Role of Biosynthesis and Catabolism of Neurotransmitters in Drug Discovery for Anxiety and Depression


Cite item

Full Text

Abstract

:The purpose of this review is to correlate the probable causes of anxiety disorders with the imbalance of neurotransmitters in the brain and also highlight the drugs for these mental disorders that have been discovered based on the biosynthesis and catabolism of these brain chemicals. Peer-reviewed journal’s articles, news and books published in English between 1997 and 2023 describing the role of neurotransmitters in anxiety disorders were searched in Google Scholar, Research Gate and PubMed databases. The contents were carefully analyzed by the authors and understood and compiled to build a concise perspective on the role of biosynthesis and catabolism of neurotransmitters in anxiety and depression. Anxiety disorders are reported to be common patterns of psychological symptoms that impact multiple areas of life. Anxiety and depression are prevalent worldwide and are significantly contributing towards the global health burden. Genetic determinants are believed to play an important role in these disorders. According to modern medicine, one of the most important aspects that is known to be crucial for these disorders is the imbalance of neurotransmitters in the brain. The biosynthesis and catabolism of neurotransmitters have been extensively targeted for innovative drug discovery approaches at various steps that have led to the discovery of many drugs for these psychological disorders. The biosynthetic and catabolic reaction cycles of neurotransmitters and the discovery of drugs based on these hypotheses are discussed. To the best of the authors’ knowledge, this review compiles already known descriptive knowledge on "relation of neurotransmitter imbalance with anxiety disorders" in a precise way that will provide readers with an overview of the vast literature.

About the authors

Ashish Patil

School of Consciousness, Dr. Vishwanath Karad MIT World Peace University

Email: info@benthamscience.net

Summon Koul

School of Consciousness, Dr. Vishwanath Karad MIT World Peace University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Kessler RC, Chiu WT, Demler O, Walters EE, Walters EE. Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey Replication. Arch Gen Psychiatry 2005; 62(6): 617-27. doi: 10.1001/archpsyc.62.6.617 PMID: 15939839
  2. Bhatt NV, Baker MJ, Jain VB. Anxiety Disorders. 2019. Available from: https://emedicine.medscape.com/article/286227- overview
  3. Vahia VN. American Psychiatric Association. Cautionary statement for forensic use of DSM-5. Diagnostic and statistical manual of mental disorders. 2013. doi: 10.1176/appi.books.9780890425596.744053
  4. Santomauro DF, Mantilla Herrera AM, Shadid J, et al. Global prevalence and burden of depressive and anxiety disorders in 204 countries and territories in 2020 due to the COVID-19 pandemic. Lancet 2021; 398(10312): 1700-12. doi: 10.1016/S0140-6736(21)02143-7 PMID: 34634250
  5. Nasir M, Trujillo D, Levine J, Dwyer JB, Rupp ZW, Bloch MH. Glutamate systems in DSM-5 anxiety disorders: Their role and a review of glutamate and GABA psychopharmacology. Front Psychiatry 2020; 11: 548505. doi: 10.3389/fpsyt.2020.548505 PMID: 33329087
  6. COVID-19 pandemic triggers 25% increase in prevalence of anxiety and depression worldwide. Available from: https://www.who.int/news/item/02-03-2022-covid-19-pandemic-triggers-25-increase-in-prevalence-of-anxiety-and-depression-worldwide
  7. COVID-19: Depression, anxiety soared 25 per cent in a year. Available from: https://news.un.org/en/story/2022/03/1113162
  8. Natasha T. Relationship between depression and anxiety. Available from: https://www.healthyplace.com/depression/anxiety-and-depression/relationship-between-depression-and-anxiety#:~:text=While%20depression%20is%20often%20considered,even%20leading%20to%20panic%20attacks.
  9. Kalueff AV, Nutt DJ. Role of GABA in anxiety and depression. Depress Anxiety 2007; 24(7): 495-517. doi: 10.1002/da.20262 PMID: 17117412
  10. Albert PR, Benkelfat C, Descarries L. The neurobiology of depression-revisiting the serotonin hypothesis. I. Cellular and molecular mechanisms. Philos Trans R Soc Lond B Biol Sci 2012; 367(1601): 2378-81. doi: 10.1098/rstb.2012.0190 PMID: 22826338
  11. Sartori SB, Singewald N. Novel pharmacological targets in drug development for the treatment of anxiety and anxiety-related disorders. Pharmacol Ther 2019; 204: 107402-34. doi: 10.1016/j.pharmthera.2019.107402 PMID: 31470029
  12. Wong EHF, Yocca F, Smith MA, Lee CM. Challenges and opportunities for drug discovery in psychiatric disorders: The drug hunters’ perspective. Int J Neuropsychopharmacol 2010; 13(9): 1269-84. doi: 10.1017/S1461145710000866 PMID: 20716397
  13. Garakani A, Murrough JW, Freire RC, et al. Pharmacotherapy of anxiety disorders: Current and emerging treatment options. Front Psychiatry 2020; 11: 595584-604. doi: 10.3389/fpsyt.2020.595584 PMID: 33424664
  14. Vasiliu O. Investigational drugs for the treatment of depression (Part 1): Monoaminergic, orexinergic, GABA-Ergic, and anti-inflammatory agents. Front Pharmacol 2022; 13: 884143. doi: 10.3389/fphar.2022.884143 PMID: 35774601
  15. Martin EI, Ressler KJ, Binder E, Nemeroff CB. The neurobiology of anxiety disorders: Brain imaging, genetics, and psychoneuroendocrinology. Psychiatr Clin North Am 2009; 32(3): 549-75. doi: 10.1016/j.psc.2009.05.004 PMID: 19716990
  16. Purves D, Augustine GJ, Fitzpatrick D, et al. Neurotransmitter Receptors and Their Effects. Neuroscience (2nd.), 2001. Available from: https://www.ncbi.nlm.nih.gov/books/NBK11099/
  17. Biology of Depression: Neurotransmitters. Available from: https://www.mentalhelp.net/depression/biology-of-depression-neurotransmitters/#:~:text=Serotonin%20is%20produced%20by%20serotonergic,some%20people%20to%20feel%20suicidal
  18. Cervenka S, Frick A, Bodén R, Lubberink M. Application of positron emission tomography in psychiatry-methodological developments and future directions. Transl Psychiatry 2022; 12(1): 248. doi: 10.1038/s41398-022-01990-2 PMID: 35701411
  19. Ceccarini J, Liu H, Van Laere K, Morris ED, Sander CY. Methods for quantifying neurotransmitter dynamics in the living brain with PET imaging. Front Physiol 2020; 11: 792. doi: 10.3389/fphys.2020.00792 PMID: 32792972
  20. Aryutova K, Stoyanov D. Pharmaco-magnetic resonance as a tool for monitoring the medication-related effects in the brain may provide potential biomarkers for psychotic disorders. Int J Mol Sci 2021; 22(17): 9309. doi: 10.3390/ijms22179309 PMID: 34502214
  21. Finnema SJ, Scheinin M, Shahid M, et al. Application of cross-species PET imaging to assess neurotransmitter release in brain. Psychopharmacology 2015; 232(21-22): 4129-57. doi: 10.1007/s00213-015-3938-6 PMID: 25921033
  22. Gryglewski G, Lanzenberger R, Kranz GS, Cumming P. Meta-analysis of molecular imaging of serotonin transporters in major depression. J Cereb Blood Flow Metab 2014; 34(7): 1096-103. doi: 10.1038/jcbfm.2014.82 PMID: 24802331
  23. Erritzoe D, Ashok AH, Searle GE, et al. Serotonin release measured in the human brain: A PET study with 11CCIMBI-36 and d-amphetamine challenge. Neuropsychopharmacology 2020; 45(5): 804-10. doi: 10.1038/s41386-019-0567-5 PMID: 31715617
  24. Jenkins BG. Pharmacologic magnetic resonance imaging (phMRI): Imaging drug action in the brain. Neuroimage 2012; 62(2): 1072-85. doi: 10.1016/j.neuroimage.2012.03.075 PMID: 22495143
  25. Young SN. How to increase serotonin in the human brain without drugs. J Psychiatry Neurosci 2007; 32(6): 394-9. doi: 10.1016/B978-0-444-64125-0.00036-0 PMID: 18043762
  26. Gershon MD, Tack J. The serotonin signaling system: From basic understanding to drug development for functional GI disorders. Gastroenterology 2007; 132(1): 397-414. doi: 10.1053/j.gastro.2006.11.002 PMID: 17241888
  27. Capítulo en, Bryan LR. The Serotonin Receptors: From Molecular Pharmacology to Human Therapeutics. Totowa; NJ: Humana Press 2006; pp. 319-64. doi: 10.1007/978-1-59745-080-5
  28. Giorgetti M, Tecott LH. Contributions of 5-HT2C receptors to multiple actions of central serotonin systems. Eur J Pharmacol 2004; 488(1-3): 1-9. doi: 10.1016/j.ejphar.2004.01.036 PMID: 15044029
  29. Gray JA, Roth BL. The pipeline and future of drug development in schizophrenia. Mol Psychiatry 2007; 12(10): 904-22. doi: 10.1038/sj.mp.4002062 PMID: 17667958
  30. Frazer A, Hensler JG. Serotonin. Basic neurochemistry: Molecular, cellular and medical aspects. 6th ed. Philadelphia: Lippincott-Raven 1999. Available from: https://www.ncbi.nlm.nih.gov/books/NBK20375/
  31. Glennon RA, Dukat MA. Serotonin receptors and drugs affecting serotonergic neurotransmission. Foye’s Textbook of Medicinal Chemistry 2002; pp. 365-96.
  32. Edinoff AN, Akuly HA, Hanna TA, et al. Selective serotonin reuptake inhibitors and adverse effects: A narrative review. Neurol Int 2021; 13(3): 387-401. doi: 10.3390/neurolint13030038 PMID: 34449705
  33. Hashimoto Y, Suzuki T, Hashimoto K. Mechanisms of action of fluvoxamine for COVID-19: A historical review. Mol Psychiatry 2022; 27(4): 1898-907. doi: 10.1038/s41380-021-01432-3 PMID: 34997196
  34. Shoar NS, Fariba KA, Padhy RK. Citalopram. Treasure Island, FL: StatPearls Publishing 2021. Available from: https://www.ncbi.nlm.nih.gov/books/NBK482222/
  35. Roweth HG, Cook AA, Moroi M, et al. Two novel, putative mechanisms of action for citalopram-induced platelet inhibition. Sci Rep 2018; 8(1): 16677. doi: 10.1038/s41598-018-34389-5 PMID: 30420683
  36. Sánchez C, Bøgesø KP, Ebert B, Reines EH, Braestrup C. Escitalopram versus citalopram: The surprising role of the R-enantiomer. Psychopharmacology 2004; 174(2): 163-76. doi: 10.1007/s00213-004-1865-z PMID: 15160261
  37. Owens MJ, Knight DL, Nemeroff CB. Second-generation SSRIs: Human monoamine transporter binding profile of escitalopram and R-fluoxetine. Biol Psychiatry 2001; 50(5): 345-50. doi: 10.1016/S0006-3223(01)01145-3 PMID: 11543737
  38. Raffaele R, Vecchio I, Giammona G, et al. Citalopram in the treatment of depression in the elderly. Arch Gerontol Geriatr 2002; 35: 303-8. doi: 10.1016/S0167-4943(02)00113-9 PMID: 14764407
  39. Nevels RM, Gontkovsky ST, Williams BE. Paroxetine-the antidepressant from hell? Probably not, but caution required. Psychopharmacol Bull 2016; 46(1): 77-104. PMID: 27738376
  40. Bourin M, Chue P, Guillon Y. Paroxetine: A review. CNS Drug Rev 2001; 7(1): 25-47. doi: 10.1111/j.1527-3458.2001.tb00189.x PMID: 11420571
  41. Coleman JA, Navratna V, Antermite D, Yang D, Bull JA, Gouaux E. Chemical and structural investigation of the paroxetine-human serotonin transporter complex. eLife 2020; 9: e56427. doi: 10.7554/eLife.56427 PMID: 32618269
  42. Richelson E. Pharmacology of antidepressants characteristics of the ideal drug. Mayo Clin Proc 1994; 69(11): 1069-81. doi: 10.1016/S0025-6196(12)61375-5 PMID: 7967761
  43. Amidfar M, Kim YK. Recent developments on future antidepressant-related serotonin receptors. Curr Pharm Des 2018; 24(22): 2541-8. doi: 10.2174/1381612824666180803111240 PMID: 30073919
  44. Wong DT, Bymaster FP, Reid LR, Fuller RW, Perry KW. Inhibition of serotonin uptake by optical isomers of fluoxetine. Drug Dev Res 1985; 6(4): 397-403. doi: 10.1002/ddr.430060412
  45. Wong DT, Threlkeld PG, Robertson DW. Affinities of fluoxetine, its enantiomers, and other inhibitors of serotonin uptake for subtypes of serotonin receptors. Neuropsychopharmacology 1991; 5(1): 43-7. PMID: 1930610
  46. Borys DJ, Setzer SC, Ling LJ, Reisdorf JJ, Day LC, Krenzelok EP. The effects of fluoxetine in the overdose patient. J Toxicol Clin Toxicol 1990; 28(3): 331-40. doi: 10.3109/15563659008994434 PMID: 2231832
  47. Singh HK, Saadabadi A. Sertraline. Treasure Island, FL: StatPearls Publishing 2023. Available from: https://www.ncbi.nlm.nih.gov/books/NBK547689/
  48. Lewis G, Duffy L, Ades A, et al. The clinical effectiveness of sertraline in primary care and the role of depression severity and duration (PANDA): A pragmatic, double-blind, placebo-controlled randomised trial. Lancet Psychiat 2019; 6(11): 903-14. doi: 10.1016/S2215-0366(19)30366-9 PMID: 31543474
  49. Irons J. Fluvoxamine in the treatment of anxiety disorders. Neuropsychiatr Dis Treat 2005; 1(4): 289-99. PMID: 18568110
  50. Sukhatme VP, Reiersen AM, Vayttaden SJ, Sukhatme VV. Fluvoxamine: A review of its mechanism of action and its role in COVID-19. Front Pharmacol 2021; 12: 652688. doi: 10.3389/fphar.2021.652688 PMID: 33959018
  51. New Serotonin Findings Could Help Treat Depression, Anxiety. Available from: https://news.cornell.edu/stories/2022/10/new-serotonin-findings-could-help-treat-depression-anxiety
  52. Briley M, Chantal M. The importance of norepinephrine in depression. Neuropsychiatr Dis Treat 2011; 7 (1): 9-13. doi: 10.2147/NDT.S19619 PMID: 21750623
  53. Wassall RD, Teramoto N, Cunnane TC. Noradrenaline. Encyclopedia of Neuroscience. Elsevier 2009; pp. 1221-30. doi: 10.1016/B978-008045046-9.00681-1
  54. Chen X, Werner RA, Javadi MS, et al. Radionuclide imaging of neurohormonal system of the heart. Theranostics 2015; 5(6): 545-58. doi: 10.7150/thno.10900 PMID: 25825596
  55. Hussain LS, Reddy V, Maani CV. Physiology, noradrenergic Synapse. Treasure Island, FL: StatPearls Publishing 2022. Available from: https://www.ncbi.nlm.nih.gov/books/NBK540977/
  56. Sun Z, Bo Q, Mao Z, et al. Reduced plasma dopamine-β-hydroxylase activity is associated with the severity of bipolar disorder: A pilot study. Front Psychiatry 2021; 12: 566091. doi: 10.3389/fpsyt.2021.566091 PMID: 33995135
  57. Cho HU, Kim S, Sim J, et al. Redefining differential roles of MAO-A in dopamine degradation and MAO-B in tonic GABA synthesis. Exp Mol Med 2021; 53(7): 1148-58. doi: 10.1038/s12276-021-00646-3 PMID: 34244591
  58. Laban TS, Saadabadi A. Monoamine oxidase inhibitors (MAOI). Treasure Island, FL: StatPearls Publishing 2022. Available from: https://www.ncbi.nlm.nih.gov/books/NBK539848/
  59. Riederer P, Lachenmayer L, Laux G. Clinical applications of MAO-inhibitors. Curr Med Chem 2004; 11(15): 2033-43. doi: 10.2174/0929867043364775 PMID: 15279566
  60. Garcia E, Santos C. Monoamine oxidase inhibitor toxicity. Treasure Island, FL: StatPearls Publishing 2022. Available from: https://www.ncbi.nlm.nih.gov/books/NBK459386/
  61. Chamberlain SR, Baldwin DS. Monoamine oxidase inhibitors (MAOIs) in psychiatric practice: How to use them safely and effectively. CNS Drugs 2021; 35(7): 703-16. doi: 10.1007/s40263-021-00832-x PMID: 34240393
  62. Giorgi-Coll S, Amaral AI, Hutchinson PJA, Kotter MR, Carpenter KLH. Succinate supplementation improves metabolic performance of mixed glial cell cultures with mitochondrial dysfunction. Sci Rep 2017; 7(1): 1003. doi: 10.1038/s41598-017-01149-w PMID: 28432362
  63. Dingledine R, McBain CJ. Three classes of ionotropic glutamate receptor. Basic Neurochemistry: Molecular, Cellular and Medical Aspects. (6th ed.), Philadelphia: Lippincott-Raven 1999. Available from: https://www.ncbi.nlm.nih.gov/books/NBK20385
  64. Swanson CJ, Bures M, Johnson MP, Linden AM, Monn JA, Schoepp DD. Metabotropic glutamate receptors as novel targets for anxiety and stress disorders. Nat Rev Drug Discov 2005; 4(2): 131-44. doi: 10.1038/nrd1630 PMID: 15665858
  65. Amiel JM, Mathew SJ. Glutamate and anxiety disorders. Curr Psychiatry Rep 2007; 9(4): 278-83. doi: 10.1007/s11920-007-0033-7 PMID: 17880858
  66. FDA Approves 'Rapid-Acting' Oral Drug for Major Depression. Available from: https://www.medscape.com/viewarticle/979568?form=fpf
  67. Stahl SM. Dextromethorphan/bupropion: A novel oral NMDA (N-methyl-d-aspartate) receptor antagonist with multimodal activity. CNS Spectr 2019; 24(5): 461-6. doi: 10.1017/S1092852919001470 PMID: 31566163
  68. Zanos P, Moaddel R, Morris PJ, et al. Ketamine and ketamine metabolite pharmacology: Insights into therapeutic mechanisms. Pharmacol Rev 2018; 70(3): 621-60. doi: 10.1124/pr.117.015198 PMID: 29945898
  69. Singh I, Morgan C, Curran V, Nutt D, Schlag A, McShane R. Ketamine treatment for depression: Opportunities for clinical innovation and ethical foresight. Lancet Psychiat 2017; 4(5): 419-26. doi: 10.1016/S2215-0366(17)30102-5 PMID: 28395988
  70. Machado-Vieira R, Baumann J, Wheeler-Castillo C, et al. The timing of antidepressant effects: A comparison of diverse pharmacological and somatic treatments. Pharmaceuticals 2010; 3(1): 19-41. doi: 10.3390/ph3010019 PMID: 27713241
  71. Newport DJ, Carpenter LL, McDonald WM, Potash JB, Tohen M, Nemeroff CB. Ketamine and other NMDA antagonists: Early clinical trials and possible mechanisms in depression. Am J Psychiatry 2015; 172(10): 950-66. doi: 10.1176/appi.ajp.2015.15040465 PMID: 26423481
  72. Banov MD, Young JR, Dunn T, Szabo ST. Efficacy and safety of ketamine in the management of anxiety and anxiety spectrum disorders: A review of the literature. CNS Spectr 2020; 25(3): 331-42. doi: 10.1017/S1092852919001238 PMID: 31339086
  73. Ketamine Therapy for Anxiety. Available from: https://www.healthline.com/health/anxiety/ketamine-for-anxiety
  74. Nutt D. Science and non-science in UK drug policy. Addiction 2010; 105(7): 1154. doi: 10.1111/j.1360-0443.2010.02965.x PMID: 20642504
  75. Miller RG, Mitchell JD, Lyon M, Moore DH. Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND). Cochrane Database Syst Rev 2007; 1(1): CD001447. doi: 10.1002/14651858.CD001447.pub2 PMID: 17253460
  76. Bansal Y, Fee C, Misquitta KA, et al. Prophylactic efficacy of riluzole against anxiety- and depressive-like behaviors in two rodent stress models. Complex Psychiatry 2023; 9(1-4): 57-69. doi: 10.1159/000529534 PMID: 37101541
  77. clinicaltrials. NCT03829241, 2024. Available from: https://clinicaltrials.gov/ct2/show/NCT03829241
  78. Rogawski MA, Wenk GL. The neuropharmacological basis for the use of memantine in the treatment of Alzheimer’s disease. CNS Drug Rev 2003; 9(3): 275-308. doi: 10.1111/j.1527-3458.2003.tb00254.x PMID: 14530799
  79. Matsunaga S, Kishi T, Iwata N. Memantine monotherapy for Alzheimer’s disease: A systematic review and meta-analysis. PLoS One 2015; 10(4): e0123289. doi: 10.1371/journal.pone.0123289 PMID: 25860130
  80. Robinson DM, Keating GM. Memantine. Drugs 2006; 66(11): 1515-34. doi: 10.2165/00003495-200666110-00015 PMID: 16906789
  81. Yang Z, Zhou X, Zhang Q. Effectiveness and safety of memantine treatment for Alzheimer’s disease. J Alzheimers Dis 2013; 36(3): 445-58. doi: 10.3233/JAD-130395 PMID: 23635410
  82. Matsunaga S, Kishi T, Nomura I, et al. The efficacy and safety of memantine for the treatment of Alzheimer’s disease. Expert Opin Drug Saf 2018; 17(10): 1053-61. doi: 10.1080/14740338.2018.1524870 PMID: 30222469
  83. Reisberg B, Doody R, Stöffler A, Schmitt F, Ferris S, Möbius HJ. Memantine in moderate-to-severe Alzheimer’s disease. N Engl J Med 2003; 348(14): 1333-41. doi: 10.1056/NEJMoa013128 PMID: 12672860
  84. Schwartz TL, Siddiqui UA, Raza S. Memantine as an augmentation therapy for anxiety disorders. Case Rep Psychiatry 2012; 2012: 1-3. doi: 10.1155/2012/749796 PMID: 22937414
  85. Möhler H. The GABA system in anxiety and depression and its therapeutic potential. Neuropharmacology 2012; 62(1): 42-53. doi: 10.1016/j.neuropharm.2011.08.040 PMID: 21889518
  86. Shelp B, Bown AW, McLean MD. Metabolism and functions of gamma-aminobutyric acid. Trends Plant Sci 1999; 4(11): 446-52. doi: 10.1016/S1360-1385(99)01486-7 PMID: 10529826
  87. Bown AW, Shelp BJ. The metabolism and functions of gamma-aminobutyric acid. Plant Physiol 1997; 115(1): 1-5. doi: 10.1104/pp.115.1.1 PMID: 12223787
  88. Olsen RW, DeLorey TM. GABA synthesis, uptake and release. Basic Neurochemistry: Molecular, Cellular and Medical Aspects. (6th ed.), Philadelphia: Lippincott-Raven 1999. Available from: https://www.ncbi.nlm.nih.gov/books/NBK27979/
  89. Sieghart W. Structure and pharmacology of gamma-aminobutyric acidA receptor subtypes. Pharmacol Rev 1995; 47(2): 181-234. PMID: 7568326
  90. Nutt D. GABAA receptors: Subtypes, regional distribution, and function. J Clin Sleep Med 2006; 2(2): S7-S11. doi: 10.5664/jcsm.26525 PMID: 17557501
  91. Nutt DJ, Malizia AL. New insights into the role of the GABAA-benzodiazepine receptor in psychiatric disorder. Br J Psychiatry 2001; 179(5): 390-6. doi: 10.1192/bjp.179.5.390 PMID: 11689393
  92. Calcaterra NE, Barrow JC. Classics in chemical neuroscience: Diazepam (valium). ACS Chem Neurosci 2014; 5(4): 253-60. doi: 10.1021/cn5000056 PMID: 24552479
  93. Sills G. The mechanisms of action of gabapentin and pregabalin. Curr Opin Pharmacol 2006; 6(1): 108-13. doi: 10.1016/j.coph.2005.11.003 PMID: 16376147
  94. Leung JG, Hall-Flavin D, Nelson S, Schmidt KA, Schak KM. The role of gabapentin in the management of alcohol withdrawal and dependence. Ann Pharmacother 2015; 49(8): 897-906. doi: 10.1177/1060028015585849 PMID: 25969570
  95. Fasipe OJ, Agede OA, Enikuomehin AC. Announcing the novel class of GABA-A receptor selective positive allosteric modulator antidepressants. Future Sci OA 2021; 7(2): FSO654. doi: 10.2144/fsoa-2020-0108 PMID: 33437518
  96. Azhar Y, Din AU. Brexanolone. Treasure Island, FL: StatPearls Publishing 2022. Available from: https://www.ncbi.nlm.nih.gov/books/NBK541054/
  97. Deligiannidis KM, Meltzer-Brody S, Gunduz-Bruce H, et al. Effect of Zuranolone vs. placebo in postpartum depression: A randomized clinical trial. JAMA Psychiatry 2021; 78(9): 951-9. doi: 10.1001/jamapsychiatry.2021.1559 PMID: 34190962
  98. Salwan A, Maroney M, Tremayne L. Patient-reported perceptions of brexanolone in the treatment of postpartum depression: A qualitative analysis. Ment Health Clin 2022; 12(6): 342-9. doi: 10.9740/mhc.2022.12.342 PMID: 36644587
  99. Panchal N, Saunders H, Rudowitz R, Cox C. The implications of COVID-19 for mental health and substance use. 2023. Available from: https://www.kff.org/coronavirus-COVID-19/issue-brief/the-implications-of-covid-19-for-mental-health-and-substance-use/
  100. Teepe GW, Glase EM, Reips UD. Increasing digitalization is associated with anxiety and depression: A Google Ngram analysis. PLoS One 2023; 18(4): e0284091. doi: 10.1371/journal.pone.0284091 PMID: 37027368
  101. Kalin NH. The critical relationship between anxiety and depression. Am J Psychiatry 2020; 177(5): 365-7. doi: 10.1176/appi.ajp.2020.20030305 PMID: 32354270

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers