011; 102(2): 317-23. doi: 10.1111/j.1349-7006.2010.01805.x PMID: 21199169
  7. Wang Y, Jin HY, Fang MZ, et al. Epigallocatechin gallate inhibits dimethylhydrazine-induced colorectal cancer in rats. World J Gastroenterol 2020; 26(17): 2064-81. doi: 10.3748/wjg.v26.i17.2064 PMID: 32536775
  8. Sun CL, Yuan JM, Koh WP, Yu MC. Green tea, black tea and colorectal cancer risk: A meta-analysis of epidemiologic studies. Carcinogenesis 2006; 27(7): 1301-9. doi: 10.1093/carcin/bgl024 PMID: 16638787
  9. Wang ZH, Gao QY, Fang JY. Green tea and incidence of colorectal cancer: Evidence from prospective cohort studies. Nutr Cancer 2012; 64(8): 1143-52. doi: 10.1080/01635581.2012.718031 PMID: 23163842
  10. Parmar MKB, Torri V, Stewart L. Extracting summary statistics to perform meta-analyses of the published literature for survival endpoints. Stat Med 1998; 17(24): 2815-34. doi: 10.1002/(SICI)1097-0258(19981230)17:243.0.CO;2-8 PMID: 9921604
  11. Tierney JF, Stewart LA, Ghersi D, Burdett S, Sydes MR. Practical methods for incorporating summary time-to-event data into meta-analysis. Trials 2007; 8(1): 16. doi: 10.1186/1745-6215-8-16 PMID: 17555582
  12. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials 1986; 7(3): 177-88. doi: 10.1016/0197-2456(86)90046-2 PMID: 3802833
  13. Sinicrope FA, Viggiano TR, Buttar NS, et al. Randomized Phase II trial of polyphenon e versus placebo in patients at high risk of recurrent colonic neoplasia. Cancer Prev Res 2021; 14(5): 573-80. doi: 10.1158/1940-6207.CAPR-20-0598 PMID: 33648940
  14. Shimizu M, Fukutomi Y, Ninomiya M, et al. Green tea extracts for the prevention of metachronous colorectal adenomas: A pilot study. Cancer Epidemiol Biomarkers Prev 2008; 17(11): 3020-5. doi: 10.1158/1055-9965.EPI-08-0528 PMID: 18990744
  15. Shin CM, Lee DH, Seo AY, et al. Green tea extracts for the prevention of metachronous colorectal polyps among patients who underwent endoscopic removal of colorectal adenomas: A randomized clinical trial. Clin Nutr 2018; 37(2): 452-8. doi: 10.1016/j.clnu.2017.01.014 PMID: 28209333
  16. Seufferlein T, Ettrich TJ, Menzler S, et al. Green tea extract to prevent colorectal adenomas, results of a randomized, placebo-controlled clinical trial. Am J Gastroenterol 2022; 117(6): 884-94. doi: 10.14309/ajg.0000000000001706 PMID: 35213393
  17. Seufferlein T, Ettrich TJ, Menzler S, et al. MIRACLE: Green tea extract versus placebo for the prevention of colorectal adenomas: A randomized, controlled trial. Ann Oncol 2019; 30: v869. doi: 10.1093/annonc/mdz394.023
  18. Wallace BC, Schmid CH, Lau J, Trikalinos TA. Meta-Analyst: Software for meta-analysis of binary, continuous and diagnostic data. BMC Med Res Methodol 2009; 9(1): 80. doi: 10.1186/1471-2288-9-80 PMID: 19961608
  19. Ford ES. Body mass index and colon cancer in a national sample of adult US men and women. Am J Epidemiol 1999; 150(4): 390-8. doi: 10.1093/oxfordjournals.aje.a010018 PMID: 10453815
  20. Hou L, Ji BT, Blair A, et al. Body mass index and colon cancer risk in Chinese people: Menopause as an effect modifier. Eur J Cancer 2006; 42(1): 84-90. doi: 10.1016/j.ejca.2005.09.014 PMID: 16321519
  21. Wang J, Gao Y, Wang L, et al. A variant (rs932335) in the HSD11B1 gene is associated with colorectal cancer in a Chinese population. Eur J Cancer Prev 2013; 22(6): 523-8. doi: 10.1097/CEJ.0b013e3283656346 PMID: 24061267
  22. Draper N, Echwald SM, Lavery GG, et al. Association studies between microsatellite markers within the gene encoding human 11beta-hydroxysteroid dehydrogenase type 1 and body mass index, waist to hip ratio, and glucocorticoid metabolism. J Clin Endocrinol Metab 2002; 87(11): 4984-90. doi: 10.1210/jc.2001-011375 PMID: 12414862
  23. Plotkin LI, Manolagas SC, Bellido T. Glucocorticoids induce osteocyte apoptosis by blocking focal adhesion kinase-mediated survival. Evidence for inside-out signaling leading to anoikis. J Biol Chem 2007; 282(33): 24120-30. doi: 10.1074/jbc.M611435200 PMID: 17581824
  24. O’Brien CA, Jia D, Plotkin LI, et al. Glucocorticoids act directly on osteoblasts and osteocytes to induce their apoptosis and reduce bone formation and strength. Endocrinology 2004; 145(4): 1835-41. doi: 10.1210/en.2003-0990 PMID: 14691012
  25. Hintzpeter J, Stapelfeld C, Loerz C, Martin HJ, Maser E. Green tea and one of its constituents, Epigallocatechine-3-gallate, are potent inhibitors of human 11β-hydroxysteroid dehydrogenase type 1. PLoS One 2014; 9(1): e84468. doi: 10.1371/journal.pone.0084468 PMID: 24404164
  26. Anderson G. Tumour microenvironment: Roles of the aryl hydrocarbon receptor, o-glcnacylation, acetyl-CoA and melatonergic pathway in regulating dynamic metabolic interactions across cell types-tumour microenvironment and metabolism. Int J Mol Sci 2020; 22(1): 141. doi: 10.3390/ijms22010141 PMID: 33375613
  27. Ichisaka Y, Yano S, Nishimura K, Niwa T, Shimizu H. Indoxyl sulfate contributes to colorectal cancer cell proliferation and increased EGFR expression by activating AhR and Akt. Biomed Res 2024; 45(2): 57-66. doi: 10.2220/biomedres.45.57 PMID: 38556263
  28. Labadie BW, Bao R, Luke JJ. Reimagining IDO pathway inhibition in cancer immunotherapy via downstream focus on the tryptophan–kynurenine–aryl hydrocarbon axis. Clin Cancer Res 2019; 25(5): 1462-71. doi: 10.1158/1078-0432.CCR-18-2882 PMID: 30377198
  29. Leja-Szpak A, Góralska M, Link-Lenczowski P, et al. The opposite effect of L-kynurenine and Ahr inhibitor Ch223191 on apoptotic protein expression in pancreatic carcinoma cells (Panc-1). Anticancer Agents Med Chem 2020; 19(17): 2079-90. doi: 10.2174/1871520619666190415165212 PMID: 30987575
  30. Liu Y, Liang X, Dong W, et al. Tumor-repopulating cells induce PD-1 expression in CD8+ T cells by transferring kynurenine and ahr activation. Cancer Cell 2018; 33(3): 480-494.e7. doi: 10.1016/j.ccell.2018.02.005 PMID: 29533786
  31. Zhu P, Yu H, Zhou K, Bai Y, Qi R, Zhang S. 3,3′-Diindolylmethane modulates aryl hydrocarbon receptor of esophageal squamous cell carcinoma to reverse epithelial-mesenchymal transition through repressing RhoA/ROCK1-mediated COX2/PGE2 pathway. J Exp Clin Cancer Res 2020; 39(1): 113. doi: 10.1186/s13046-020-01618-7 PMID: 32546278
  32. Ikeya S, Sakabe J, Yamada T, Naito T, Tokura Y. Voriconazole-induced photocarcinogenesis is promoted by aryl hydrocarbon receptor-dependent COX-2 upregulation. Sci Rep 2018; 8(1): 5050. doi: 10.1038/s41598-018-23439-7 PMID: 29568008
  33. Miao J, Lu X, Hu Y, et al. Prostaglandin E2 and PD-1 mediated inhibition of antitumor CTL responses in the human tumor microenvironment. Oncotarget 2017; 8(52): 89802-10. doi: 10.18632/oncotarget.21155 PMID: 29163789
  34. Morianos I, Trochoutsou AI, Papadopoulou G, et al. Activin-A limits Th17 pathogenicity and autoimmune neuroinflammation via CD39 and CD73 ectonucleotidases and Hif1-α–dependent pathways. Proc Natl Acad Sci 2020; 117(22): 12269-80. doi: 10.1073/pnas.1918196117 PMID: 32409602
  35. Jang SW, Liu X, Pradoldej S, et al. N-acetylserotonin activates TrkB receptor in a circadian rhythm. Proc Natl Acad Sci 2010; 107(8): 3876-81. doi: 10.1073/pnas.0912531107 PMID: 20133677
  36. Anderson G, Reiter RJ. Glioblastoma: Role of mitochondria N-acetylserotonin/melatonin ratio in mediating effects of miR-451 and Aryl hydrocarbon receptor and in coordinating wider biochemical changes. Int J Tryptophan Res 2019; 12 doi: 10.1177/1178646919855942 PMID: 31244524
  37. Noh KT, Son KH, Jung ID, Kang TH, Choi CH, Park YM. Glycogen synthase kinase-3β (GSK-3β) inhibition enhances dendritic cell-based cancer vaccine potency via suppression of interferon-γ-induced indoleamine 2,3-dioxygenase expression. J Biol Chem 2015; 290(19): 12394-402. doi: 10.1074/jbc.M114.628578 PMID: 25814664
  38. Cheng CW, Shieh PC, Lin YC, et al. Indoleamine 2,3-dioxygenase, an immunomodulatory protein, is suppressed by (-)-epigallocatechin-3-gallate via blocking of gamma-interferon-induced JAK-PKC-delta-STAT1 signaling in human oral cancer cells. J Agric Food Chem 2010; 58(2): 887-94. doi: 10.1021/jf903377e PMID: 19928918
  39. Anderson G. Tumor microenvironment and metabolism: Role of the mitochondrial melatonergic pathway in determining intercellular interactions in a new dynamic homeostasis. Int J Mol Sci 2022; 24(1): 311. doi: 10.3390/ijms24010311 PMID: 36613754
  40. Yang YC, Chien MH, Lai TC, et al. Monoamine oxidase B expression correlates with a poor prognosis in colorectal cancer patients and is significantly associated with epithelial-to-mesenchymal transition-related gene signatures. Int J Mol Sci 2020; 21(8): 2813. doi: 10.3390/ijms21082813 PMID: 32316576
  41. Lin SM, Wang SW, Ho SC, Tang YL. Protective effect of green tea (-)-epigallocatechin-3-gallate against the monoamine oxidase B enzyme activity increase in adult rat brains. Nutrition 2010; 26(11-12): 1195-200. doi: 10.1016/j.nut.2009.11.022 PMID: 20472400
  42. Manning BD, Toker A. AKT/PKB signaling: Navigating the network. Cell 2017; 169(3): 381-405. doi: 10.1016/j.cell.2017.04.001 PMID: 28431241
  43. Jung YD, Kim MS, Shin BA, et al. EGCG, a major component of green tea, inhibits tumour growth by inhibiting VEGF induction in human colon carcinoma cells. Br J Cancer 2001; 84(6): 844-50. doi: 10.1054/bjoc.2000.1691 PMID: 11259102
  44. Larsen CA, Dashwood RH. (−)-Epigallocatechin-3-gallate inhibits Met signaling, proliferation, and invasiveness in human colon cancer cells. Arch Biochem Biophys 2010; 501(1): 52-7. doi: 10.1016/j.abb.2010.03.017 PMID: 20361925
  45. Chung JY, Huang C, Meng X, Dong Z, Yang CS. Inhibition of activator protein 1 activity and cell growth by purified green tea and black tea polyphenols in H-ras-transformed cells: Structure-activity relationship and mechanisms involved. Cancer Res 1999; 59(18): 4610-7. PMID: 10493515
  46. Chen C, Shen G, Hebbar V, Hu R, Owuor ED, Kong ANT. Epigallocatechin-3-gallate-induced stress signals in HT-29 human colon adenocarcinoma cells. Carcinogenesis 2003; 24(8): 1369-78. doi: 10.1093/carcin/bgg091 PMID: 12819184
  47. Bigelow RLH, Cardelli JA. The green tea catechins, (−)-Epigallocatechin-3-gallate (EGCG) and (−)-Epicatechin-3-gallate (ECG), inhibit HGF/Met signaling in immortalized and tumorigenic breast epithelial cells. Oncogene 2006; 25(13): 1922-30. doi: 10.1038/sj.onc.1209227 PMID: 16449979
  48. Fang MZ, Wang Y, Ai N, et al. Tea polyphenol (-)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines. Cancer Res 2003; 63(22): 7563-70. PMID: 14633667
  49. Anderson G. Physiological processes underpinning the ubiquitous benefits and interactions of melatonin, butyrate and green tea in neurodegenerative conditions. Melatonin Res 2024; 7(1): 20-46. doi: 10.32794/mr112500167
  50. Luo KW, Xia J, Cheng BH, Gao HC, Fu LW, Luo XL. Tea polyphenol EGCG inhibited colorectal-cancer-cell proliferation and migration via downregulation of STAT3. Gastroenterol Rep 2021; 9(1): 59-70. doi: 10.1093/gastro/goaa072 PMID: 33747527

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers