Impact of Tyrosine Kinase Inhibitors (TKIs) on Growth in Children and Adolescents with Chronic Myeloid Leukemia: A Systematic Review
- Authors: Katsarou D.1, Kotanidou E.1, Tsinopoulou V.2, Tragiannidis A.2, Hatzipantelis E.1, Galli-Tsinopoulou A.1
-
Affiliations:
- Program of Postgraduate Studies "Adolescent Medicine and Adolescent Health Care", School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki
- 2nd Department of Pediatrics, School of Medicine, Faculty of Health Sciences, AHEPA University General Hospital,, Aristotle University of Thessaloniki
- Issue: Vol 30, No 33 (2024)
- Pages: 2631-2642
- Section: Immunology, Inflammation & Allergy
- URL: https://vestnikugrasu.org/1381-6128/article/view/645933
- DOI: https://doi.org/10.2174/0113816128309071240626114308
- ID: 645933
Cite item
Full Text
Abstract
Background:Chronic Myeloid Leukemia (CML) is a rare myeloproliferative disease in childhood. Treatment in CML includes Tyrosine Kinase Inhibitors (TKIs), which inhibit the cytoplasmic kinase BCR/ABL. Tyrosine kinases play a key role in the secretion of growth hormone and insulin-like growth factor 1 (IGF-1).
Objective:The aim of this systematic review was to study the effect of TKIs on the growth of children and adolescents with CML.
Methods:English-language publications were searched in the PubMed/Cochrane library/Google Scholar databases (2002-2023), and retrieved studies were assessed according to PRISMA-Statement and Newcastle- Ottawa-scale.
Results:The search strategy yielded 1066 articles. After applying the inclusion/exclusion criteria, 941 were excluded based on title screening and 111 on abstract review. The systematic review included 14 articles (11 retrospective observational studies/3 clinical trials). Twelve studies reported data on the prevalence of growth disorders after the administration of 1st generation TKIs (imatinib). Two studies reported a negative effect of 2nd generation TKIs (dasatinib/nilotinib) on physical growth. Four studies recorded a decrease in height z-score after treatment compared to baseline. Two 1st-generation TKIs studies reported data on children's final height; one reported restoration of final height to normal after the onset of puberty, despite initial slowing, and the final height was lower than mid-parental target height. Serum IGF-1 levels were reported in 2 studies to be within normal range, while in 3 studies, a significant decrease was documented. Considerable study heterogeneity was observed related to dosage/duration of treatment/disease phase/stage of puberty/ethnicity.
Conclusion:A negative effect of TKIs on the growth and final height of children was noted.
About the authors
Dimitra Katsarou
Program of Postgraduate Studies "Adolescent Medicine and Adolescent Health Care", School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki
Email: info@benthamscience.net
Eleni Kotanidou
Program of Postgraduate Studies "Adolescent Medicine and Adolescent Health Care", School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki
Email: info@benthamscience.net
Vasiliki Tsinopoulou
2nd Department of Pediatrics, School of Medicine, Faculty of Health Sciences, AHEPA University General Hospital,, Aristotle University of Thessaloniki
Email: info@benthamscience.net
Athanasios Tragiannidis
2nd Department of Pediatrics, School of Medicine, Faculty of Health Sciences, AHEPA University General Hospital,, Aristotle University of Thessaloniki
Email: info@benthamscience.net
Emmanouil Hatzipantelis
Program of Postgraduate Studies "Adolescent Medicine and Adolescent Health Care", School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki
Email: info@benthamscience.net
Assimina Galli-Tsinopoulou
Program of Postgraduate Studies "Adolescent Medicine and Adolescent Health Care", School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki
Author for correspondence.
Email: info@benthamscience.net
References
- Minciacchi VR, Kumar R, Krause DS. Chronic myeloid leukemia: A model disease of the past, present and future. Cells 2021; 10(1): 117. doi: 10.3390/cells10010117 PMID: 33435150
- Ford M, Mauro M, Aftandilian C, Sakamoto KM, Hijiya N. Management of chronic myeloid leukemia in children and young adults. Curr Hematol Malig Rep 2022; 17(5): 121-6. doi: 10.1007/s11899-022-00673-5 PMID: 35920965
- Robertson HF, Apperley JF. Treatment of CML in pregnancy. Hematology 2022; 2022(1): 123-8. doi: 10.1182/hematology.2022000330 PMID: 36485083
- Wang Y, Jiang L, Li B, Zhao Y. Management of chronic myeloid leukemia and pregnancy: A bibliometric analysis (2000-2020). Front Oncol 2022; 12: 826703. doi: 10.3389/fonc.2022.826703 PMID: 35321439
- Zhou T, Medeiros LJ, Hu S. Chronic myeloid leukemia: Beyond BCR-ABL1. Curr Hematol Malig Rep 2018; 13(6): 435-45. doi: 10.1007/s11899-018-0474-6 PMID: 30370478
- Ali MAM. chronic myeloid leukemia in the era of tyrosine kinase inhibitors: An evolving paradigm of molecularly targeted therapy. Mol Diagn Ther 2016; 20(4): 315-33. doi: 10.1007/s40291-016-0208-1 PMID: 27220498
- Komorowski L, Fidyt K, Patkowska E, Firczuk M. Philadelphia chromosome-positive leukemia in the lymphoid lineage similarities and differences with the myeloid lineage and specific vulnerabilities. Int J Mol Sci 2020; 21(16): 5776. doi: 10.3390/ijms21165776 PMID: 32806528
- Sattlermc M, Griffin JD. Molecular mechanisms of transformation by the BCR-ABL oncogene. Semin Hematol 2003; 40(2) (Suppl. 2): 4-10. doi: 10.1053/shem.2003.50034 PMID: 12783368
- Smith SM, Hijiya N, Sakamoto KM. Chronic myelogenous leukemia in childhood. Curr Oncol Rep 2021; 23(4): 40. doi: 10.1007/s11912-021-01025-x PMID: 33718985
- Suttorp M, Claviez A, Bader P, et al. Allogeneic stem cell transplantation for pediatric and adolescent patients with CML: Results from the prospective trial CML-paed I. Klin Padiatr 2009; 221(6): 351-7. doi: 10.1055/s-0029-1239529 PMID: 19890786
- Yang K, Fu L. Mechanisms of resistance to BCRABL TKIs and the therapeutic strategies: A review. Crit Rev Oncol Hematol 2015; 93(3): 277-92. doi: 10.1016/j.critrevonc.2014.11.001 PMID: 25500000
- Li C, Wen L, Dong J, et al. Alterations in cellular metabolisms after TKI therapy for Philadelphia chromosome-positive leukemia in children: A review. Front Oncol 2022; 12: 1072806. doi: 10.3389/fonc.2022.1072806 PMID: 36561525
- Cortes J, Pavlovsky C, Saußele S. Chronic myeloid leukaemia. Lancet 2021; 398(10314): 1914-26. doi: 10.1016/S0140-6736(21)01204-6 PMID: 34425075
- Chen Y, Wang H, Kantarjian H, Cortes J. Trends in chronic myeloid leukemia incidence and survival in the United States from 1975 to 2009. Leuk Lymphoma 2013; 54(7): 1411-7. doi: 10.3109/10428194.2012.745525 PMID: 23121646
- Hochhaus A, Baccarani M, Silver RT, et al. European LeukemiaNet 2020 recommendations for treating chronic myeloid leukemia. Leukemia 2020; 34(4): 966-84. doi: 10.1038/s41375-020-0776-2 PMID: 32127639
- Sembill S, Ampatzidou M, Chaudhury S, et al. Management of children and adolescents with chronic myeloid leukemia in blast phase: International pediatric CML expert panel recommendations. Leukemia 2023; 37(3): 505-17. doi: 10.1038/s41375-023-01822-2 PMID: 36707619
- Muramatsu H, Takahashi Y, Sakaguchi H, et al. Excellent outcomes of children with CML treated with imatinib mesylate compared to that in pre-imatinib era. Int J Hematol 2011; 93(2): 186-91. doi: 10.1007/s12185-010-0764-9 PMID: 21234820
- US Food & Drug Administration (FDA). Glivec. Summary of product characteristics. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2008/021588s024lbl.pdf (2021 Jun 19).
- European Medicines Agency (EMEA). Glivec. Summary of product characteristics. 2021. Available from: https://www.ema.europa.eu/en/medicines/human/EPAR/glivec
- Gore L, Kearns PR, de Martino ML, et al. Dasatinib in pediatric patients with chronic myeloid leukemia in chronic phase: Results from a phase II trial. J Clin Oncol 2018; 36(13): 1330-8. doi: 10.1200/JCO.2017.75.9597 PMID: 29498925
- Larson RA, Yin OQP, Hochhaus A, et al. Population pharmacokinetic and exposure-response analysis of nilotinib in patients with newly diagnosed Ph+ chronic myeloid leukemia in chronic phase. Eur J Clin Pharmacol 2012; 68(5): 723-33. doi: 10.1007/s00228-011-1200-7 PMID: 22207416
- Lindauer M, Hochhaus A. Dasatinib. Recent Results Cancer Res 2010; 184: 83-102. doi: 10.1007/978-3-642-01222-8_7 PMID: 20072833
- McCafferty EH, Dhillon S, Deeks ED. Dasatinib: A review in pediatric chronic myeloid leukemia. Paediatr Drugs 2018; 20(6): 593-600. doi: 10.1007/s40272-018-0319-8 PMID: 30465234
- US Food & Drug Administration (FDA). Tasigna. Summary of product characteristics. 2021. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2010/022068s004s005lbl.pdf
- European Medicines Agency (EMEA). Tasigna. Summary of product characteristics. Available from: https://www.ema.europa.eu/en/documents/productinformation/tasignaeparproductinformation_en.pdf (2021 Apr 8.).
- Karadaş N, Göktepe ŞŞÖ, Baş İ, et al. Current childhood chronic myeloid leukemia management under tyrosine kinase inhibitor treatment. Int J Hematol 2023; 117(3): 446-55. doi: 10.1007/s12185-022-03497-4 PMID: 36401784
- Hijiya N, Millot F, Suttorp M. Chronic myeloid leukemia in children: Clinical findings, management, and unanswered questions. Pediatr Clin North Am 2015; 62(1): 107-19. doi: 10.1016/j.pcl.2014.09.008 PMID: 25435115
- Sun LR, Wang LZ, Zhong R, Zhao YX, Sun Y. Tyrosine kinase inhibitors for pediatric leukemia: History and current status. Discov Med 2022; 33(169): 93-9. PMID: 36274227
- Ampatzidou M, Papadhimitriou SI, Goussetis E, Panagiotou JP, Papadakis V, Polychronopoulou S. Chronic myeloid leukemia (CML) in children: Classical and newer therapeutic approaches. Pediatr Hematol Oncol 2012; 29(5): 389-94. doi: 10.3109/08880018.2012.691946 PMID: 22690835
- Madabhavi I, Patel A, Modi G, Anand A, Panchal H, Parikh S. Pediatric chronic myeloid leukemia: A single-center experience. J Cancer Res Ther 2020; 16(1): 110-5. doi: 10.4103/jcrt.JCRT_833_15 PMID: 32362619
- Millot F, Traore P, Guilhot J, et al. Clinical and biological features at diagnosis in 40 children with chronic myeloid leukemia. Pediatrics 2005; 116(1): 140-3. doi: 10.1542/peds.2004-2473 PMID: 15995044
- Hijiya N, Schultz KR, Metzler M, Millot F, Suttorp M. Pediatric chronic myeloid leukemia is a unique disease that requires a different approach. Blood 2016; 127(4): 392-9. doi: 10.1182/blood-2015-06-648667 PMID: 26511135
- Castagnetti F, Gugliotta G, Baccarani M, et al. Differences among young adults, adults and elderly chronic myeloid leukemia patients. Ann Oncol 2015; 26(1): 185-92. doi: 10.1093/annonc/mdu490 PMID: 25361995
- Moschovi M, Kelaidi C. Chronic myeloid leukemia in children and adolescents: The achilles heel of oncogenesis and tyrosine kinase inhibitors. Int J Mol Sci 2021; 22(15): 7806. doi: 10.3390/ijms22157806 PMID: 34360571
- Bakhshi S, Pushpam D. Paediatric chronic myeloid leukaemia: Is it really a different disease? Indian J Med Res 2019; 149(5): 600-9. doi: 10.4103/ijmr.IJMR_331_19 PMID: 31417027
- Barr RD. Imatinib mesylate in children and adolescents with cancer. Pediatr Blood Cancer 2010; 55(1): 18-25. doi: 10.1002/pbc.22484 PMID: 20486169
- Champagne MA, Capdeville R, Krailo M, et al. Imatinib mesylate (STI571) for treatment of children with Philadelphia chromosome-positive leukemia: Results from a Childrens Oncology Group phase 1 study. Blood 2004; 104(9): 2655-60. doi: 10.1182/blood-2003-09-3032 PMID: 15231574
- Suttorp M, Schulze P, Glauche I, et al. Front-line imatinib treatment in children and adolescents with chronic myeloid leukemia: Results from a phase III trial. Leukemia 2018; 32(7): 1657-69. doi: 10.1038/s41375-018-0179-9 PMID: 29925908
- European Medicines Agency (EMEA). Sprycel. Summary of product characteristics. Available from: https://www.ema.europa.eu/en/documents/productinformation/spryceleparproductinformation_en.pdf (2021 Apr 8).
- US Food & Drug Administration (FDA). Sprycel. Summary of product characteristics. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/021986s020lbl.pdf (2021 Jun 19).
- Hochhaus A, Saglio G, Hughes TP, et al. Long-term benefits and risks of frontline nilotinib vs. imatinib for chronic myeloid leukemia in chronic phase: 5-year update of the randomized ENESTnd trial. Leukemia 2016; 30(5): 1044-54. doi: 10.1038/leu.2016.5 PMID: 26837842
- Suttorp M, Yaniv I, Schultz KR. Controversies in the treatment of CML in children and adolescents: TKIs versus BMT? Biol Blood Marrow Transplant 2011; 17(1) (Suppl.): S115-22. doi: 10.1016/j.bbmt.2010.09.003 PMID: 21195300
- Hijiya N, Suttorp M. How I treat chronic myeloid leukemia in children and adolescents. Blood 2019; 133(22): 2374-84. doi: 10.1182/blood.2018882233 PMID: 30917954
- Hijiya N, Maschan A, Rizzari C, et al. Phase 2 study of nilotinib in pediatric patients with Philadelphia chromosomepositive chronic myeloid leukemia. Blood 2019; 134(23): 2036-45. doi: 10.1182/blood.2019000069 PMID: 31511239
- Carofiglio F, Lopalco A, Lopedota A, et al. Bcr-Abl tyrosine kinase inhibitors in the treatment of pediatric CML. Int J Mol Sci 2020; 21(12): 4469. doi: 10.3390/ijms21124469 PMID: 32586039
- Chemaitilly W, Sklar CA. Childhood cancer treatments and associated endocrine late effects: A concise guide for the pediatric endocrinologist. Horm Res Paediatr 2019; 91(2): 74-82. doi: 10.1159/000493943 PMID: 30404091
- Sarkis-Onofre R, Catalá-López F, Aromataris E, Lockwood C. How to properly use the PRISMA Statement. Syst Rev 2021; 10(1): 117. doi: 10.1186/s13643-021-01671-z PMID: 33875004
- Rethlefsen ML, Kirtley S, Waffenschmidt S, et al. PRISMA-S: An extension to the PRISMA statement for reporting literature searches in systematic reviews. Syst Rev 2021; 10(1): 39. doi: 10.1186/s13643-020-01542-z PMID: 33499930
- Hutton B, Salanti G, Caldwell DM, et al. The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: Checklist and explanations. Ann Intern Med 2015; 162(11): 777-84. doi: 10.7326/M14-2385 PMID: 26030634
- Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. J Clin Epidemiol 2009; 62(10): e1-e34. doi: 10.1016/j.jclinepi.2009.06.006 PMID: 19631507
- Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. BMJ 2009; 339(jul21 1): b2535. doi: 10.1136/bmj.b2535
- Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. J Clin Epidemiol 2021; 134: 178-89. doi: 10.1016/j.jclinepi.2021.03.001 PMID: 33789819
- Bansal D, Shava U, Varma N, Trehan A, Marwaha RK. Imatinib has adverse effect on growth in children with chronic myeloid leukemia. Pediatr Blood Cancer 2012; 59(3): 481-4. doi: 10.1002/pbc.23389 PMID: 22052850
- Boddu D, Thankamony P, Guruprasad CS, Nair M, Rajeswari B, Seetharam S. Effect of imatinib on growth in children with chronic myeloid leukemia. Pediatr Hematol Oncol 2019; 36(4): 189-97. doi: 10.1080/08880018.2019.1610119 PMID: 31298597
- Cai Y, Liu C, Guo Y, et al. Long-term safety and efficacy of imatinib in pediatric patients with chronic myeloid leukemia: Single- center experience from China. Int J Hematol 2021; 113(3): 413-21. doi: 10.1007/s12185-020-03042-1 PMID: 33386594
- Choeyprasert W, Yansomdet T, Natesirinilkul R, Wejaphikul K, Charoenkwan P. Adverse effects of imatinib in children with chronic myelogenous leukemia. Pediatr Int 2017; 59(3): 286-92. doi: 10.1111/ped.13136 PMID: 27541072
- Millot F, Guilhot J, Baruchel A, et al. Growth deceleration in children treated with imatinib for chronic myeloid leukaemia. Eur J Cancer 2014; 50(18): 3206-11. doi: 10.1016/j.ejca.2014.10.007 PMID: 25459396
- Narayanan KR, Bansal D, Walia R, et al. Growth failure in children with chronic myeloid leukemia receiving imatinib is due to disruption of GH/IGF-1 axis. Pediatr Blood Cancer 2013; 60(7): 1148-53. doi: 10.1002/pbc.24397 PMID: 23322583
- Rastogi MV, Stork L, Druker B, Blasdel C, Nguyen T, Boston BA. Imatinib mesylate causes growth deceleration in pediatric patients with chronic myelogenous leukemia. Pediatr Blood Cancer 2012; 59(5): 840-5. doi: 10.1002/pbc.24121 PMID: 22378641
- Shima H, Tokuyama M, Tanizawa A, et al. Distinct impact of imatinib on growth at prepubertal and pubertal ages of children with chronic myeloid leukemia. J Pediatr 2011; 159(4): 676-81. doi: 10.1016/j.jpeds.2011.03.046 PMID: 21592517
- Ulmer A, Tabea Tauer J, Glauche I, Jung R, Suttorp M. TK inhibitor treatment disrupts growth hormone axis: Clinical observations in children with CML and experimental data from a juvenile animal model. Klin Padiatr 2013; 225(3): 120-6. doi: 10.1055/s-0033-1343483 PMID: 23716272
- Walia R, Aggarwal A, Bhansali A, et al. Acquired neuro-secretory defect in growth hormone secretion due to Imatinib mesylate and the efficacy of growth hormone therapy in children with chronic myeloid leukemia. Pediatr Hematol Oncol 2020; 37(2): 99-108. doi: 10.1080/08880018.2019.1689320 PMID: 31747806
- Zheng YZ, Li J, Chen C, Zheng H, Fu DH, Hu JD. Long-term outcome of tyrosine kinase inhibitor treatment in children and adolescents with newly diagnosed chronic myeloid leukemia in chronic phase. Chin Med J 2021; 134(24): 3009-11. doi: 10.1097/CM9.0000000000001656 PMID: 34310396
- Hijiya N, Maschan A, Rizzari C, et al. A phase 2 study of nilotinib in pediatric patients with CML: Long-term update on growth retardation and safety. Blood Adv 2021; 5(14): 2925-34. doi: 10.1182/bloodadvances.2020003759 PMID: 34309636
- Kimoto T, Inoue M, Kawa K. Growth deceleration in a girl treated with imatinib. Int J Hematol 2009; 89(2): 251-2. doi: 10.1007/s12185-008-0251-8 PMID: 19152100
- Kebapcilar L, Bilgir O, Alacacioglu I, et al. Does imatinib mesylate therapy cause growth hormone deficiency? Med Princ Pract 2009; 18(5): 360-3. doi: 10.1159/000226288 PMID: 19648757
- Schmid H, Jaeger BAS, Lohse J, Suttorp M. Longitudinal growth retardation in a prepuberal girl with chronic myeloid leukemia on long-term treatment with imatinib. Haematologica 2009; 94(8): 1177-9. doi: 10.3324/haematol.2009.008359 PMID: 19546438
- Werner H. The IGF1 signaling pathway: From basic concepts to therapeutic opportunities. Int J Mol Sci 2023; 24(19): 14882. doi: 10.3390/ijms241914882 PMID: 37834331
- Bouillon R. Growth hormone and bone. Horm Res 1991; 36(1): 49-55. doi: 10.1159/000182189 PMID: 1806485
- Niwczyk O, Grymowicz M, Szczęsnowicz A, et al. Bones and hormones: Interaction between hormones of the hypothalamus, pituitary, adipose tissue and bone. Int J Mol Sci 2023; 24(7): 6840. doi: 10.3390/ijms24076840 PMID: 37047811
- Brooks AJ, Waters MJ. The growth hormone receptor: Mechanism of activation and clinical implications. Nat Rev Endocrinol 2010; 6(9): 515-25. doi: 10.1038/nrendo.2010.123 PMID: 20664532
- Lodish MB. Clinical review: Kinase inhibitors: Adverse effects related to the endocrine system. J Clin Endocrinol Metab 2013; 98(4): 1333-42. doi: 10.1210/jc.2012-4085 PMID: 23450053
- Gupta P, Banothu KK, Haldar P, Gupta AK, Meena JP. Effect of imatinib mesylate on growth in pediatric chronic myeloid leukemia: A systematic review and meta-analysis. J Pediatr Hematol Oncol 2023; 45(5): 227-34. doi: 10.1097/MPH.0000000000002660 PMID: 37027248
- Chulani VL, Gordon LP. Adolescent growth and development. Prim Care 2014; 41(3): 465-87. doi: 10.1016/j.pop.2014.05.002 PMID: 25124201
- Berenbaum SA, Beltz AM, Corley R. The importance of puberty for adolescent development: Conceptualization and measurement. Adv Child Dev Behav 2015; 48: 53-92. doi: 10.1016/bs.acdb.2014.11.002 PMID: 25735941
- Cameron JL. Interrelationships between hormones, behavior, and affect during adolescence: Understanding hormonal, physical, and brain changes occurring in association with pubertal activation of the reproductive axis. Introduction to part III. Ann N Y Acad Sci 2004; 1021(1): 110-23. doi: 10.1196/annals.1308.012 PMID: 15251880
- Remschmidt H. Psychosocial milestones in normal puberty and adolescence. Horm Res 1994; 41(2): 19-29. doi: 10.1159/000183955 PMID: 8088699
- Cronau H, Brown RT. Growth and development: Physical, mental, and social aspects. Prim Care 1998; 25(1): 23-45. doi: 10.1016/S0095-4543(05)70324-9 PMID: 9469915
- Pinyerd B, Zipf WB. Puberty-timing is everything! J Pediatr Nurs 2005; 20(2): 75-82. doi: 10.1016/j.pedn.2004.12.011 PMID: 15815567
- Giona F, Mariani S, Gnessi L, et al. Bone metabolism, growth rate and pubertal development in children with chronic myeloid leukemia treated with imatinib during puberty. Haematologica 2013; 98(3): e25-7. doi: 10.3324/haematol.2012.067447 PMID: 22983586
- Hobernicht SL, Schweiger B, Zeitler P, Wang M, Hunger SP. Acquired growth hormone deficiency in a girl with chronic myelogenous leukemia treated with tyrosine kinase inhibitor therapy. Pediatr Blood Cancer 2011; 56(4): 671-3. doi: 10.1002/pbc.22945 PMID: 21298759
- Mariani S, Giona F, Basciani S, Brama M, Gnessi L. Low bone density and decreased inhibin-B/FSH ratio in a boy treated with imatinib during puberty. Lancet 2008; 372(9633): 111-2. doi: 10.1016/S0140-6736(08)61023-5 PMID: 18620939
- Ibba A, Loche S. Diagnosis of GH deficiency without GH stimulation tests. Front Endocrinol 2022; 13: 853290. doi: 10.3389/fendo.2022.853290 PMID: 35250894
- OSullivan S, Naot D, Callon K, et al. Imatinib promotes osteoblast differentiation by inhibiting PDGFR signaling and inhibits osteoclastogenesis by both direct and stromal cell-dependent mechanisms. J Bone Miner Res 2007; 22(11): 1679-89. doi: 10.1359/jbmr.070719 PMID: 17663639
- Vandyke K, Fitter S, Dewar AL, Hughes TP, Zannettino ACW. Dysregulation of bone remodeling by imatinib mesylate. Blood 2010; 115(4): 766-74. doi: 10.1182/blood-2009-08-237404 PMID: 19890095
- Vandyke K, Dewar AL, Fitter S, et al. Imatinib mesylate causes growth plate closure in vivo. Leukemia 2009; 23(11): 2155-9. doi: 10.1038/leu.2009.150 PMID: 19626049
- Samis J, Lee P, Zimmerman D, Arceci RJ, Suttorp M, Hijiya N. Recognizing endocrinopathies associated with tyrosine kinase inhibitor therapy in children with chronic myelogenous leukemia. Pediatr Blood Cancer 2016; 63(8): 1332-8. doi: 10.1002/pbc.26028 PMID: 27100618
- Zatelli MC, Ambrosio MR, Bondanelli M, degli Uberti E. Pituitary side effects of old and new drugs. J Endocrinol Invest 2014; 37(10): 917-23. doi: 10.1007/s40618-014-0133-2 PMID: 25070042
- Suttorp M, Millot F. Treatment of pediatric chronic myeloid leukemia in the year 2010: Use of tyrosine kinase inhibitors and stem-cell transplantation. Hematology 2010; 2010(1): 368-76. doi: 10.1182/asheducation-2010.1.368 PMID: 21239821
- Pushpam D, Bakhshi S. Pharmacology of tyrosine kinase inhibitors in chronic myeloid leukemia; A clinicians perspective. Daru 2020; 28(1): 371-85. doi: 10.1007/s40199-019-00321-z PMID: 31900888
- Brown RL. Tyrosine kinase inhibitor-induced hypothyroidism: Incidence, etiology, and management. Target Oncol 2011; 6(4): 217-26. doi: 10.1007/s11523-011-0197-2 PMID: 22101606
- Basolo A, Matrone A, Elisei R, Santini F. Effects of tyrosine kinase inhibitors on thyroid function and thyroid hormone metabolism. Semin Cancer Biol 2022; 79: 197-202. doi: 10.1016/j.semcancer.2020.12.008 PMID: 33476722
- Patel S, Nayernama A, Jones SC, de Claro RA, Waldron PE. BCR-ABL1 tyrosine kinase inhibitor-associated thyroid dysfunction: A review of cases reported to the FDA Adverse Event Reporting System and published in the literature. Am J Hematol 2020; 95(12): E332-5. doi: 10.1002/ajh.25997 PMID: 32918288
- Torino F, Corsello SM, Longo R, Barnabei A, Gasparini G. Hypothyroidism related to tyrosine kinase inhibitors: An emerging toxic effect of targeted therapy. Nat Rev Clin Oncol 2009; 6(4): 219-28. doi: 10.1038/nrclinonc.2009.4 PMID: 19333228
- Kim TD, Schwarz M, Nogai H, et al. Thyroid dysfunction caused by second-generation tyrosine kinase inhibitors in Philadelphia chromosome-positive chronic myeloid leukemia. Thyroid 2010; 20(11): 1209-14. doi: 10.1089/thy.2010.0251 PMID: 20929406
- Berman E, Nicolaides M, Maki RG, et al. Altered bone and mineral metabolism in patients receiving imatinib mesylate. N Engl J Med 2006; 354(19): 2006-13. doi: 10.1056/NEJMoa051140 PMID: 16687713
- OSullivan S, Horne A, Wattie D, et al. Decreased bone turnover despite persistent secondary hyperparathyroidism during prolonged treatment with imatinib. J Clin Endocrinol Metab 2009; 94(4): 1131-6. doi: 10.1210/jc.2008-2324 PMID: 19174494
Supplementary files
