Shape Dependent Therapeutic Potential of Nanoparticulate System: Advance Approach for Drug Delivery


Citar

Texto integral

Resumo

:Drug delivery systems rely heavily on nanoparticles because they provide a targeted and monitored release of pharmaceuticals that maximize therapeutic efficacy and minimize side effects. To maximize drug internalization, this review focuses on comprehending the interactions between biological systems and nanoparticles. The way that nanoparticles behave during cellular uptake, distribution, and retention in the body is determined by their shape. Different forms, such as mesoporous silica nanoparticles, micelles, and nanorods, each have special properties that influence how well drugs are delivered to cells and internalized. To achieve the desired particle morphology, shape-controlled nanoparticle synthesis strategies take into account variables like pH, temperatures, and reaction time. Top-down techniques entail dissolving bulk materials to produce nanoparticles, whereas bottom-up techniques enable nanostructures to self-assemble. Comprehending the interactions at the bio-nano interface is essential to surmounting biological barriers and enhancing the therapeutic efficacy of nanotechnology in drug delivery systems. In general, drug internalization and distribution are greatly influenced by the shape of nanoparticles, which presents an opportunity for tailored and efficient treatment plans in a range of medical applications.

Sobre autores

Shristy Verma

Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University

Email: info@benthamscience.net

Rishabha Malviya

Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University

Autor responsável pela correspondência
Email: info@benthamscience.net

Saurabh Srivastava

School of Pharmacy, KPJ Healthcare University College (KPJUC)

Email: info@benthamscience.net

Irfan Ahmad

Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University

Email: info@benthamscience.net

Bhupinder Singh

Department of Law, Sharda University

Email: info@benthamscience.net

Rasha Almontasheri

Department of Clinical Laboratory Sciences, College of Applied Medical Science,, King Khalid University

Email: info@benthamscience.net

Prerna Uniyal

School of Pharmacy, Graphic Era Hill University

Email: info@benthamscience.net

Bibliografia

  1. Zhnag S, Langer R. Enteric elastomer enables safe gastric retention and extended oral drug delivery for improved medication adherence. Nanomedicine 2018; 14(5): 1841. doi: 10.1016/j.nano.2017.11.273
  2. Zou W, McAdorey A, Yan H, Chen W. Nanomedicine to overcome antimicrobial resistance: Challenges and prospects. Nanomedicine 2023; 18(5): 471-84. doi: 10.2217/nnm-2023-0022 PMID: 37170884
  3. Venkatraman S, Wong T. How can nanoparticles be used to overcome the challenges of glaucoma treatment? Nanomedicine 2014; 9(9): 1281-3. doi: 10.2217/nnm.14.85 PMID: 25204817
  4. Walia S, Acharya A. Theragnosis: Nanoparticles as a tool for simultaneous therapy and diagnosis. Nanoscale Materials in Targeted Drug Delivery, Theragnosis and Tissue Regeneration. Singapor: Springer 2016. doi: 10.1007/978-981-10-0818-4_6
  5. Chia CH, Lau KS, Chin SX, Rosli NH, Vincent J, Chowdhury MS. Carbon Nanotubes for Biomedical Applications and Health Care: New Horizons In Carbon Nanotubes for Biomedical Applications and Healthcare. Apple Academic Press 2024; pp. 255-331. doi: 10.1201/9781003396390-17
  6. Yurkin ST, Wang Z. Cell membrane-derived nanoparticles: emerging clinical opportunities for targeted drug delivery. Nanomedicine (Lond) 2017; 12(16): 2007-19. doi: 10.2217/nnm-2017-0100 PMID: 28745122
  7. Yu Q, Roberts MG, Houdaihed L, et al. Investigating the influence of block copolymer micelle length on cellular uptake and penetration in a multicellular tumor spheroid model. Nanoscale 2021; 13(1): 280-91. doi: 10.1039/D0NR08076D PMID: 33336678
  8. Chariou PL, Lee KL, Pokorski JK, Saidel GM, Steinmetz NF. Diffusion and uptake of tobacco mosaic virus as therapeutic carrier in tumor tissue: Effect of nanoparticle aspect ratio. J Phys Chem B 2016; 120(26): 6120-9. doi: 10.1021/acs.jpcb.6b02163 PMID: 27045770
  9. Yamaoka T, Kusumoto S, Ando K, Ohba M, Ohmori T. Receptor tyrosine kinase-targeted cancer therapy. Int J Mol Sci 2018; 19(11): 3491. doi: 10.3390/ijms19113491 PMID: 30404198
  10. Yu W, Liu R, Zhou Y, Gao H. Size-tunable strategies for a tumor targeted drug delivery system. ACS Cent Sci 2020; 6(2): 100-16. doi: 10.1021/acscentsci.9b01139 PMID: 32123729
  11. Zhou Y, Chen X, Cao J, Gao H. Overcoming the biological barriers in the tumor microenvironment for improving drug delivery and efficacy. J Mater Chem B Mater Biol Med 2020; 8(31): 6765-81. doi: 10.1039/D0TB00649A PMID: 32315375
  12. Wilhelm S, Tavares AJ, Dai Q, et al. Analysis of nanoparticle delivery to tumours. Nat Rev Mater 2016; 1(5): 16014. doi: 10.1038/natrevmats.2016.14
  13. Stewart MP, Sharei A, Ding X, Sahay G, Langer R, Jensen KF. In vitro and ex vivo strategies for intracellular delivery. Nature 2016; 538(7624): 183-92. doi: 10.1038/nature19764 PMID: 27734871
  14. Kaksonen M, Roux A. Mechanisms of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol 2018; 19(5): 313-26. doi: 10.1038/nrm.2017.132 PMID: 29410531
  15. Jang HS. The diverse range of possible cell membrane interactions with substrates: Drug delivery, interfaces and mobility. Molecules 2017; 22(12): 2197. doi: 10.3390/molecules22122197 PMID: 29232886
  16. Sundaram A, Yamsek M, Zhong F, Hooda Y, Hegde RS, Keenan RJ. Substrate-driven assembly of a translocon for multipass membrane proteins. Nature 2022; 611(7934): 167-72. doi: 10.1038/s41586-022-05330-8 PMID: 36261522
  17. Arvizo RR, Miranda OR, Thompson MA, et al. Effect of nanoparticle surface charge at the plasma membrane and beyond. Nano Lett 2010; 10(7): 2543-8. doi: 10.1021/nl101140t PMID: 20533851
  18. Kim ST, Saha K, Kim C, Rotello VM. The role of surface functionality in determining nanoparticle cytotoxicity. Acc Chem Res 2013; 46(3): 681-91. doi: 10.1021/ar3000647 PMID: 23294365
  19. Debnath K, Pal S, Jana NR. Chemically designed nanoscale materials for controlling cellular processes. Acc Chem Res 2021; 54(14): 2916-27. doi: 10.1021/acs.accounts.1c00215 PMID: 34232016
  20. Jayaraman M, Ansell SM, Mui BL, et al. Maximizing the potency of siRNA lipid nanoparticles for hepatic gene silencing in vivo. Angew Chem Int Ed 2012; 51(34): 8529-33. doi: 10.1002/anie.201203263 PMID: 22782619
  21. Toy R, Peiris PM, Ghaghada KB, Karathanasis E. Shaping cancer nanomedicine: The effect of particle shape on the in vivo journey of nanoparticles. Nanomedicine (Lond) 2014; 9(1): 121-34. doi: 10.2217/nnm.13.191 PMID: 24354814
  22. Hadji H, Bouchemal K. Effect of micro- and nanoparticle shape on biological processes. J Control Release 2022; 342: 93-110. doi: 10.1016/j.jconrel.2021.12.032 PMID: 34973308
  23. Jaumouillé V, Waterman CM. Physical constraints and forces involved in phagocytosis. Front Immunol 2020; 11: 1097. doi: 10.3389/fimmu.2020.01097 PMID: 32595635
  24. Agarwal R, Singh V, Jurney P, Shi L, Sreenivasan SV, Roy K. Mammalian cells preferentially internalize hydrogel nanodiscs over nanorods and use shape-specific uptake mechanisms. Proc Natl Acad Sci USA 2013; 110(43): 17247-52. doi: 10.1073/pnas.1305000110 PMID: 24101456
  25. Kolhar P, Anselmo AC, Gupta V, et al. Using shape effects to target antibody-coated nanoparticles to lung and brain endothelium. Proc Natl Acad Sci USA 2013; 110(26): 10753-8. doi: 10.1073/pnas.1308345110 PMID: 23754411
  26. Giglio V, Varela-Aramburu S, Travaglini L, et al. Reshaping silica particles: Mesoporous nanodiscs for bimodal delivery and improved cellular uptake. Chem Eng J 2018; 340: 148-54. doi: 10.1016/j.cej.2018.01.059
  27. Zheng N, Li J, Xu C, Xu L, Li S, Xu L. Mesoporous silica nanorods for improved oral drug absorption. Artif Cells Nanomed Biotechnol 2018; 46(6): 1132-40. doi: 10.1080/21691401.2017.1362414 PMID: 28783976
  28. Yoo JW, Doshi N, Mitragotri S. Endocytosis and intracellular distribution of PLGA particles in endothelial cells: Effect of particle geometry. Macromol Rapid Commun 2010; 31(2): 142-8. doi: 10.1002/marc.200900592 PMID: 21590886
  29. Muro S, Garnacho C, Champion JA, et al. Control of endothelial targeting and intracellular delivery of therapeutic enzymes by modulating the size and shape of ICAM-1-targeted carriers. Mol Ther 2008; 16(8): 1450-8. doi: 10.1038/mt.2008.127 PMID: 18560419
  30. Sathishkumar M, Sneha K, Yun YS. Immobilization of silver nanoparticles synthesized using Curcuma longa tuber powder and extract on cotton cloth for bactericidal activity. Bioresour Technol 2010; 101(20): 7958-65. doi: 10.1016/j.biortech.2010.05.051 PMID: 20541399
  31. Dubey SP, Lahtinen M, Sillanpää M. Tansy fruit mediated greener synthesis of silver and gold nanoparticles. Process Biochem 2010; 45(7): 1065-71. doi: 10.1016/j.procbio.2010.03.024
  32. Ahmad N, Sharma S. Green synthesis of silver nanoparticles using extracts of Ananas comosus. Green Sustain Chem 2012; 2(4): 141-7.
  33. Prathna TC, Chandrasekaran N, Raichur AM, Mukherjee A. Kinetic evolution studies of silver nanoparticles in a bio-based green synthesis process. Colloids Surf A Physicochem Eng Asp 2011; 377(1-3): 212-6. doi: 10.1016/j.colsurfa.2010.12.047
  34. Kaviya S, Santhanalakshmi J, Viswanathan B, Muthumary J, Srinivasan K. Biosynthesis of silver nanoparticles using Citrus sinensis peel extract and its antibacterial activity. Spectrochim Acta A Mol Biomol Spectrosc 2011; 79(3): 594-8. doi: 10.1016/j.saa.2011.03.040
  35. Bellah MM, Christensen SM, Iqbal SM. Nanostructures for medical diagnostics. J Nanomater 2012; 2012: 1-21. doi: 10.1155/2012/486301
  36. Chokkareddy R, Thondavada N, Kabane B, Redhi GG. Recent advances in green synthesis of silver nanoparticles and their applications: About future directions. A review. BioNanoSci 2018; 8: 5-16. doi: 10.1002/9781119418900.ch6
  37. Kim HJ, Kim KJ, Kwak DS. A case study on modeling and optimizing photolithography stage of semiconductor fabrication process Rec Adv Qual Reliab 2010; 26(7): 765-74. doi: 10.1002/qre.1149
  38. Luo L, He Y. Magnetically driven microfluidics for isolation of circulating tumor cells. Cancer Med 2020; 9(12): 4207-31. doi: 10.1002/cam4.3077 PMID: 32325536
  39. Levish A, Joshi S, Winterer M. Chemical vapor synthesis of nanocrystalline iron oxides. Appl Energy Combus Sci 2023; 15: 100177. doi: 10.1016/j.jaecs.2023.100177
  40. Abid N, Khan AM, Shujait S, et al. Synthesis of nanomaterials using various top-down and bottom-up approaches, influencing factors, advantages, and disadvantages: A review. Adv Colloid Interface Sci 2022; 300: 102597. doi: 10.1016/j.cis.2021.102597 PMID: 34979471
  41. Betke A, Kickelbick G. Bottom-up, wet chemical technique for the continuous synthesis of inorganic nanoparticles Inorganics 2014; 2(1): 1-15. doi: 10.3390/inorganics2010001
  42. Pini M, Rosa R, Neri P, Bondioli F, Ferrari AM. Environmental assessment of a bottom-up hydrolytic synthesis of TiO2 nanoparticles. Green Chem 2015; 17: 518-31.
  43. Kumar S, Bhushan P, Bhattacharya S. Fabrication of nanostructures with bottom-up approach and their utility in diagnostics, therapeutics, and others. Environmental, Chemical and Medical Sensors Energy, Environment, and Sustainability. Singapore: Springer 2018. doi: 10.1007/978-981-10-7751-7_8
  44. Thanh NTK, Maclean N, Mahiddine S. Mechanisms of nucleation and growth of nanoparticles in solution. Chem Rev 2014; 114(15): 7610-30. doi: 10.1021/cr400544s PMID: 25003956
  45. Perez G, Romero MP, Saitovitch EB, et al. Alkali concentration effects on the composition, morphology and magnetic properties of magnetite, maghemite and iron oxyhydroxide nanoparticles. Solid State Sci 2020; 106: 106295. doi: 10.1016/j.solidstatesciences.2020.106295
  46. Grabs IM, Bradtmöller C, Menzel D, Garnweitner G. Formation mechanisms of iron oxide nanoparticles in different nonaqueous media. Cryst Growth Des 2012; 12(3): 1469-75. doi: 10.1021/cg201563h
  47. Ovejero JG, Morales MP, Veintemillas-Verdaguer S. Inductive heating enhances ripening in the aqueous synthesis of magnetic nanoparticles. Cryst Growth Des 2023; 23(1): 59-67. doi: 10.1021/acs.cgd.2c00694 PMID: 36624778
  48. Jacobson AT, Chen C, Dewey JC, et al. Effect of nanoconfinement and pore geometry on point of zero charge in synthesized mesoporous siliceous materials. JCIS Open 2022; 8: 100069. doi: 10.1016/j.jciso.2022.100069
  49. Kosmulski M. The pH-dependent surface charging and points of zero charge. J Colloid Interface Sci 2011; 353(1): 1-15. doi: 10.1016/j.jcis.2010.08.023 PMID: 20869721
  50. Attanayake SB, Chanda A, Das R, Phan MH, Srikanth H. Tailoring magnetic and hyperthermia properties of biphase iron oxide nanocubes through post-annealing. 2024. doi: 10.2139/ssrn.4739950
  51. Gutiérrez L, Morales MD, Roca AG. Synthesis and applications of anisotropic magnetic iron oxide nanoparticles. Surfaces and Interfaces of Metal Oxide Thin Films, Multilayers, Nanoparticles and Nano-composites. 2021, pp.65-89. doi: 10.1007/978-3-030-74073-3_3
  52. Nguyen TV, Luong NA, Nguyen VT, et al. Effect of the phase composition of iron oxide nanorods on SO2 gas sensing performance. Mater Res Bull 2021; 134: 111087. doi: 10.1016/j.materresbull.2020.111087
  53. Yang Y, Liu X, Lv Y, et al. Orientation mediated enhancement on magnetic hyperthermia of Fe3O4 nanodisc. Adv Funct Mater 2015; 25(5): 812-20. doi: 10.1002/adfm.201402764
  54. Chen L, Yang X, Chen J, et al. Continuous shape- and spectroscopy-tuning of hematite nanocrystals. Inorg Chem 2010; 49(18): 8411-20. doi: 10.1021/ic100919a PMID: 20718439
  55. Gavilán H, Brollo ME, Gutiérrez L, Veintemillas-Verdaguer S, del Puerto Morales M. Controlling the size and shape of uniform magnetic iron oxide nanoparticles for biomedical applications. Clinical Applications of Magnetic Nanoparticles. 2018, pp.3-24. doi: 10.1201/9781315168258-1
  56. Gavilán H, Kowalski A, Heinke D, et al. Colloidal flower-shaped iron oxide nanoparticles: Synthesis strategies and coatings. Part Part Syst Charact 2017; 34(7): 1700094. doi: 10.1002/ppsc.201700094
  57. Caruntu D, Caruntu G, O’Connor CJ. Magnetic properties of variable-sized Fe3O4 nanoparticles synthesized from non-aqueous homogeneous solutions of polyols. J Phys D Appl Phys 2007; 40(19): 5801-9. doi: 10.1088/0022-3727/40/19/001
  58. Liu Y, Gan Y, Zhao C, et al. Shaping magnetite by hydroxyl group numbers of small molecules. Langmuir 2021; 37(18): 5582-90. doi: 10.1021/acs.langmuir.1c00424 PMID: 33938217
  59. Wei R, Xu Y, Xue M. Hollow iron oxide nanomaterials: synthesis, functionalization, and biomedical applications. J Mater Chem B Mater Biol Med 2021; 9(8): 1965-79. doi: 10.1039/D0TB02858D PMID: 33595050
  60. Balcells L, Martínez-Boubeta C, Cisneros-Fernández J, et al. One-step route to iron oxide hollow nanocuboids by cluster condensation: implementation in water remediation technology. ACS Appl Mater Interfaces 2016; 8(42): 28599-606. doi: 10.1021/acsami.6b08709 PMID: 27700020
  61. Akbarzadeh H, Mehrjouei E, Abbaspour M, Shamkhali AN, Izanloo C, Masoumi A. Pt core confined within an Au skeletal frame: Pt@Void@Au nanoframes in a molecular dynamics Perspective. Colloids Surf A Physicochem Eng Asp 2021; 631: 127664. doi: 10.1016/j.colsurfa.2021.127664
  62. Yang CW, Liu K, Yao CY, et al. Indocyanine green-conjugated superparamagnetic iron oxide nanoworm for multimodality breast cancer imaging. ACS Appl Nano Mater 2022; 5(12): 18912-20. doi: 10.1021/acsanm.2c04687 PMID: 37635916
  63. Li Z, Chen Z, Zhu Q, Song J, Li S, Liu X. Improved performance of immobilized laccase on Fe3O4@C-Cu2+ nanoparticles and its application for biodegradation of dyes. J Hazard Mater 2020; 399: 123088. doi: 10.1016/j.jhazmat.2020.123088 PMID: 32937718
  64. Bronstein LM, Atkinson JE, Malyutin AG, et al. Nanoparticles by decomposition of long chain iron carboxylates: from spheres to stars and cubes. Langmuir 2011; 27(6): 3044-50. doi: 10.1021/la104686d PMID: 21294561
  65. Aquino VRR, Aquino JCR, Coaquira JAH, Bakuzis AF, Sousa MH, Morais PC. New synthesis route for high quality iron oxide-based nanorings: Structural and magnetothermal evaluations. Mater Des 2023; 232: 112082. doi: 10.1016/j.matdes.2023.112082
  66. Wiogo H, Lim M, Munroe P, Amal R. Understanding the formation of iron oxide nanoparticles with acicular structure from iron (III) chloride and hydrazine monohydrate. Cryst Growth Des 2011; 11(5): 1689-96. doi: 10.1021/cg101623n
  67. Geng Y, Dalhaimer P, Cai S, et al. Shape effects of filaments versus spherical particles in flow and drug delivery. Nat Nanotechnol 2007; 2(4): 249-55. doi: 10.1038/nnano.2007.70 PMID: 18654271
  68. Barua S, Yoo JW, Kolhar P, Wakankar A, Gokarn YR, Mitragotri S. Particle shape enhances specificity of antibody-displaying nanoparticles. Proc Natl Acad Sci USA 2013; 110(9): 3270-5. doi: 10.1073/pnas.1216893110 PMID: 23401509
  69. Decuzzi P, Godin B, Tanaka T, et al. Size and shape effects in the biodistribution of intravascularly injected particles. J Control Release 2010; 141(3): 320-7. doi: 10.1016/j.jconrel.2009.10.014 PMID: 19874859
  70. Champion JA, Mitragotri S. Role of target geometry in phagocytosis. Proc Natl Acad Sci USA 2006; 103(13): 4930-4. doi: 10.1073/pnas.0600997103 PMID: 16549762
  71. Banerjee A, Qi J, Gogoi R, Wong J, Mitragotri S. Role of nanoparticle size, shape and surface chemistry in oral drug delivery. J Control Release 2016; 238: 176-85. doi: 10.1016/j.jconrel.2016.07.051 PMID: 27480450
  72. Zhang B, Sai Lung P, Zhao S, Chu Z, Chrzanowski W, Li Q. Shape dependent cytotoxicity of PLGA-PEG nanoparticles on human cells. Sci Rep 2017; 7(1): 7315. doi: 10.1038/s41598-017-07588-9 PMID: 28779154
  73. Huang X, Teng X, Chen D, Tang F, He J. The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function. Biomaterials 2010; 31(3): 438-48. doi: 10.1016/j.biomaterials.2009.09.060 PMID: 19800115
  74. Anselmo AC, Mitragotri S. Impact of particle elasticity on particle-based drug delivery systems. Adv Drug Deliv Rev 2017; 108: 51-67. doi: 10.1016/j.addr.2016.01.007 PMID: 26806856
  75. Anselmo AC, Zhang M, Kumar S, et al. Elasticity of nanoparticles influences their blood circulation, phagocytosis, endocytosis, and targeting. ACS Nano 2015; 9(3): 3169-77. doi: 10.1021/acsnano.5b00147 PMID: 25715979
  76. Merkel TJ, Jones SW, Herlihy KP, et al. Using mechanobiological mimicry of red blood cells to extend circulation times of hydrogel microparticles. Proc Natl Acad Sci USA 2011; 108(2): 586-91. doi: 10.1073/pnas.1010013108 PMID: 21220299
  77. Desai D, Prabhakar N, Mamaeva V, et al. Targeted modulation of cell differentiation in distinct regions of the gastrointestinal tract via oral administration of differently PEG-PEI functionalized mesoporous silica nanoparticles. Int J Nanomed 2016; 11: 299-313. PMID: 26855569
  78. Harrison E, Nicol JR, Macias-Montero M, et al. A comparison of gold nanoparticle surface co-functionalization approaches using Polyethylene Glycol (PEG) and the effect on stability, non-specific protein adsorption and internalization. Mater Sci Eng C 2016; 62: 710-8. doi: 10.1016/j.msec.2016.02.003 PMID: 26952476
  79. Poornima K, Puri A, Gupta A. Understanding the stealth properties of PEGylated lipids: A mini-review. International Journal of Lipids 2020; 1(2): 1432. doi: 10.14302/issn.2835-513X.ijl-20-3457
  80. Han Z, Sarkar S, Smith AM. Zwitterion and oligo (ethylene glycol) synergy minimizes nonspecific binding of compact quantum dots. ACS Nano 2020; 14(3): 3227-41. doi: 10.1021/acsnano.9b08658 PMID: 32105448
  81. Muro E, Pons T, Lequeux N, et al. Small and stable sulfobetaine zwitterionic quantum dots for functional live-cell imaging. J Am Chem Soc 2010; 132(13): 4556-7. doi: 10.1021/ja1005493 PMID: 20235547
  82. Zhang L, Xue H, Cao Z, Keefe A, Wang J, Jiang S. Multifunctional and degradable zwitterionic nanogels for targeted delivery, enhanced MR imaging, reduction-sensitive drug release, and renal clearance. Biomaterials 2011; 32(20): 4604-8. doi: 10.1016/j.biomaterials.2011.02.064 PMID: 21453965
  83. Drijvers E, Liu J, Harizaj A, et al. Efficient endocytosis of inorganic nanoparticles with zwitterionic surface functionalization. ACS Appl Mater Interfaces 2019; 11(42): 38475-82. doi: 10.1021/acsami.9b12398 PMID: 31559824
  84. kolahkaj F, Derakhshandeh K, Khaleseh F, Azandaryani AH, Mansouri K, Khazaei M. Active targeting carrier for breast cancer treatment: monoclonal antibody conjugated epirubicin loaded nanoparticle. J Drug Deliv Sci Technol 2019; 53: 101136.
  85. Wu CY, Lin JJ, Chang WY, et al. Development of theranostic active-targeting boron-containing gold nanoparticles for boron neutron capture therapy (BNCT). Colloids Surf B Biointerfaces 2019; 183: 110387. doi: 10.1016/j.colsurfb.2019.110387 PMID: 31394419
  86. McDaid WJ, Greene MK, Johnston MC, et al. Repurposing of Cetuximab in antibody-directed chemotherapy-loaded nanoparticles in EGFR therapy-resistant pancreatic tumours. Nanoscale 2019; 11(42): 20261-73. doi: 10.1039/C9NR07257H PMID: 31626255
  87. Khanna V, Kalscheuer S, Kirtane A, Zhang W, Panyam J. Perlecan-targeted nanoparticles for drug delivery to triple-negative breast cancer. Future Drug Discov 2019; 1(1): FDD8. doi: 10.4155/fdd-2019-0005 PMID: 31448368
  88. Qian X, Ge L, Yuan K, et al. Targeting and microenvironment-improving of phenylboronic acid-decorated soy protein nanoparticles with different sizes to tumor. Theranostics 2019; 9(24): 7417-30. doi: 10.7150/thno.33470 PMID: 31695777
  89. Ramzy L, Metwally AA, Nasr M, Awad GAS. Novel thymoquinone lipidic core nanocapsules with anisamide-polymethacrylate shell for colon cancer cells overexpressing sigma receptors. Sci Rep 2020; 10(1): 10987. doi: 10.1038/s41598-020-67748-2 PMID: 32620860
  90. Vijayasri K, Tiwari A. A review on magnetic polymeric nanocomposite materials: Emerging applications in biomedical field. Inorg Nano-Metal Chem 2023; 1-25. doi: 10.1080/24701556.2023.2187418
  91. Florez L, Herrmann C, Cramer JM, et al. How shape influences uptake: Interactions of anisotropic polymer nanoparticles and human mesenchymal stem cells. Small 2012; 8(14): 2222-30. doi: 10.1002/smll.201102002 PMID: 22528663
  92. Kapate N, Clegg JR, Mitragotri S. Non-spherical micro- and nanoparticles for drug delivery: Progress over 15 years. Adv Drug Deliv Rev 2021; 177: 113807. doi: 10.1016/j.addr.2021.05.017 PMID: 34023331
  93. Arnida , Janát-Amsbury MM, Ray A, Peterson CM, Ghandehari H. Geometry and surface characteristics of gold nanoparticles influence their biodistribution and uptake by macrophages. Eur J Pharm Biopharm 2011; 77(3): 417-23. doi: 10.1016/j.ejpb.2010.11.010 PMID: 21093587
  94. Hong X, Wen J, Xiong X, Hu Y. Shape effect on the antibacterial activity of silver nanoparticles synthesized via a microwave-assisted method. Environ Sci Pollut Res Int 2016; 23(5): 4489-97. doi: 10.1007/s11356-015-5668-z PMID: 26511259
  95. Agarwal S, Lefferts L, Mojet BL, et al. Exposed surfaces on shape-controlled ceria nanoparticles revealed through AC-TEM and water-gas shift reactivity. ChemSusChem 2013; 6(10): 1898-906. doi: 10.1002/cssc.201300651 PMID: 24108516
  96. Wang G, Ma X, Huang B, et al. Controlled synthesis of Ag2O microcrystals with facet-dependent photocatalytic activities. J Mater Chem 2012; 22(39): 21189-94. doi: 10.1039/c2jm35010f
  97. Lee CL, Tsai YL, Huang CH, Huang KL. Performance of silver nanocubes based on electrochemical surface area for catalyzing oxygen reduction reaction. Electrochem Commun 2013; 29: 37-40. doi: 10.1016/j.elecom.2013.01.009
  98. Goyal D, Kaur G, Tewari R, Kumar R. Correlation of edge truncation with antibacterial activity of plate-like anisotropic silver nanoparticles. Environ Sci Pollut Res Int 2017; 24(25): 20429-37. doi: 10.1007/s11356-017-9630-0 PMID: 28707245
  99. Balouiri M, Sadiki M, Ibnsouda SK. Methods for in vitro evaluating antimicrobial activity: A review. J Pharm Anal 2016; 6(2): 71-9. doi: 10.1016/j.jpha.2015.11.005 PMID: 29403965
  100. Khademalrasool M, Farbod M, Talebzadeh MD. Investigation of shape effect of silver nanostructures and governing physical mechanisms on photo-activity: Zinc oxide/silver plasmonic photocatalyst. Adv Powder Technol 2021; 32(6): 1844-57. doi: 10.1016/j.apt.2021.03.008
  101. Seyedpour SF, Shamsabadi A, Khoshhal Salestan S, et al. Tailoring the biocidal activity of novel silver-based metal azolate frameworks. ACS Sustain Chem Eng 2020; 8(20): 7588-99. doi: 10.1021/acssuschemeng.0c00201
  102. Grzelczak M, Pérez-Juste J, Mulvaney P, Liz-Marzán LM. Shape control in gold nanoparticle synthesis. Chem Soc Rev 2020; 37: 1783-91. doi: 10.1201/9780429295188-6
  103. Hameed M, Panicker S, Abdallah SH, et al. Protein-coated aryl modified gold nanoparticles for cellular uptake study by osteosarcoma cancer cells. Langmuir 2020; 36(40): 11765-75. doi: 10.1021/acs.langmuir.0c01443 PMID: 32931295
  104. Huang K, Ma H, Liu J, et al. Size-dependent localization and penetration of ultrasmall gold nanoparticles in cancer cells, multicellular spheroids, and tumors in vivo. ACS Nano 2012; 6(5): 4483-93. doi: 10.1021/nn301282m PMID: 22540892
  105. Cho EC, Au L, Zhang Q, Xia Y. The effects of size, shape, and surface functional group of gold nanostructures on their adsorption and internalization by cells. Small 2010; 6(4): 517-22. doi: 10.1002/smll.200901622 PMID: 20029850
  106. Jiang Y, Huo S, Mizuhara T, et al. The interplay of size and surface functionality on the cellular uptake of sub-10 nm gold nanoparticles. ACS Nano 2015; 9(10): 9986-93. doi: 10.1021/acsnano.5b03521 PMID: 26435075
  107. Maiorano G, Sabella S, Sorce B, et al. Effects of cell culture media on the dynamic formation of protein-nanoparticle complexes and influence on the cellular response. ACS Nano 2010; 4(12): 7481-91. doi: 10.1021/nn101557e PMID: 21082814
  108. Cho EC, Zhang Q, Xia Y. The effect of sedimentation and diffusion on cellular uptake of gold nanoparticles. Nat Nanotechnol 2011; 6(6): 385-91. doi: 10.1038/nnano.2011.58 PMID: 21516092
  109. Bartczak D, Muskens OL, Nitti S, Sanchez-Elsner T, Millar TM, Kanaras AG. Interactions of human endothelial cells with gold nanoparticles of different morphologies. Small 2012; 8(1): 122-30. doi: 10.1002/smll.201101422 PMID: 22102541
  110. Wang Y, Black KCL, Luehmann H, et al. Comparison study of gold nanohexapods, nanorods, and nanocages for photothermal cancer treatment. ACS Nano 2013; 7(3): 2068-77. doi: 10.1021/nn304332s PMID: 23383982
  111. Salatin S, Maleki Dizaj S, Yari Khosroushahi A. Effect of the surface modification, size, and shape on cellular uptake of nanoparticles. Cell Biol Int 2015; 39(8): 881-90. doi: 10.1002/cbin.10459 PMID: 25790433
  112. Truong NP, Whittaker MR, Mak CW, Davis TP. The importance of nanoparticle shape in cancer drug delivery. Expert Opin Drug Deliv 2015; 12(1): 129-42. doi: 10.1517/17425247.2014.950564 PMID: 25138827
  113. Tan P, Li H, Wang J, Gopinath SCB. Silver nanoparticle in biosensor and bioimaging: Clinical perspectives. Biotechnol Appl Biochem 2021; 68(6): 1236-42. PMID: 33043496
  114. Verma A, Stellacci F. Effect of surface properties on nanoparticle-cell interactions. Small 2010; 6(1): 12-21.
  115. Bao C, Beziere N, del Pino P, et al. Gold nanoprisms as optoacoustic signal nanoamplifiers for in vivo bioimaging of gastrointestinal cancers. Small 2013; 9(1): 68-74.
  116. Chen NT, Tang KC, Chung MF, et al. Enhanced plasmonic resonance energy transfer in mesoporous silica-encased gold nanorod for two-photon-activated photodynamic therapy. Theranostics 2014; 4(8): 798-807. doi: 10.7150/thno.8934 PMID: 24955141
  117. Yadav A, Rao C, Verma NC, Mishra PM, Nandi CK. Magnetofluorescent nanoprobe for multimodal and multicolor bioimaging. Mol Imaging 2020; 19 doi: 10.1177/1536012120969477 PMID: 33112721
  118. Klymchenko AS, Liu F, Collot M, Anton N. Dye-loaded nanoemulsions: Biomimetic fluorescent nanocarriers for bioimaging and nanomedicine. Adv Healthc Mater 2021; 10(1): 2001289. doi: 10.1002/adhm.202001289 PMID: 33052037
  119. Harish V, Tewari D, Gaur M, et al. Review on nanoparticles and nanostructured materials: Bioimaging, biosensing, drug delivery, tissue engineering, antimicrobial, and agro-food applications. Nanomaterials (Basel) 2022; 12(3): 457. doi: 10.3390/nano12030457 PMID: 35159802
  120. Acharya D, Pandey P, Mohanta B. A comparative study on the antibacterial activity of different shaped silver nanoparticles. Chem Pap 2021; 75(9): 4907-15. doi: 10.1007/s11696-021-01722-8
  121. Cheon JY, Kim SJ, Rhee YH, Kwon OH, Park WH. Shape-dependent antimicrobial activities of silver nanoparticles. Int J Nanomedicine 2019; 14: 2773-80. doi: 10.2147/IJN.S196472 PMID: 31118610
  122. Acharya D, Singha KM, Pandey P, Mohanta B, Rajkumari J, Singha LP. Shape dependent physical mutilation and lethal effects of silver nanoparticles on bacteria. Sci Rep 2018; 8(1): 201. doi: 10.1038/s41598-017-18590-6 PMID: 29317760
  123. Hameed S, Wang Y, Zhao L, Xie L, Ying Y. Shape-dependent significant physical mutilation and antibacterial mechanisms of gold nanoparticles against foodborne bacterial pathogens (Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus) at lower concentrations. Mater Sci Eng C 2020; 108: 110338. doi: 10.1016/j.msec.2019.110338 PMID: 31923994
  124. Chu Z, Zhang S, Zhang B, et al. Unambiguous observation of shape effects on cellular fate of nanoparticles. Sci Rep 2014; 4(1): 4495. doi: 10.1038/srep04495 PMID: 24675513
  125. Enea M, Pereira E, Peixoto de Almeida M, Araújo AM, Bastos ML, Carmo H. Gold nanoparticles induce oxidative stress and apoptosis in human kidney cells. Nanomaterials (Basel) 2020; 10(5): 995. doi: 10.3390/nano10050995 PMID: 32455923
  126. Sultana S, Djaker N, Boca-Farcau S, et al. Comparative toxicity evaluation of flower-shaped and spherical gold nanoparticles on human endothelial cells. Nanotechnology 2015; 26(5): 055101. doi: 10.1088/0957-4484/26/5/055101 PMID: 25573907
  127. Chen L, Liu M, Zhou Q, Li X. Recent developments of mesoporous silica nanoparticles in biomedicine. Emergent Mater 2020; 3(3): 381-405. doi: 10.1007/s42247-020-00078-1
  128. Liu X, Sui B, Sun J. Size- and shape-dependent effects of titanium dioxide nanoparticles on the permeabilization of the blood–brain barrier. J Mater Chem B Mater Biol Med 2017; 5(48): 9558-70. doi: 10.1039/C7TB01314K PMID: 32264570
  129. Woźniak A, Malankowska A, Nowaczyk G, et al. Size and shape-dependent cytotoxicity profile of gold nanoparticles for biomedical applications. J Mater Sci Mater Med 2017; 28(6): 92. doi: 10.1007/s10856-017-5902-y PMID: 28497362
  130. Nagai H, Toyokuni S. Biopersistent fiber-induced inflammation and carcinogenesis: Lessons learned from asbestos toward safety of fibrous nanomaterials. Arch Biochem Biophys 2010; 502(1): 1-7. doi: 10.1016/j.abb.2010.06.015 PMID: 20599674
  131. Myers R. Asbestos-related pleural disease. Curr Opin Pulm Med 2012; 18(4): 377-81. doi: 10.1097/MCP.0b013e328354acfe PMID: 22617814
  132. Xu J, Alexander DB, Futakuchi M, et al. Size- and shape-dependent pleural translocation, deposition, fibrogenesis, and mesothelial proliferation by multiwalled carbon nanotubes. Cancer Sci 2014; 105(7): 763-9. doi: 10.1111/cas.12437 PMID: 24815191
  133. Forest V, Leclerc L, Hochepied JF, Trouvé A, Sarry G, Pourchez J. Impact of cerium oxide nanoparticles shape on their in vitro cellular toxicity. Toxicol In Vitro 2017; 38: 136-41. doi: 10.1016/j.tiv.2016.09.022 PMID: 27693598
  134. Wang Y, Gou K, Guo X, Ke J, Li S, Li H. Advances in regulating physicochemical properties of mesoporous silica nanocarriers to overcome biological barriers. Acta Biomater 2021; 123: 72-92. doi: 10.1016/j.actbio.2021.01.005 PMID: 33454385
  135. Khan I, Saeed K, Khan I. Nanoparticles: Properties, applications and toxicities. Arab J Chem 2019; 12(7): 908-31. doi: 10.1016/j.arabjc.2017.05.011
  136. Auclair J, Gagné F. Shape-dependent toxicity of silver nanoparticles on freshwater cnidarians. Nanomaterials 2022; 12(18): 3107. doi: 10.3390/nano12183107 PMID: 36144895
  137. Kus-Liśkiewicz M, Fickers P, Ben Tahar I. Biocompatibility and cytotoxicity of gold nanoparticles: Recent advances in methodologies and regulations. Int J Mol Sci 2021; 22(20): 10952. doi: 10.3390/ijms222010952 PMID: 34681612
  138. More S, Bampidis V, Benford D, et al. Guidance on technical requirements for regulated food and feed product applications to establish the presence of small particles including nanoparticles. EFSA J 2021; 19(8): e06769. PMID: 34377191
  139. Barhoum A, García-Betancourt ML, Jeevanandam J, et al. Review on natural, incidental, bioinspired, and engineered nanomaterials: history, definitions, classifications, synthesis, properties, market, toxicities, risks, and regulations. Nanomaterials (Basel) 2022; 12(2): 177. doi: 10.3390/nano12020177 PMID: 35055196
  140. Tinkle S, McNeil SE, Mühlebach S, et al. Nanomedicines: Addressing the scientific and regulatory gap. Ann N Y Acad Sci 2014; 1313(1): 35-56. doi: 10.1111/nyas.12403 PMID: 24673240
  141. Sainz V, Conniot J, Matos AI, et al. Regulatory aspects on nanomedicines. Biochem Biophys Res Commun 2015; 468(3): 504-10. doi: 10.1016/j.bbrc.2015.08.023 PMID: 26260323
  142. Diab R, Jaafar-Maalej C, Fessi H, Maincent P. Engineered nanoparticulate drug delivery systems: The next frontier for oral administration? AAPS J 2012; 14(4): 688-702. doi: 10.1208/s12248-012-9377-y PMID: 22767270
  143. Kumar Teli M, Mutalik S, Rajanikant GK. Nanotechnology and nanomedicine: Going small means aiming big. Curr Pharm Des 2010; 16(16): 1882-92. doi: 10.2174/138161210791208992 PMID: 20222866
  144. Hafner A, Lovrić J, Lakoš GP, Pepić I. Nanotherapeutics in the EU: An overview on current state and future directions. Int J Nanomedicine 2014; 9: 1005-23. PMID: 24600222

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Bentham Science Publishers, 2024