Chemoprophylaxis Effect of EGCG on the Recurrence of Colorectal Cancer: A Systematic Review and Meta-Analysis
- Authors: He B.1, Kang S.1, Su R.1, Wu S.1, Liu X.2, Liu M.1, Chen S.1
-
Affiliations:
- , Zunyi Medical University
- School of Nursing, Hebei University
- Issue: Vol 30, No 33 (2024)
- Pages: 2643-2651
- Section: Immunology, Inflammation & Allergy
- URL: https://vestnikugrasu.org/1381-6128/article/view/645935
- DOI: https://doi.org/10.2174/0113816128319678240612114820
- ID: 645935
Cite item
Full Text
Abstract
Background and Aims:The recurrence rate of Colorectal Cancer (CRC) after cure is always high. The purpose of this study was to investigate whether green tea extract (-)-Epigallocatechin gallate (EGCG) has an effective preventive effect on the recurrence of CRC.
Methods:We conducted a systematic literature review and meta-analysis of the effects of taking EGCG or placebo on disease recurrence in patients after colon polyp removal.
Results:Five Randomized Controlled Trials (RCTs) were included in this review. A double-blind drug trial involving 1389 participants involved EGCG and placebo. The results showed no significant publication bias or heterogeneity in the five studies (I2 = 38%; p = 0.17). Patients taking EGCG had a lower recurrence rate of CRC than those in the placebo group. The results were statistically significant (Z=2.83, p < 0.05).
Conclusion:This study demonstrated that long-term EGCG can prevent CRC recurrence to a certain extent.
About the authors
Benyu He
, Zunyi Medical University
Email: info@benthamscience.net
Shuhui Kang
, Zunyi Medical University
Email: info@benthamscience.net
Runze Su
, Zunyi Medical University
Email: info@benthamscience.net
Sha Wu
, Zunyi Medical University
Email: info@benthamscience.net
Xue Liu
School of Nursing, Hebei University
Email: info@benthamscience.net
Maosheng Liu
, Zunyi Medical University
Author for correspondence.
Email: info@benthamscience.net
Si Chen
, Zunyi Medical University
Author for correspondence.
Email: info@benthamscience.net
References
- Hamada T, Liu L, Nowak JA, et al. Vitamin D status after colorectal cancer diagnosis and patient survival according to immune response to tumour. Eur J Cancer 2018; 103: 98-107. doi: 10.1016/j.ejca.2018.07.130 PMID: 30219720
- Bradbury KE, Appleby PN, Key TJ. Fruit, vegetable, and fiber intake in relation to cancer risk: Findings from the European Prospective Investigation into Cancer and Nutrition (EPIC). Am J Clin Nutr 2014; 100 (Suppl. 1): 394S-8S. doi: 10.3945/ajcn.113.071357 PMID: 24920034
- Hughes DJ, Fedirko V, Jenab M, et al. Selenium status is associated with colorectal cancer risk in the European prospective investigation of cancer and nutrition cohort. Int J Cancer 2015; 136(5): 1149-61. doi: 10.1002/ijc.29071 PMID: 25042282
- Drew DA, Cao Y, Chan AT. Aspirin and colorectal cancer: The promise of precision chemoprevention. Nat Rev Cancer 2016; 16(3): 173-86. doi: 10.1038/nrc.2016.4 PMID: 26868177
- Ju J, Hong J, Zhou J, et al. Inhibition of intestinal tumorigenesis in Apcmin/+ mice by (-)-epigallocatechin-3-gallate, the major catechin in green tea. Cancer Res 2005; 65(22): 10623-31. doi: 10.1158/0008-5472.CAN-05-1949 PMID: 16288056
- Suganuma M, Saha A, Fujiki H. New cancer treatment strategy using combination of green tea catechins and anticancer drugs. Cancer Sci 2011; 102(2): 317-23. doi: 10.1111/j.1349-7006.2010.01805.x PMID: 21199169
- Wang Y, Jin HY, Fang MZ, et al. Epigallocatechin gallate inhibits dimethylhydrazine-induced colorectal cancer in rats. World J Gastroenterol 2020; 26(17): 2064-81. doi: 10.3748/wjg.v26.i17.2064 PMID: 32536775
- Sun CL, Yuan JM, Koh WP, Yu MC. Green tea, black tea and colorectal cancer risk: A meta-analysis of epidemiologic studies. Carcinogenesis 2006; 27(7): 1301-9. doi: 10.1093/carcin/bgl024 PMID: 16638787
- Wang ZH, Gao QY, Fang JY. Green tea and incidence of colorectal cancer: Evidence from prospective cohort studies. Nutr Cancer 2012; 64(8): 1143-52. doi: 10.1080/01635581.2012.718031 PMID: 23163842
- Parmar MKB, Torri V, Stewart L. Extracting summary statistics to perform meta-analyses of the published literature for survival endpoints. Stat Med 1998; 17(24): 2815-34. doi: 10.1002/(SICI)1097-0258(19981230)17:243.0.CO;2-8 PMID: 9921604
- Tierney JF, Stewart LA, Ghersi D, Burdett S, Sydes MR. Practical methods for incorporating summary time-to-event data into meta-analysis. Trials 2007; 8(1): 16. doi: 10.1186/1745-6215-8-16 PMID: 17555582
- DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials 1986; 7(3): 177-88. doi: 10.1016/0197-2456(86)90046-2 PMID: 3802833
- Sinicrope FA, Viggiano TR, Buttar NS, et al. Randomized Phase II trial of polyphenon e versus placebo in patients at high risk of recurrent colonic neoplasia. Cancer Prev Res 2021; 14(5): 573-80. doi: 10.1158/1940-6207.CAPR-20-0598 PMID: 33648940
- Shimizu M, Fukutomi Y, Ninomiya M, et al. Green tea extracts for the prevention of metachronous colorectal adenomas: A pilot study. Cancer Epidemiol Biomarkers Prev 2008; 17(11): 3020-5. doi: 10.1158/1055-9965.EPI-08-0528 PMID: 18990744
- Shin CM, Lee DH, Seo AY, et al. Green tea extracts for the prevention of metachronous colorectal polyps among patients who underwent endoscopic removal of colorectal adenomas: A randomized clinical trial. Clin Nutr 2018; 37(2): 452-8. doi: 10.1016/j.clnu.2017.01.014 PMID: 28209333
- Seufferlein T, Ettrich TJ, Menzler S, et al. Green tea extract to prevent colorectal adenomas, results of a randomized, placebo-controlled clinical trial. Am J Gastroenterol 2022; 117(6): 884-94. doi: 10.14309/ajg.0000000000001706 PMID: 35213393
- Seufferlein T, Ettrich TJ, Menzler S, et al. MIRACLE: Green tea extract versus placebo for the prevention of colorectal adenomas: A randomized, controlled trial. Ann Oncol 2019; 30: v869. doi: 10.1093/annonc/mdz394.023
- Wallace BC, Schmid CH, Lau J, Trikalinos TA. Meta-Analyst: Software for meta-analysis of binary, continuous and diagnostic data. BMC Med Res Methodol 2009; 9(1): 80. doi: 10.1186/1471-2288-9-80 PMID: 19961608
- Ford ES. Body mass index and colon cancer in a national sample of adult US men and women. Am J Epidemiol 1999; 150(4): 390-8. doi: 10.1093/oxfordjournals.aje.a010018 PMID: 10453815
- Hou L, Ji BT, Blair A, et al. Body mass index and colon cancer risk in Chinese people: Menopause as an effect modifier. Eur J Cancer 2006; 42(1): 84-90. doi: 10.1016/j.ejca.2005.09.014 PMID: 16321519
- Wang J, Gao Y, Wang L, et al. A variant (rs932335) in the HSD11B1 gene is associated with colorectal cancer in a Chinese population. Eur J Cancer Prev 2013; 22(6): 523-8. doi: 10.1097/CEJ.0b013e3283656346 PMID: 24061267
- Draper N, Echwald SM, Lavery GG, et al. Association studies between microsatellite markers within the gene encoding human 11beta-hydroxysteroid dehydrogenase type 1 and body mass index, waist to hip ratio, and glucocorticoid metabolism. J Clin Endocrinol Metab 2002; 87(11): 4984-90. doi: 10.1210/jc.2001-011375 PMID: 12414862
- Plotkin LI, Manolagas SC, Bellido T. Glucocorticoids induce osteocyte apoptosis by blocking focal adhesion kinase-mediated survival. Evidence for inside-out signaling leading to anoikis. J Biol Chem 2007; 282(33): 24120-30. doi: 10.1074/jbc.M611435200 PMID: 17581824
- OBrien CA, Jia D, Plotkin LI, et al. Glucocorticoids act directly on osteoblasts and osteocytes to induce their apoptosis and reduce bone formation and strength. Endocrinology 2004; 145(4): 1835-41. doi: 10.1210/en.2003-0990 PMID: 14691012
- Hintzpeter J, Stapelfeld C, Loerz C, Martin HJ, Maser E. Green tea and one of its constituents, Epigallocatechine-3-gallate, are potent inhibitors of human 11β-hydroxysteroid dehydrogenase type 1. PLoS One 2014; 9(1): e84468. doi: 10.1371/journal.pone.0084468 PMID: 24404164
- Anderson G. Tumour microenvironment: Roles of the aryl hydrocarbon receptor, o-glcnacylation, acetyl-CoA and melatonergic pathway in regulating dynamic metabolic interactions across cell types-tumour microenvironment and metabolism. Int J Mol Sci 2020; 22(1): 141. doi: 10.3390/ijms22010141 PMID: 33375613
- Ichisaka Y, Yano S, Nishimura K, Niwa T, Shimizu H. Indoxyl sulfate contributes to colorectal cancer cell proliferation and increased EGFR expression by activating AhR and Akt. Biomed Res 2024; 45(2): 57-66. doi: 10.2220/biomedres.45.57 PMID: 38556263
- Labadie BW, Bao R, Luke JJ. Reimagining IDO pathway inhibition in cancer immunotherapy via downstream focus on the tryptophankynureninearyl hydrocarbon axis. Clin Cancer Res 2019; 25(5): 1462-71. doi: 10.1158/1078-0432.CCR-18-2882 PMID: 30377198
- Leja-Szpak A, Góralska M, Link-Lenczowski P, et al. The opposite effect of L-kynurenine and Ahr inhibitor Ch223191 on apoptotic protein expression in pancreatic carcinoma cells (Panc-1). Anticancer Agents Med Chem 2020; 19(17): 2079-90. doi: 10.2174/1871520619666190415165212 PMID: 30987575
- Liu Y, Liang X, Dong W, et al. Tumor-repopulating cells induce PD-1 expression in CD8+ T cells by transferring kynurenine and ahr activation. Cancer Cell 2018; 33(3): 480-494.e7. doi: 10.1016/j.ccell.2018.02.005 PMID: 29533786
- Zhu P, Yu H, Zhou K, Bai Y, Qi R, Zhang S. 3,3′-Diindolylmethane modulates aryl hydrocarbon receptor of esophageal squamous cell carcinoma to reverse epithelial-mesenchymal transition through repressing RhoA/ROCK1-mediated COX2/PGE2 pathway. J Exp Clin Cancer Res 2020; 39(1): 113. doi: 10.1186/s13046-020-01618-7 PMID: 32546278
- Ikeya S, Sakabe J, Yamada T, Naito T, Tokura Y. Voriconazole-induced photocarcinogenesis is promoted by aryl hydrocarbon receptor-dependent COX-2 upregulation. Sci Rep 2018; 8(1): 5050. doi: 10.1038/s41598-018-23439-7 PMID: 29568008
- Miao J, Lu X, Hu Y, et al. Prostaglandin E2 and PD-1 mediated inhibition of antitumor CTL responses in the human tumor microenvironment. Oncotarget 2017; 8(52): 89802-10. doi: 10.18632/oncotarget.21155 PMID: 29163789
- Morianos I, Trochoutsou AI, Papadopoulou G, et al. Activin-A limits Th17 pathogenicity and autoimmune neuroinflammation via CD39 and CD73 ectonucleotidases and Hif1-αdependent pathways. Proc Natl Acad Sci 2020; 117(22): 12269-80. doi: 10.1073/pnas.1918196117 PMID: 32409602
- Jang SW, Liu X, Pradoldej S, et al. N-acetylserotonin activates TrkB receptor in a circadian rhythm. Proc Natl Acad Sci 2010; 107(8): 3876-81. doi: 10.1073/pnas.0912531107 PMID: 20133677
- Anderson G, Reiter RJ. Glioblastoma: Role of mitochondria N-acetylserotonin/melatonin ratio in mediating effects of miR-451 and Aryl hydrocarbon receptor and in coordinating wider biochemical changes. Int J Tryptophan Res 2019; 12 doi: 10.1177/1178646919855942 PMID: 31244524
- Noh KT, Son KH, Jung ID, Kang TH, Choi CH, Park YM. Glycogen synthase kinase-3β (GSK-3β) inhibition enhances dendritic cell-based cancer vaccine potency via suppression of interferon-γ-induced indoleamine 2,3-dioxygenase expression. J Biol Chem 2015; 290(19): 12394-402. doi: 10.1074/jbc.M114.628578 PMID: 25814664
- Cheng CW, Shieh PC, Lin YC, et al. Indoleamine 2,3-dioxygenase, an immunomodulatory protein, is suppressed by (-)-epigallocatechin-3-gallate via blocking of gamma-interferon-induced JAK-PKC-delta-STAT1 signaling in human oral cancer cells. J Agric Food Chem 2010; 58(2): 887-94. doi: 10.1021/jf903377e PMID: 19928918
- Anderson G. Tumor microenvironment and metabolism: Role of the mitochondrial melatonergic pathway in determining intercellular interactions in a new dynamic homeostasis. Int J Mol Sci 2022; 24(1): 311. doi: 10.3390/ijms24010311 PMID: 36613754
- Yang YC, Chien MH, Lai TC, et al. Monoamine oxidase B expression correlates with a poor prognosis in colorectal cancer patients and is significantly associated with epithelial-to-mesenchymal transition-related gene signatures. Int J Mol Sci 2020; 21(8): 2813. doi: 10.3390/ijms21082813 PMID: 32316576
- Lin SM, Wang SW, Ho SC, Tang YL. Protective effect of green tea (-)-epigallocatechin-3-gallate against the monoamine oxidase B enzyme activity increase in adult rat brains. Nutrition 2010; 26(11-12): 1195-200. doi: 10.1016/j.nut.2009.11.022 PMID: 20472400
- Manning BD, Toker A. AKT/PKB signaling: Navigating the network. Cell 2017; 169(3): 381-405. doi: 10.1016/j.cell.2017.04.001 PMID: 28431241
- Jung YD, Kim MS, Shin BA, et al. EGCG, a major component of green tea, inhibits tumour growth by inhibiting VEGF induction in human colon carcinoma cells. Br J Cancer 2001; 84(6): 844-50. doi: 10.1054/bjoc.2000.1691 PMID: 11259102
- Larsen CA, Dashwood RH. (−)-Epigallocatechin-3-gallate inhibits Met signaling, proliferation, and invasiveness in human colon cancer cells. Arch Biochem Biophys 2010; 501(1): 52-7. doi: 10.1016/j.abb.2010.03.017 PMID: 20361925
- Chung JY, Huang C, Meng X, Dong Z, Yang CS. Inhibition of activator protein 1 activity and cell growth by purified green tea and black tea polyphenols in H-ras-transformed cells: Structure-activity relationship and mechanisms involved. Cancer Res 1999; 59(18): 4610-7. PMID: 10493515
- Chen C, Shen G, Hebbar V, Hu R, Owuor ED, Kong ANT. Epigallocatechin-3-gallate-induced stress signals in HT-29 human colon adenocarcinoma cells. Carcinogenesis 2003; 24(8): 1369-78. doi: 10.1093/carcin/bgg091 PMID: 12819184
- Bigelow RLH, Cardelli JA. The green tea catechins, (−)-Epigallocatechin-3-gallate (EGCG) and (−)-Epicatechin-3-gallate (ECG), inhibit HGF/Met signaling in immortalized and tumorigenic breast epithelial cells. Oncogene 2006; 25(13): 1922-30. doi: 10.1038/sj.onc.1209227 PMID: 16449979
- Fang MZ, Wang Y, Ai N, et al. Tea polyphenol (-)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines. Cancer Res 2003; 63(22): 7563-70. PMID: 14633667
- Anderson G. Physiological processes underpinning the ubiquitous benefits and interactions of melatonin, butyrate and green tea in neurodegenerative conditions. Melatonin Res 2024; 7(1): 20-46. doi: 10.32794/mr112500167
- Luo KW, Xia J, Cheng BH, Gao HC, Fu LW, Luo XL. Tea polyphenol EGCG inhibited colorectal-cancer-cell proliferation and migration via downregulation of STAT3. Gastroenterol Rep 2021; 9(1): 59-70. doi: 10.1093/gastro/goaa072 PMID: 33747527
Supplementary files
