Nanotechnological Advances in the Diagnosis of Gynecological Cancers and Nanotheranostics


Cite item

Full Text

Abstract

:Gynecological cancers are one of the main causes of female mortality worldwide. Despite the various strategies to reduce mortality and improve quality of life, there are still many deficiencies in the diagnosis and treatment of gynecological cancers. One of the important steps to ensure optimal cancer treatment is the early detection of cancer cells and the use of drugs to reduce toxicity. Due to the increase in systemic toxicity and resistance to traditional and conventional diagnostic methods, new strategies, including nanotechnology, are being used to improve diagnosis and reduce the severity of the disease. Nanoparticles (NPs) provide exciting opportunities to improve Gynecological Cancers (GCs) diagnosis, particularly in the initial stages. In biomedical investigations and clinical settings, NPs can be used to increase the sensitivity and specificity of recognition and/or imaging of GCs with the help of their molecular and cellular processes. To design more efficient diagnostic NPs for gynecological cancer cells or tissues, determining the specific biomarkers is of great importance. NP-based imaging agents are another solution to trace cancer cells. This review highlights the potential of some NP-based diagnostic techniques in GC detection, which could be translated to clinical settings to improve patient care.

About the authors

Vahideh Keyvani

Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences

Email: info@benthamscience.net

Samaneh Mollazadeh

Natural Products and Medicinal Plants Research Center,, North Khorasan University of Medical Sciences

Email: info@benthamscience.net

Espanta Riahi

Blood Borne Infections Research Center,, Academic Center for Education, Culture and Research (ACECR)

Email: info@benthamscience.net

Reihaneh Mahmoudian

Metabolic Syndrome Research Center, Mashhad University of Medical Sciences

Email: info@benthamscience.net

Kazem Anvari

Cancer Research Center, Mashhad University of Medical Sciences

Email: info@benthamscience.net

Amir Avan

Metabolic Syndrome Research Center, Mashhad University of Medical Sciences

Author for correspondence.
Email: info@benthamscience.net

References

  1. Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 2015; 136(5): E359-86. doi: 10.1002/ijc.29210 PMID: 25220842
  2. Mandilaras V, Karakasis K, Clarke B, Oza A, Lheureux S. Rare tumors in gynaecological cancers and the lack of therapeutic options and clinical trials. Expert Opin Orphan Drugs 2017; 5(1): 71-83. doi: 10.1080/21678707.2017.1264300
  3. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin 2019; 69(1): 7-34. doi: 10.3322/caac.21551 PMID: 30620402
  4. Matulonis UA, Sood AK, Fallowfield L, Howitt BE, Sehouli J, Karlan BY. Ovarian cancer. Nat Rev Dis Primers 2016; 2(1): 16061. doi: 10.1038/nrdp.2016.61 PMID: 27558151
  5. Jelovac D, Armstrong DK. Recent progress in the diagnosis and treatment of ovarian cancer. CA Cancer J Clin 2011; 61(3): 183-203. doi: 10.3322/caac.20113 PMID: 21521830
  6. Bowtell DD, Böhm S, Ahmed AA, et al. Rethinking ovarian cancer II: Reducing mortality from high-grade serous ovarian cancer. Nat Rev Cancer 2015; 15(11): 668-79. doi: 10.1038/nrc4019 PMID: 26493647
  7. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68(6): 394-424. doi: 10.3322/caac.21492 PMID: 30207593
  8. Muñoz N, Bosch FX, de Sanjosé S, et al. Epidemiologic classification of human papillomavirus types associated with cervical cancer. N Engl J Med 2003; 348(6): 518-27. doi: 10.1056/NEJMoa021641 PMID: 12571259
  9. Morice P, Leary A, Creutzberg C, Abu-Rustum N, Darai E. Endometrial cancer. Lancet 2016; 387(10023): 1094-108. doi: 10.1016/S0140-6736(15)00130-0 PMID: 26354523
  10. Renehan AG, Tyson M, Egger M, Heller RF, Zwahlen M. Body-mass index and incidence of cancer: A systematic review and meta-analysis of prospective observational studies. Lancet 2008; 371(9612): 569-78. doi: 10.1016/S0140-6736(08)60269-X PMID: 18280327
  11. Colombo N, Creutzberg C, Amant F, et al. ESMO-ESGO-ESTRO consensus conference on endometrial cancer: Diagnosis, treatment and follow-up. Int J Gynecol Cancer 2016; 26(1): 2-30. doi: 10.1097/IGC.0000000000000609 PMID: 26645990
  12. Henderson E, Huynh G, Wilson K, Plebanski M, Corrie S. The development of nanoparticles for the detection and imaging of ovarian cancers. Biomedicines 2021; 9(11): 1554. doi: 10.3390/biomedicines9111554 PMID: 34829783
  13. Jin C, Wang K, Oppong-Gyebi A, Hu J. Application of nanotechnology in cancer diagnosis and therapy-a mini-review. Int J Med Sci 2020; 17(18): 2964-73. doi: 10.7150/ijms.49801 PMID: 33173417
  14. Gulia M, Nishal S, Maddiboyina B, Dutt R, Desu PK, Wadhwa R. Physiological pathway, diagnosis and nanotechnology based treatment strategies for ovarian cancer: A review. Med Omics 2023; 8(2): 100020.
  15. Caruana BT, Byrne FL. The NF-κB signalling pathway regulates GLUT6 expression in endometrial cancer. Cell Signal 2020; 73: 109688. doi: 10.1016/j.cellsig.2020.109688 PMID: 32512041
  16. Das S, Mukherjee T, Mohanty S, et al. Impact of NF-κB Signaling and Sirtuin-1 Protein for Targeted Inflammatory Intervention. Curr Pharm Biotechnol 2024; 25 doi: 10.2174/0113892010301469240409082212 PMID: 38638042
  17. Gholap AD, Kapare HS, Pagar S, et al. Exploring modified chitosan-based gene delivery technologies for therapeutic advancements. Int J Biol Macromol 2024; 260(Pt 2): 129581. doi: 10.1016/j.ijbiomac.2024.129581 PMID: 38266848
  18. Singh H, Chopra H, Singh I, et al. Molecular targeted therapies for cutaneous squamous cell carcinoma: Recent developments and clinical implications. EXCLI J 2024; 23: 300-34. PMID: 38655092
  19. Mohanto S, Biswas A, Gholap AD, et al. Potential biomedical applications of Terbium-based Nanoparticles (TbNPs): A review on recent advancement. ACS Biomater Sci Eng 2024; 10(5): 2703-24. doi: 10.1021/acsbiomaterials.3c01969 PMID: 38644798
  20. Nag S, Mitra O, P S, et al. Exploring the emerging trends in the synthesis and theranostic paradigms of cerium oxide nanoparticles (CeONPs): A comprehensive review. Mater Today Chem 2024; 35: 101894. doi: 10.1016/j.mtchem.2023.101894
  21. Gowda BHJ, Mohanto S, Singh A, et al. Nanoparticle-based therapeutic approaches for wound healing: A review of the state-of-the-art. Mater Today Chem 2023; 27: 101319. doi: 10.1016/j.mtchem.2022.101319
  22. Pramanik S, Mohanto S, Manne R, et al. Nanoparticle-based drug delivery system: The magic bullet for the treatment of chronic pulmonary diseases. Mol Pharm 2021; 18(10): 3671-718. doi: 10.1021/acs.molpharmaceut.1c00491 PMID: 34491754
  23. Gasparotto G, Costa JPC, Costa PI, Zaghete MA, Mazon T. Electrochemical immunosensor based on ZnO nanorods-Au nanoparticles nanohybrids for ovarian cancer antigen CA-125 detection. Mater Sci Eng C 2017; 76: 1240-7. doi: 10.1016/j.msec.2017.02.031 PMID: 28482492
  24. Pulikkathodi AK, Sarangadharan I, Lo CY, Chen PH, Chen CC, Wang YL. Miniaturized biomedical sensors for enumeration of extracellular vesicles. Int J Mol Sci 2018; 19(8): 2213. doi: 10.3390/ijms19082213 PMID: 30060613
  25. Kumar S, Weaver VM. Mechanics, malignancy, and metastasis: The force journey of a tumor cell. Cancer Metastasis Rev 2009; 28(1-2): 113-27. doi: 10.1007/s10555-008-9173-4 PMID: 19153673
  26. Bao G, Suresh S. Cell and molecular mechanics of biological materials. Nat Mater 2003; 2(11): 715-25. doi: 10.1038/nmat1001 PMID: 14593396
  27. Zhao J, Tan W, Zheng J, Su Y, Cui M. Aptamer nanomaterials for ovarian cancer target theranostics. Front Bioeng Biotechnol 2022; 10: 884405. doi: 10.3389/fbioe.2022.884405 PMID: 35419352
  28. Nag S, Mitra O, Tripathi G, et al. Nanomaterials-assisted photothermal therapy for breast cancer: State-of-the-art advances and future perspectives. Photodiagn Photodyn Ther 2024; 45: 103959. doi: 10.1016/j.pdpdt.2023.103959 PMID: 38228257
  29. Alshehri S, Imam SS, Rizwanullah M, et al. Progress of cancer nanotechnology as diagnostics, therapeutics, and theranostics nanomedicine: Preclinical promise and translational challenges. Pharmaceutics 2020; 13(1): 24. doi: 10.3390/pharmaceutics13010024 PMID: 33374391
  30. Abolhasani Zadeh F, Shahhosseini E, Rasoolzadegan S, Özbolat G, Farahbod F. Au nanoparticles in the diagnosis and treatment of ovarian cancer: A new horizon in the personalized medicine. Nanomed Res J 2022; 7(1): 1-18.
  31. Alrushaid N, Khan FA, Al-Suhaimi EA, Elaissari A. Nanotechnology in cancer diagnosis and treatment. Pharmaceutics 2023; 15(3): 1025. doi: 10.3390/pharmaceutics15031025 PMID: 36986885
  32. Wahab MRA, Palaniyandi T, Ravi M, et al. Biomarkers and biosensors for early cancer diagnosis, monitoring and prognosis. Pathol Res Pract 2023; 250: 154812. doi: 10.1016/j.prp.2023.154812 PMID: 37741139
  33. Tran LH, Graulus GJ, Vincke C, et al. Nanobodies for the early detection of ovarian cancer. Int J Mol Sci 2022; 23(22): 13687. doi: 10.3390/ijms232213687 PMID: 36430166
  34. Ye B, Skates S, Mok SC, et al. Proteomic-based discovery and characterization of glycosylated eosinophil-derived neurotoxin and COOH-terminal osteopontin fragments for ovarian cancer in urine. Clin Cancer Res 2006; 12(2): 432-41. doi: 10.1158/1078-0432.CCR-05-0461 PMID: 16428483
  35. Sawada K, Ohyagi-Hara C, Kimura T, Morishige K. Integrin inhibitors as a therapeutic agent for ovarian cancer. J Oncol 2012; 2012: 915140. doi: 10.1155/2012/915140
  36. Gershenson DM. A randomized phase II/III study to assess the efficacy of trametinib in patients with recurrent or progressive low-grade serous ovarian or peritoneal cancer. Gynecol Oncol 2020; 159: 22. doi: 10.1016/j.ygyno.2020.06.045
  37. Xu E, McClelland A, Zeng TH. A potential nanosensing method for early diagnosis of endometrial cancer with sialic acid biomarker. 2023 IEEE 23rd International Conference on Nanotechnology (NANO. 02-05 July 2023); Jeju City, Korea. 2023.
  38. Ma X, Lakshmipriya T, Gopinath SC. Recent advances in identifying biomarkers and high-affinity aptamers for gynecologic cancers diagnosis and therapy. J Anal Methods Chem 2019; 2019: 5426974. doi: 10.1155/2019/5426974
  39. Herrero C, de la Fuente A, Casas-Arozamena C, et al. Extracellular vesicles-based biomarkers represent a promising liquid biopsy in endometrial cancer. Cancers 2019; 11(12): 2000. doi: 10.3390/cancers11122000 PMID: 31842290
  40. Panikar SS, Banu N, Haramati J, et al. Anti-fouling SERS-based immunosensor for point-of-care detection of the B7-H6 tumor biomarker in cervical cancer patient serum. Anal Chim Acta 2020; 1138: 110-22. doi: 10.1016/j.aca.2020.09.019 PMID: 33161972
  41. Baabu PRS, Srinivasan S, Nagarajan S, et al. End-to-end computational approach to the design of RNA biosensors for detecting miRNA biomarkers of cervical cancer. Synth Syst Biotechnol 2022; 7(2): 802-14. doi: 10.1016/j.synbio.2022.03.008 PMID: 35475253
  42. Boitano TKL, Barrington DA, Batra S, et al. Differences in referral patterns based on race for women at high-risk for ovarian cancer in the southeast: Results from a gynecologic cancer risk assessment clinic. Gynecol Oncol 2019; 154(2): 379-82. doi: 10.1016/j.ygyno.2019.05.031 PMID: 31196574
  43. Koo MM, Swann R, McPhail S, et al. Presenting symptoms of cancer and stage at diagnosis: Evidence from a cross-sectional, population-based study. Lancet Oncol 2020; 21(1): 73-9. doi: 10.1016/S1470-2045(19)30595-9 PMID: 31704137
  44. Barani M, Bilal M, Sabir F, Rahdar A, Kyzas GZ. Nanotechnology in ovarian cancer: Diagnosis and treatment. Life Sci 2021; 266: 118914. doi: 10.1016/j.lfs.2020.118914 PMID: 33340527
  45. Anzar N, Rahil Hasan M, Akram M, Yadav N, Narang J. Systematic and validated techniques for the detection of ovarian cancer emphasizing the electro-analytical approach. Process Biochem 2020; 94: 126-35. doi: 10.1016/j.procbio.2020.04.006
  46. Qian L, Ren J, Liu A, et al. MR imaging of epithelial ovarian cancer: A combined model to predict histologic subtypes. Eur Radiol 2020; 30(11): 5815-25. doi: 10.1007/s00330-020-06993-5 PMID: 32535738
  47. Razmi N, Hasanzadeh M. Current advancement on diagnosis of ovarian cancer using biosensing of CA 125 biomarker: Analytical approaches. Trends Analyt Chem 2018; 108: 1-12. doi: 10.1016/j.trac.2018.08.017
  48. Er S, Laraib U, Arshad R, et al. Amino acids, peptides, and proteins: Implications for nanotechnological applications in biosensing and drug/gene delivery. Nanomaterials 2021; 11(11): 3002. doi: 10.3390/nano11113002 PMID: 34835766
  49. Yi-Shao LI, Cheng E, Chang YH, et al. Taiwan Semiconductor Manufacturing Co TSMC Ltd, assignee. Optical biosensor device. US Patent US 9,968,927, 2018.
  50. Sohrabi H, kholafazad Kordasht H, Pashazadeh-Panahi P, et al. Recent advances of electrochemical and optical biosensors for detection of C-reactive protein as a major inflammatory biomarker. Microchem J 2020; 158: 105287. doi: 10.1016/j.microc.2020.105287
  51. Soler M, Lechuga LM. Boosting cancer immunotherapies with optical biosensor nanotechnologies. EMJ 2019; 4(4): 124-32. doi: 10.33590/emj/10312397
  52. Yang X, Tang Y, Zhang X, et al. Fluorometric visualization of mucin 1 glycans on cell surfaces based on rolling-mediated cascade amplification and CdTe quantum dots. Mikrochim Acta 2019; 186(11): 721. doi: 10.1007/s00604-019-3840-8 PMID: 31655930
  53. Al-Ogaidi I, Gou H, Aguilar ZP, et al. Detection of the ovarian cancer biomarker CA-125 using chemiluminescence resonance energy transfer to graphene quantum dots. Chem Commun 2014; 50(11): 1344-6. doi: 10.1039/C3CC47701K PMID: 24345782
  54. Wang J, Song J, Zheng H, et al. Application of NiFe2O4 nanotubes as catalytically promoted sensing platform for ratiometric electrochemiluminescence analysis of ovarian cancer marker. Sens Actuators B Chem 2019; 288: 80-7. doi: 10.1016/j.snb.2019.02.099
  55. Parmin NA, Hashim U, Gopinath SCB, et al. Potentials of MicroRNA in early detection of ovarian cancer by analytical electrical biosensors. Crit Rev Anal Chem 2022; 52(7): 1511-23. doi: 10.1080/10408347.2021.1890543 PMID: 34092138
  56. Barani M, Bilal M, Rahdar A, et al. Nanodiagnosis and nanotreatment of colorectal cancer: An overview. J Nanopart Res 2021; 23(1): 18. doi: 10.1007/s11051-020-05129-6
  57. Charkhchi P, Cybulski C, Gronwald J, Wong FO, Narod SA, Akbari MR. CA125 and ovarian cancer: A comprehensive review. Cancers 2020; 12(12): 3730. doi: 10.3390/cancers12123730 PMID: 33322519
  58. Rea K, Roggiani F, De Cecco L, et al. Simultaneous E-cadherin and PLEKHA7 expression negatively affects E-cadherin/EGFR mediated ovarian cancer cell growth. J Exp Clin Cancer Res 2018; 37(1): 146. doi: 10.1186/s13046-018-0796-1 PMID: 29996940
  59. Du X, Zhang Z, Zheng X, et al. An electrochemical biosensor for the detection of epithelial-mesenchymal transition. Nat Commun 2020; 11(1): 192. doi: 10.1038/s41467-019-14037-w PMID: 31924791
  60. Jamshaid T, Neto ETT, Eissa MM, et al. Magnetic particles: From preparation to lab-on-a-chip, biosensors, microsystems and microfluidics applications. Trends Analyt Chem 2016; 79: 344-62. doi: 10.1016/j.trac.2015.10.022
  61. Akceoglu GA, Saylan Y, Inci F. A snapshot of microfluidics in point-of-care diagnostics: Multifaceted integrity with materials and sensors. Adv Mater Technol 2021; 6(7): 2100049. doi: 10.1002/admt.202100049
  62. Wu M, Ouyang Y, Wang Z, et al. Isolation of exosomes from whole blood by integrating acoustics and microfluidics. Proc Natl Acad Sci USA 2017; 114(40): 10584-9. doi: 10.1073/pnas.1709210114 PMID: 28923936
  63. Hisey CL, Dorayappan KDP, Cohn DE, Selvendiran K, Hansford DJ. Microfluidic affinity separation chip for selective capture and release of label-free ovarian cancer exosomes. Lab Chip 2018; 18(20): 3144-53. doi: 10.1039/C8LC00834E PMID: 30191215
  64. Dorayappan KDP, Gardner ML, Hisey CL, et al. A microfluidic chip enables isolation of exosomes and establishment of their protein profiles and associated signaling pathways in ovarian cancer. Cancer Res 2019; 79(13): 3503-13. doi: 10.1158/0008-5472.CAN-18-3538 PMID: 31097475
  65. Xuan MV, Ngọc TP, Quoc TV, Minh HN, Hoang NN, Do Quang L. Concentration detection of continuous-flow magnetic nanoparticles using giant magnetoresistance sensor. 2021 3rd International Symposium on Material and Electrical Engineering Conference (ISMEE). 10-11 November 2021; Bandung, Indonesia. 2021.
  66. Klein T, Wang W, Yu L, et al. Development of a multiplexed giant magnetoresistive biosensor array prototype to quantify ovarian cancer biomarkers. Biosens Bioelectron 2019; 126: 301-7. doi: 10.1016/j.bios.2018.10.046 PMID: 30445305
  67. Fan Y, Shi S, Ma J, Guo Y. A paper-based electrochemical immunosensor with reduced graphene oxide/thionine/gold nanoparticles nanocomposites modification for the detection of cancer antigen 125. Biosens Bioelectron 2019; 135: 1-7. doi: 10.1016/j.bios.2019.03.063 PMID: 30981027
  68. Saadati A, Hassanpour S, Bahavarnia F, Hasanzadeh M. A novel biosensor for the monitoring of ovarian cancer tumor protein CA 125 in untreated human plasma samples using a novel nano-ink: A new platform for efficient diagnosis of cancer using paper based microfluidic technology. Anal Methods 2020; 12(12): 1639-49. doi: 10.1039/D0AY00299B
  69. Bahavarnia F, Saadati A, Hassanpour S, Hasanzadeh M, Shadjou N, Hassanzadeh A. Paper based immunosensing of ovarian cancer tumor protein CA 125 using novel nano-ink: A new platform for efficient diagnosis of cancer and biomedical analysis using microfluidic paper-based analytical devices (µPAD). Int J Biol Macromol 2019; 138: 744-54. doi: 10.1016/j.ijbiomac.2019.07.109 PMID: 31326512
  70. Huang H, Kamm RD, Lee RT. Cell mechanics and mechanotransduction: Pathways, probes, and physiology. Am J Physiol Cell Physiol 2004; 287(1): C1-C11. doi: 10.1152/ajpcell.00559.2003 PMID: 15189819
  71. Tim O’Brien E, Cribb J, Marshburn D, Taylor RM II, Superfine R. Magnetic manipulation for force measurements in cell biology. Methods Cell Biol 2008; 89: 433-50. doi: 10.1016/S0091-679X(08)00616-X PMID: 19118685
  72. Swaminathan V, Mythreye K, O’Brien ET, Berchuck A, Blobe GC, Superfine R. Mechanical stiffness grades metastatic potential in patient tumor cells and in cancer cell lines. Cancer Res 2011; 71(15): 5075-80. doi: 10.1158/0008-5472.CAN-11-0247 PMID: 21642375
  73. Ketene AN, Schmelz EM, Roberts PC, Agah M. The effects of cancer progression on the viscoelasticity of ovarian cell cytoskeleton structures. Nanomedicine 2012; 8(1): 93-102. doi: 10.1016/j.nano.2011.05.012 PMID: 21704191
  74. Sharma S, Santiskulvong C, Bentolila LA, Rao J, Dorigo O, Gimzewski JK. Correlative nanomechanical profiling with super-resolution F-actin imaging reveals novel insights into mechanisms of cisplatin resistance in ovarian cancer cells. Nanomedicine 2012; 8(5): 757-66. doi: 10.1016/j.nano.2011.09.015 PMID: 22024198
  75. Pu T, Liu Y, Pei Y, et al. NIR-II fluorescence imaging for the detection and resection of cancerous foci and lymph nodes in early-stage orthotopic and advanced-stage metastatic ovarian cancer models. ACS Appl Mater Interfaces 2023; 15(27): 32226-39. doi: 10.1021/acsami.3c04949 PMID: 37385963
  76. Chen Y, Ma T, Liu P, et al. NIR-Light-activated ratiometric fluorescent hybrid micelles for high spatiotemporally controlled biological imaging and chemotherapy. Small 2020; 16(50): 2005667. doi: 10.1002/smll.202005667 PMID: 33217165
  77. Zhang Y, Lai B, Juhas M. Recent advances in aptamer discovery and applications. Molecules 2019; 24(5): 941. doi: 10.3390/molecules24050941 PMID: 30866536
  78. Hosseinzadeh L, Mazloum-Ardakani M. Advances in aptasensor technology. Adv Clin Chem 2020; 99: 237-79. doi: 10.1016/bs.acc.2020.02.010 PMID: 32951638
  79. Tripathi P, Sachan M, Nara S. Novel ssDNA ligand against ovarian cancer biomarker CA125 with promising diagnostic potential. Front Chem 2020; 8: 400. doi: 10.3389/fchem.2020.00400 PMID: 32500059
  80. Chen F, Liu Y, Chen C, Gong H, Cai C, Chen X. Respective and simultaneous detection tumor markers CA125 and STIP1 using aptamer-based fluorescent and RLS sensors. Sens Actuators B Chem 2017; 245: 470-6. doi: 10.1016/j.snb.2017.01.155
  81. Lu J, Song E, Ghoneim A, Alrashoud M. Machine learning for assisting cervical cancer diagnosis: An ensemble approach. Future Gener Comput Syst 2020; 106: 199-205. doi: 10.1016/j.future.2019.12.033
  82. Kim M. Barriers to HPV vaccination among korean men in the United States. Clin J Oncol Nurs 2022; 26(3): 324-7. doi: 10.1188/22.CJON.324-327 PMID: 35604730
  83. Serrano B, Brotons M, Bosch FX, Bruni L. Epidemiology and burden of HPV-related disease. Best Pract Res Clin Obstet Gynaecol 2018; 47: 14-26. doi: 10.1016/j.bpobgyn.2017.08.006 PMID: 29037457
  84. de Fouw M, Stroeken Y, Niwagaba B, et al. Involving men in cervical cancer prevention; A qualitative enquiry into male perspectives on screening and HPV vaccination in Mid-Western Uganda. PLoS One 2023; 18(1): e0280052. doi: 10.1371/journal.pone.0280052 PMID: 36706114
  85. Wölfel R, Corman VM, Guggemos W, et al. Virological assessment of hospitalized patients with COVID-2019. Nature 2020; 581(7809): 465-9. doi: 10.1038/s41586-020-2196-x PMID: 32235945
  86. Hosseini S, Vázquez-Villegas P, Rito-Palomares M, Martinez-Chapa SO, Hosseini S, Vázquez-Villegas P. Advantages, disadvantages and modifications of conventional ELISA. Enzyme-linked Immunosorbent Assay (ELISA). Berlin, Heidelberg: Springer Link 2018. doi: 10.1007/978-981-10-6766-2_5
  87. Brazaca LC, dos Santos PL, de Oliveira PR, et al. Biosensing strategies for the electrochemical detection of viruses and viral diseases - A review. Anal Chim Acta 2021; 1159: 338384. doi: 10.1016/j.aca.2021.338384 PMID: 33867035
  88. Kaya SI, Karadurmus L, Ozcelikay G, Bakirhan NK, Ozkan SA. Electrochemical virus detections with nanobiosensors. Nanosensors for Smart Cities Micro and Nano Technologies. Amsterdam: Elsevier 2020; pp. 303-26. doi: 10.1016/B978-0-12-819870-4.00017-7
  89. Tasoglu S, Cumhur Tekin H, Inci F, et al. Advances in nanotechnology and microfluidics for human papillomavirus diagnostics. Proc IEEE 2015; 103(2): 161-78. doi: 10.1109/JPROC.2014.2384836
  90. Heo JH, Lee JW, Kannappan S, Lee JH. Optical DNA based sensors for cervical cancers. Biomarkers and Biosensors for Cervical Cancer Diagnosis. Berlin/Heidelberg: Springer Link 2021; pp. 71-83. doi: 10.1007/978-981-16-2586-2_6
  91. Nithin S, Sharma P, Vivek M, Sharan P, Eds. Automated cervical cancer detection using photonic crystal based bio-sensor. 2015 IEEE International Advance Computing Conference (IACC). 12-13 June 2015; Banglore, India. 2015. doi: 10.1109/IADCC.2015.7154888
  92. Frías IA, Avelino KY, Silva RR, Andrade CA, Oliveira MD. Trends in biosensors for HPV: Identification and diagnosis. J Sensors 2015; 2015: 913640. doi: 10.1155/2015/913640
  93. Rezayi M, Heng LY, Abdi MM, et al. A thermodynamic study on the complex formation between Tris (2-Pyridyl) Methylamine (tpm) with Fe2+, Fe3+, Cu2+ and Cr3+ cations in water-acetonitrile binary solutions using the conductometric method. Int J Electrochem Sci 2013; 8(5): 6922-32. doi: 10.1016/S1452-3981(23)14817-6
  94. Vernon SD, Farkas DH, Unger ER, et al. Bioelectronic DNA detection of human papillomaviruses using eSensor™: A model system for detection of multiple pathogens. BMC Infect Dis 2003; 3(1): 12. doi: 10.1186/1471-2334-3-12 PMID: 12814521
  95. Civit L, Fragoso A, Hölters S, Dürst M, O’Sullivan CK. Electrochemical genosensor array for the simultaneous detection of multiple high-risk human papillomavirus sequences in clinical samples. Anal Chim Acta 2012; 715: 93-8. doi: 10.1016/j.aca.2011.12.009 PMID: 22244172
  96. Keyvani F, Debnath N, Ayman Saleh M, Poudineh M. An integrated microfluidic electrochemical assay for cervical cancer detection at point-of-care testing. Nanoscale 2022; 14(18): 6761-70. doi: 10.1039/D1NR08252C PMID: 35506790
  97. Xu L, Yu H, Akhras MS, et al. Giant magnetoresistive biochip for DNA detection and HPV genotyping. Biosens Bioelectron 2008; 24(1): 99-103. doi: 10.1016/j.bios.2008.03.030 PMID: 18457945
  98. Rife JC, Miller MM, Sheehan PE, Tamanaha CR, Tondra M, Whitman LJ. Design and performance of GMR sensors for the detection of magnetic microbeads in biosensors. Sens Actuators A Phys 2003; 107(3): 209-18. doi: 10.1016/S0924-4247(03)00380-7
  99. Lu D, Ran M, Liu Y, Xia J, Bi L, Cao X. SERS spectroscopy using Au-Ag nanoshuttles and hydrophobic paper-based Au nanoflower substrate for simultaneous detection of dual cervical cancer-associated serum biomarkers. Anal Bioanal Chem 2020; 412(26): 7099-112. doi: 10.1007/s00216-020-02843-x PMID: 32737551
  100. Teengam P, Siangproh W, Tuantranont A, Henry CS, Vilaivan T, Chailapakul O. Electrochemical paper-based peptide nucleic acid biosensor for detecting human papillomavirus. Anal Chim Acta 2017; 952: 32-40. doi: 10.1016/j.aca.2016.11.071 PMID: 28010840
  101. Oh I, Min HS, Li L, et al. Cancer cell-specific photoactivity of pheophorbide a-glycol chitosan nanoparticles for photodynamic therapy in tumor-bearing mice. Biomaterials 2013; 34(27): 6454-63. doi: 10.1016/j.biomaterials.2013.05.017 PMID: 23755832
  102. Reeβing F, Szymanski W. Following nanomedicine activation with magnetic resonance imaging: Why, how, and what’s next? Curr Opin Biotechnol 2019; 58: 9-18. doi: 10.1016/j.copbio.2018.10.008 PMID: 30390536
  103. Irvine DJ, Dane EL. Enhancing cancer immunotherapy with nanomedicine. Nat Rev Immunol 2020; 20(5): 321-34. doi: 10.1038/s41577-019-0269-6 PMID: 32005979
  104. Palantavida S, Guz NV, Woodworth CD, Sokolov I. Ultrabright fluorescent mesoporous silica nanoparticles for prescreening of cervical cancer. Nanomedicine 2013; 9(8): 1255-62. doi: 10.1016/j.nano.2013.04.011 PMID: 23665420
  105. Yin HQ, Shao G, Gan F, Ye G. One-step, rapid and green synthesis of multifunctional gold nanoparticles for tumor-targeted imaging and therapy. Nanoscale Res Lett 2020; 15(1): 29. doi: 10.1186/s11671-019-3232-3 PMID: 32006199
  106. Li Z, Gu Y, Ge S, et al. An aptamer-based SERS-LFA biosensor with multiple channels for the ultrasensitive simultaneous detection of serum VEGF and osteopontin in cervical cancer patients. New J Chem 2022; 46(43): 20629-42. doi: 10.1039/D2NJ03567G
  107. Bamrungsap S, Treetong A, Apiwat C, Wuttikhun T, Dharakul T. SERS-fluorescence dual mode nanotags for cervical cancer detection using aptamers conjugated to gold-silver nanorods. Mikrochim Acta 2016; 183(1): 249-56. doi: 10.1007/s00604-015-1639-9
  108. Motaghed Mazhabi R, Ge L, Jiang H, Wang X. A label-free aptamer-based cytosensor for specific cervical cancer HeLa cell recognition through a g-C3N4-AgI/ITO photoelectrode. J Mater Chem B Mater Biol Med 2018; 6(31): 5039-49. doi: 10.1039/C8TB01067F PMID: 32254533
  109. Henley SJ, Miller JW, Dowling NF, Benard VB, Richardson LC. Uterine cancer incidence and mortality-United States, 1999-2016. Morb Mortal Wkly Rep 2018; 67(48): 1333-8. doi: 10.15585/mmwr.mm6748a1 PMID: 30521505
  110. Wang Y, Chen S, Wang C, Guo F. Nanocarrier-based targeting of metabolic pathways for endometrial cancer: Status and future perspectives. Biomed Pharmacother 2023; 166: 115348. doi: 10.1016/j.biopha.2023.115348 PMID: 37639743
  111. van Leeuwen FE, van den Belt-Dusebout AW, van Leeuwen FE, et al. Risk of endometrial cancer after tamoxifen treatment of breast cancer. Lancet 1994; 343(8895): 448-52. doi: 10.1016/S0140-6736(94)92692-1 PMID: 7905955
  112. Austin H, Austin JM Jr, Partridge EE, Hatch KD, Shingleton HM. Endometrial cancer, obesity, and body fat distribution. Cancer Res 1991; 51(2): 568-72. PMID: 1985774
  113. Singh S, Best C, Dunn S, Leyland N, Wolfman WL. No. 292-Abnormal uterine bleeding in pre-menopausal women. J Obstet Gynaecol Can 2018; 40(5): e391-415. doi: 10.1016/j.jogc.2018.03.007 PMID: 29731212
  114. Kimura T, Kamiura S, Yamamoto T, Seino-Noda H, Ohira H, Saji F. Abnormal uterine bleeding and prognosis of endometrial cancer. Int J Gynaecol Obstet 2004; 85(2): 145-50. doi: 10.1016/j.ijgo.2003.12.001 PMID: 15099776
  115. Clark TJ, Mann CH, Shah N, Khan KS, Song F, Gupta JK. Accuracy of outpatient endometrial biopsy in the diagnosis of endometrial cancer: A systematic quantitative review. BJOG 2002; 109(3): 313-21. doi: 10.1111/j.1471-0528.2002.01088.x PMID: 11950187
  116. Dijkhuizen FPHLJ, Mol BWJ, Brölmann HAM, Heintz APM. Cost-effectiveness of the use of transvaginal sonography in the evaluation of postmenopausal bleeding. Maturitas 2003; 45(4): 275-82. doi: 10.1016/S0378-5122(03)00152-X PMID: 12927314
  117. Li L, Cheng C, Yang H, Ye H, Luo X, Xi M. Label-free localized surface plasmon resonance biosensor used to detect serum interleukin-10 in patients with endometrial cancer. Acta Phys Pol A 2020; 138(3): 338-44. doi: 10.12693/APhysPolA.138.338
  118. Zuo J, Wu LY, Cheng M, et al. Comparison study of laparoscopic sentinel lymph node mapping in endometrial carcinoma using carbon nanoparticles and lymphatic pathway verification. J Minim Invasive Gynecol 2019; 26(6): 1125-32. doi: 10.1016/j.jmig.2018.11.002 PMID: 30445188
  119. Chen J, Wang Z, Liang S, Hou H, Chen D, Wang J. Sentinel lymph node mapping with carbon nanoparticles in endometrial cancer. Eur J Gynaecol Oncol 2020; 41(3): 408-14. doi: 10.31083/j.ejgo.2020.03.5312
  120. He M, Liang S, Deng H, et al. Comparing carbon nanoparticles and indocyanine green for sentinel lymph node mapping in endometrial cancer: A randomized-controlled single-center trial. J Surg Oncol 2023; 128(2): 332-43. doi: 10.1002/jso.27268 PMID: 37027324
  121. Philp L, Chan H, Rouzbahman M, et al. Use of Porphysomes to detect primary tumour, lymph node metastases, intra-abdominal metastases and as a tool for image-guided lymphadenectomy: Proof of concept in endometrial cancer. Theranostics 2019; 9(9): 2727-38. doi: 10.7150/thno.31225 PMID: 31131064
  122. Lovell JF, Jin CS, Huynh E, et al. Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents. Nat Mater 2011; 10(4): 324-32. doi: 10.1038/nmat2986 PMID: 21423187
  123. Sideris M, Emin EI, Abdullah Z, et al. The role of KRAS in endometrial cancer: A mini-review. Anticancer Res 2019; 39(2): 533-9. doi: 10.21873/anticanres.13145 PMID: 30711927
  124. Jeong S, Han SR, Lee YJ, Kim JH, Lee SW. Identification of RNA aptamer specific to mutant KRAS protein. Oligonucleotides 2010; 20(3): 155-61. doi: 10.1089/oli.2010.0231 PMID: 20565241
  125. Wang DL, Song YL, Zhu Z, et al. Selection of DNA aptamers against epidermal growth factor receptor with high affinity and specificity. Biochem Biophys Res Commun 2014; 453(4): 681-5. doi: 10.1016/j.bbrc.2014.09.023 PMID: 25242523
  126. Wang ZW, Wu HB, Mao ZF, et al. In vitro selection and identification of ssDNA aptamers recognizing the Ras protein. Mol Med Rep 2014; 10(3): 1481-8. doi: 10.3892/mmr.2014.2337 PMID: 24938205
  127. Sett A, Borthakur BB, Sharma JD, Kataki AC, Bora U. DNA aptamer probes for detection of estrogen receptor α positive carcinomas. Transl Res 2017; 183: 104-20. doi: 10.1016/j.trsl.2016.12.008
  128. Gupta D, Roy P, Sharma R, Kasana R, Rathore P, Gupta TK. Recent nanotheranostic approaches in cancer research. Clin Exp Med 2024; 24(1): 8. doi: 10.1007/s10238-023-01262-3 PMID: 38240834
  129. Mofazal S, Gharehaghaji N, Eds. Role of nanotheranostic systems in diagnosis and treatment of ovarian cancer. Iranian Congress Radiol 2023; 38(4): 227.
  130. Andrew J, Amuchilani W, Mweetwa LL, Fundafunda SV, Poka MS, Witika BA. Nanotheranostic applications in the detection and treatment of cervical cancer. Nanotechnology Principles in Drug Targeting and Diagnosis. Amsterdam: Elsevier 2023; pp. 413-30. doi: 10.1016/B978-0-323-91763-6.00019-9
  131. Muthu MS, Feng S-S. Theranostic liposomes for cancer diagnosis and treatment: Current development and pre-clinical success. Expert Opin Drug Deliv 2013; 10(2): 151-5.
  132. Lin YW, Huang CC, Chang HT. Gold nanoparticle probes for the detection of mercury, lead and copper ions. Analyst 2011; 136(5): 863-71. doi: 10.1039/C0AN00652A PMID: 21157604
  133. Kim HM, Jeong S, Hahm E, et al. Large scale synthesis of surface-enhanced Raman scattering nanoprobes with high reproducibility and long-term stability. J Ind Eng Chem 2016; 33: 22-7. doi: 10.1016/j.jiec.2015.09.035
  134. Liu CH, Grodzinski P. Nanotechnology for cancer imaging: Advances, challenges, and clinical opportunities. Radiol Imaging Cancer 2021; 3(3): e200052. doi: 10.1148/rycan.2021200052 PMID: 34047667

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers